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It is shown how certain observations interpreted in the background of the Friedmann model with
Λ < 0 ¼ k (the ΛCDMmodel) can be reinterpreted using the Λ ¼ 0 Lemaître-Tolman (L-T) model so as to
do away with the “dark energy.” The purpose of this paper is to clarify the underlying geometrical relations
by doing the calculations as much as possible analytically or by very simple numerical programs. In the
first part of the paper (fictitious) observations of the distribution of expansion velocity along the past light
cone of the observer are considered. It is shown that the whole past light cone of the ΛCDM observer can be
reproduced in the L-T model with Λ ¼ 0 ¼ E. This is a geometric exercise that has the advantage of being
free of numerical complications. In the second part, the luminosity distance-redshift relation of the ΛCDM
model is duplicated using the L-T model with −k ¼ 2E=r2 ¼ constant > 0. The value of k and the
function tBðrÞ are determined by the ΛCDM parameters. General properties of this L-T model are
described. Difficulties of carrying the numerical calculations through the apparent horizon are presented in
detail and mostly solved. The second model is a counterexample to the general belief that an L-T model
mimicking ΛCDM must contain a void around the center—it has a peak of density at R ¼ 0.
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I. ACCELERATING EXPANSION OR
INHOMOGENEITY?

As is well known by now, in the years 1998–1999 two
teams of observers [1,2] concluded that the observed peak
luminosity of the type Ia supernovae is smaller than was
implied by the Λ ¼ 0 Friedmann model. An elaborate
fitting procedure led to the conclusion that the best-fit
model within the Robertson-Walker (RW) class with zero
pressure is the one with the curvature index k ¼ 0 and a
value of the cosmological constant that accounts for ≈68%
of the current energy density of the Universe [3], now
called the ΛCDM model. Thus, at present, the Universe
should be expanding at an accelerating rate. The substance
that causes this acceleration was named “dark energy.”
Strange as it is (an observed effect being caused by an entity
that no one has ever seen outside this cosmological
context), this hypothesis was almost universally accepted,
and the existence of dark energy is now taken for granted
by nearly all authors.
Meanwhile, it has been demonstrated in several papers

that if one gives up on the homogeneity assumption, then
even the simplest among the realistic inhomogeneous
models, the Lemaître [4]-Tolman [5] (L–T) model, can
account for the apparent dimming of the type Ia supernovae
using a suitable inhomogeneous distribution of mass in the
Universe, with zero cosmological constant and decelerated
expansion. Among the first papers that introduced this
alternative description were the ones by Celerier [6] and
Iguchi et al. [7]. Later, it was demonstrated by examples

that when the L-T model is employed at full generality,
with no a priori simplifying assumptions, then two sets of
observational data can be reproduced, such as the pairs
(angular diameter distance-mass density in the redshift
space) and (angular diameter distance-expansion rate) [8].
Those earlier considerations resorted to numerical cal-

culations almost from the beginning, which obscured the
underlying geometrical relations. In the present paper, a
comparison of theΛCDMmodel with theΛ ¼ 0 L-T model
is done by more transparent means. Explicit algebraic and
differential equations are used almost exclusively, and
several properties of the L-T model thus adapted are
determined by exact calculations.
In the first part of the paper (Secs. IV–VII) the

distribution of the cosmic expansion velocity along the
past light cone of the observer is considered. It is shown
that, with a suitably chosen bang-time function tBðrÞ, the
central observer in the L-T model with E ¼ 0 ¼ Λ can see
the same past light cone as an observer in the ΛCDM
model. This proof is unrelated to actual problems of
observational cosmology, but it is free of numerical
complications, and therefore is presented first.
In the second part (Secs. VIII–XVIII, inspired by the

approach of Iguchi et al. [7]), the luminosity distance-
redshift relation,DLðzÞ, of theΛCDMmodel is duplicated in
the L-T model with Λ ¼ 0 and −k¼2E=r2¼ constant>0
(this is the same k as in the limiting Friedmann model). The
value of k is determined by fine-tuning the values of redshift
at the origin and at the apparent horizon, and the effect of Λ
is reproduced by the L-T bang-time function tBðrÞ.
The L-T model mimicking the ΛCDM DLðzÞ relation is

determined for a single instant of observation. The time*akr@camk.edu.pl
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evolution of the two models is different, and they can be
distinguished by observations that are sensitive to time
changes rather than just to an instant snapshot of the
Universe, for example, by the redshift drift [9].
The approach used here leads to a few clarifications.

Among other things, it is shown how the obstacles to
carrying the numerical integration through the apparent
horizon, reported in Refs. [7,10] (and incorrectly inter-
preted in [10] as a “pathology” of the L-T model), can be
overcome. Also, the model considered in the second part
provides a counterexample to the general belief that an L-T
model mimicking accelerated expansion must contain a
void around its center of symmetry.

II. A QUICK INTRODUCTION TO
THE FRIEDMANN AND

LEMAÎTRE-TOLMAN MODELS

This is a summary of basic facts about the L-T model.
For extended expositions see Refs. [11,12]. Its metric is

ds2 ¼ dt2 − R;r
2

1þ 2EðrÞ dr
2 − R2ðt; rÞðdϑ2 þ sin2ϑdφ2Þ;

(2.1)

where EðrÞ is an arbitrary function, and Rðt; rÞ is deter-
mined by the integral of the Einstein equations,

R;t
2 ¼ 2EðrÞ þ 2MðrÞ=R − 1

3
ΛR2; (2.2)

withMðrÞ being another arbitrary function and Λ being the
cosmological constant. Note that E must obey

2Eþ 1 ≥ 0 (2.3)

in order that the signature of (2.1) is the physical
(þ − −−). The equality in (2.3) can occur only at special
locations (at isolated values of r) called necks [12].
Equation (2.2) has the same algebraic form as one of the

Friedmann equations, except that it contains arbitrary
functions of r in place of arbitrary constants. The solution
of (2.2) may be written as

t − tBðrÞ ¼ �
Z

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðrÞ þ 2MðrÞ=R − 1

3
ΛR2

q ; (2.4)

where tBðrÞ is one more arbitrary function called the bang
time. Theþ sign applies for an expanding region, and the−
sign applies for a collapsing region. Throughout this paper
only expanding models will be considered.
In the case Λ ¼ 0, the solutions of (2.2) may be written

in the parametric form as follows:

(1) When EðrÞ < 0,

Rðt; rÞ ¼ − M
2E

ð1 − cos ηÞ;

η − sin η ¼ ð−2EÞ3=2
M

½t − tBðrÞ�: (2.5)

(2) When EðrÞ ¼ 0,

Rðt; rÞ ¼
�
9

2
MðrÞ½t − tBðrÞ�2

�
1=3

: (2.6)

(3) When EðrÞ > 0,

Rðt; rÞ ¼ M
2E

ðcosh η − 1Þ;

sinh η − η ¼ ð2EÞ3=2
M

½t − tBðrÞ�: (2.7)

The mass density is

κρ ¼ 2M;r

R2R;r
; κ¼def 8πG

c2
: (2.8)

The pressure is zero, so the matter (dust) particles move on
geodesics.
Equations (2.1–2.8) are covariant with the transforma-

tion r → r0 ¼ fðrÞ, which may be used to give one of the
functions ðM;E; tBÞ a handpicked form, in the range where
it is monotonic. In this paper, M;r > 0 is assumed, and the
following choice of r will be made

M ¼ M0r3; (2.9)

where M0 > 0 is an arbitrary constant. This r is still not
unique—the transformations r ¼ Cr0, with C ¼ constant,
are still allowed, and they redefine M0 by M0 ¼ M0

0=C
3.

So, we can assume a convenient value forM0. However,M0

has the dimension of length and represents mass, so the
choice of its value amounts to choosing a unit of mass. See
Sec. X for more on this.
As seen from (2.8), the locus of R;r¼ 0 is a curvature

singularity (ρ → ∞), unless it coincides with the locus of
M;r ¼ 0—but this last one is absent here because of (2.9).
This singularity is called a shell crossing because, as seen
from (2.1), the geodesic distance between the r-and
(rþ dr) spheres becomes zero there. The full set of
necessary and sufficient conditions for avoiding shell
crossings was worked out in Ref. [13]. With the assumption
M;r > 0, and E;r > 0 adopted further on, the necessary and
sufficient condition for the absence of shell crossings is

dtB
dr

< 0. (2.10)
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In the case E ¼ 0, R;r¼ 0 implies, via (2.6) and (2.9),

t − tBðrÞ ¼
2

3
r
dtB
dr

: (2.11)

Since r > 0 by assumption (2.9), and t > tB in expanding
models, (2.11) has no solutions when dtB=dr < 0.
It must be stressed that the L-T model, having zero

pressure, cannot be applied to those cosmological situa-
tions, in which pressure cannot be neglected, in particular
to the prerecombination epoch. Consequently, if a shell
crossing exists, but occurs before last scattering (usually
assumed to take place between 3 × 105 and 4 × 105 y after
the big bang), then it is cosmologically irrelevant—the L-T
model does not apply to those times anyway.
A past radial null geodesic is given by the equation

dr
dr

t ¼ − R;rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EðrÞp ; (2.12)

and its solution is denoted t ¼ tngðrÞ. The redshift zðrÞ
along tngðrÞ is given by [14,12]

1

1þ z
dr
dr

z ¼
�

R;trffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
�
ng
: (2.13)

Given tngðrÞ and zðrÞ, the luminosity distance DLðzÞ of a
light source from the central observer is [6,15]

DLðzÞ ¼ ð1þ zÞ2Rjng: (2.14)

The Friedmann limit of (2.1) follows whenM=r3 ¼ M0,
2E=r2 ¼ −k and tB are constant, where k is the Friedmann
curvature index. Then (2.5–2.7) imply R ¼ rSðtÞ,1 and the
limiting metric is

ds2 ¼ dt2 − S2ðtÞ
�

1

1 − kr2
dr2 þ r2ðdϑ2 þ sin2ϑdφ2Þ

�
:

(2.15)

Equation (2.13), using (2.12), simplifies to ðdz=dtÞ=
ð1þ zÞ ¼ S;t =S, which is easily integrated to give

1þ z ¼ SðtoÞ=SðteÞ; (2.16)

where to and te are the instants of, respectively, observation
and emission of the light ray.
In the Friedmann limit, the formula for the luminosity

distance can be represented as follows,

DLðzÞ ¼
1þ z

H0

ffiffiffiffiffiffi
Ωk

p

× sinh

�Z
z

0

ffiffiffiffiffiffi
Ωk

p
dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωmð1þ z0Þ3 þΩkð1þ z0Þ2 þΩΛ

p �
;

(2.17)

where H0 is the Hubble coefficient at to,

H0 ¼ S;t =Sjt¼to ; (2.18)

and the three dimensionless parameters,

ðΩm;Ωk;ΩΛÞ¼def
1

3H0
2

�
8πGρ0
c2

;− 3k
S02

;−Λ
�����

t¼to

; (2.19)

obey Ωm þ Ωk þ ΩΛ ≡ 1 [ρ0 is the current mean mass
density in the Universe and S0 ¼ SðtoÞ]. This formula
applies also with Ωk < 0 (sinhðixÞ≡ i sin x) and Ωk → 0.
In the last case, (2.17) simplifies to

DLðzÞ ¼
1þ z
H0

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þ ΩΛ

p ; (2.20)

where now Ωm þ ΩΛ ≡ 1.
Note that the time coordinate t used here is related to the

physical time τ (measured, for example, in years) by t ¼ cτ.
Therefore, the Hubble parameter H0 defined in (2.18) is
related to the quantity H0, named the “Hubble constant” in
astronomical tables, by

H0 ¼ H0=c: (2.21)

III. APPARENT HORIZONS IN THE L-T AND
FRIEDMANN MODELS

A general definition of an apparent horizon is given in
Ref. [16]. In application to the L–T models, one deals with
a simpler situation [17], [12]. An apparent horizon (AH) is
the boundary of a region of spacetime, in which all bundles
of null geodesics converge (have negative expansion
scalar—for a model collapsing toward a final singularity)
or diverge (have positive expansion scalar—for a model
expanding out of a big bang). The first kind of AH is called
the future AH, the second one, the past AH. In what
follows, only the past AHs will appear and the adjective
“past” will be dropped.
The AH of the central observer is a locus where R,

calculated along a past-directed null geodesic given by
(2.12), changes from increasing to decreasing, i.e. where

d
dr

RðtngðrÞ; rÞ ¼ 0. (3.1)

This locus is given by [12]
1A coordinate-independent condition for the Friedmann limit

is 2E=M2=3 and tB being constant. Then R ¼ ½MðrÞ=M0�1=3SðtÞ.
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2M=R − 1 − 1

3
ΛR2 ¼ 0. (3.2)

Equation (3.2) has a solution for every value of Λ (see
Appendix A). Thus, as we proceed backward in time along
the central past light cone, the radius of the light cone first
increases until the AH is reached, then decreases, and this
happens independently of the presence and sign of Λ. The
same applies to the Friedmann models [18].
From now on, Λ ¼ 0 will be assumed for the L-T model,

so the AH will be at

R ¼ 2M ¼ 2M0r3: (3.3)

In the Friedmann limit this becomes

SðtÞ ¼ 2M0r2: (3.4)

IV. THE TILT OF THE MATTER VELOCITY
VECTOR WITH RESPECT TO THE LIGHT
ONE IN THE k ¼ 0 FRIEDMANN MODEL

In Secs. IV–VII the subcase E ¼ 0 of the L-T model will
be considered, and the values of its parameters will be
unrelated to reality; they will be chosen so as to achieve the
best visualisation. For a radial null geodesic directed
toward the center of symmetry, (2.12) implies that the
components of its tangent vector field obey

kt=kr ¼ −R;rjng: (4.1)

This is a measure of the angle between the light cone and
the flow lines of the cosmic medium. In the Friedmann
limit, with r chosen as in (2.15), the above becomes

kt=krjF ¼ −SðtÞjng: (4.2)

This determines the redshift via (2.16).
In the following, we will use the cosmologists’ favourite

Friedmann model, in which k ¼ 0 and Λ < 0. In this case,
with r defined as in (2.9), Eq. (2.2) becomes

S;t2 ¼
2M0

S
− 1

3
ΛS2: (4.3)

This has the elementary solution

SΛðtÞ ¼
�
− 6M0

Λ

�
1=3

sinh2=3
� ffiffiffiffiffiffiffiffiffiffi−3Λp

2
ðt − tBΛÞ

�
; (4.4)

where tBΛ is an arbitrary constant—the time coordinate of
the big bang. For Λ ¼ 0 the solution of (4.3) is

SðtÞ ¼
�
9M0

2

�
1=3

ðt − tB0Þ2=3; (4.5)

where tB0 is another constant. Figure 1 shows a comparison
of SΛðtÞ and SðtÞ. (For the sake of easier comparison, the
curve (4.4) in Fig. 1 is shifted to tBΛ ¼ −11 instead of
tBΛ ¼ −15 used in most other figures.)
The following should be noted:
(1) The curve SðtÞ is concave everywhere, while SΛðtÞ is

concave up to the instant t ¼ ti, where

ti − tBΛ ¼ 1ffiffiffiffiffiffiffiffiffiffi−3Λp ln

� ffiffiffi
3

p þ 1ffiffiffi
3

p − 1

�
; (4.6)

and for t > ti becomes convex. At the inflection point
t ¼ ti the accelerated expansion sets in.

(2) If tBΛ ¼ tB0, then SΛðtÞ and SðtÞ are tangent
at t ¼ tB0.

(3) With tBΛ ¼ tB0 we have, at any t > tB0

SΛðtÞ > SðtÞ and SΛ;t > S;t : (4.7)

The basic measured quantity in cosmology is the Hubble
parameter (2.18). Suppose, we want to compare the models
(4.4) and (4.5), taking H0 as given. Then, for H0 being the
same in both models, (2.18) implies

ffiffiffiffiffiffiffiffiffiffi−3Λp

2
coth

� ffiffiffiffiffiffiffiffiffiffi−3Λp

2
ðt − tBΛÞ

�
¼ 1

t − tB0
: (4.8)

Since coth x > 1=x for all x > 0, Eq. (4.7) implies

0
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FIG. 1 (color online). A comparison of the curves (4.4)
(the upper line) and (4.5) (the lower line). At the inflection
point (marked by the vertical bar) the accelerated expansion
in (4.4) sets in. The inset shows the same curves over a longer
period of time. The parameters are ðM0;Λ; tB0; tBΛÞ ¼
ð1;−0.001;−10;−11Þ.
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tBΛ < tB0; (4.9)

i.e. the Universe is older in the model (4.4) than in (4.5).
For later reference let us note that (3.2) for the model

(4.4), in the ðt; RÞ variables, has the form

t ¼ tBΛ þ 2ffiffiffiffiffiffiffiffiffiffi−3Λp ln

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi−Λ=3p

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΛR2=3

p �
: (4.10)

V. THE ACCELERATED EXPANSION

With the SðtÞ of (4.5) the radial null geodesic equation
for the metric (2.15) can be integrated:

ðt − tB0Þ1=3 ¼ ðto − tB0Þ1=3 − ðM0=6Þ1=3r; (5.1)

where ðt; rÞ are the coordinates of the point on the geodesic
and t ¼ to is the instant of observation, at which r ¼ 0.
Figure 2 shows this geodesic, compared with the null
geodesic corresponding to (4.4), taking (4.9) into account.
With Λ < 0, the angle α2 between the geodesic and the
flow lines of matter (which are the vertical straight lines) is
everywhere smaller than the corresponding angle α1 for
Λ ¼ 0, because of (4.7) and (4.2).
As we proceed back in time toward the big bang, more

and more particles of the cosmic matter are encompassed
by the light cone. This is seen from (5.1), where rðtÞ is
decreasing in t ∈ ½tB0; to�. However, rðtB0Þ is finite,2

rðtB0Þ ¼ ½6ðto − tB0Þ=M0�1=3; (5.2)

i.e. the mass within the light cone is finite at the big bang
(but rðtB0Þ increases as to increases.) The same is true for
the SΛ of (4.4): because of (4.7) we have

rðtBΛÞ ¼
Z

to

tBΛ

dt
SΛ

<
Z

to

tBΛ

dt
S
< ∞: (5.3)

Figure 2 does not correctly display the spatial radius of
the light cones. It gives the illusion that the radius becomes
ever larger toward the big bang. This is not the case. With
k ¼ 0, the invariant radius of the light cone at time t is
R¼defrSðtðrÞÞ, where tðrÞ is the function implied by (5.1) or
its Λ < 0 counterpart. Figure 3 shows the graphs of R
against t along the light cones of the models (4.4) and (4.5).
As is seen, when we proceed toward the past, the radius of
the light cone increases at first, but acquires a maximum at
a certain instant and then decreases to zero as the big bang
is approached.3 The maximum is at the intersection of the
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FIG. 2 (color online). The past null geodesic tðrÞ for the metric
(2.15) with k ¼ 0 ¼ Λ (upper curve) and with k ¼ 0 > Λ (lower
curve). The vertical straight lines are world lines of the cosmic
medium. We have α2 < α1 everywhere. The observer is at
ðt; rÞ ¼ ð0; 0Þ; tBΛ ¼ −15, other parameters are the same as in
Fig. 1. This graph does not faithfully show the radius of the
intersection of the light cone with a hypersurface of constant t; for
that see Fig. 3.
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FIG. 3 (color online). The geodesic radius R ¼ rSðtðrÞÞ of the
null cones from Fig. 2 as a function of t. The curves fanning out
of the point ðt; RÞ ¼ ð−10; 0Þ are images of the vertical straight
lines of Fig. 2. Each one of them has a different value of r. Note
the maximal value of r, beyond which the radius of the cone
decreases toward the big bang—this is where the light cone
intersects the past apparent horizon of (4.5), shown as the jagged
straight line.

2The matter particle that leaves the big bang at rðtB0Þ is at the
particle horizon [19,12] at t ¼ to.

3The past light cones of the L-T models with Λ ¼ 0 have the
same property. It is this feature that was mistaken for a
“pathology” and named “critical point” in Ref. [10].
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light cone with the past apparent horizon (AH) [12,17]. The
general equation of AH, (3.4), for the model (4.5) reduces
to t ¼ tB þ ð2=3ÞR; this line is also shown in Fig. 3.
Figure 3 also shows the flow lines of matter for the

model (4.5) in the ðt; RÞ variables. They are all convex
because the functions RðtÞ that they represent all have
R;tt < 0 (decelerated expansion).
The inflection points of the flow lines for the model

(4.4), where the accelerated expansion begins, with the
parameter values used in Fig. 3, lie far to the future of the
observer position ðt; RÞ ¼ ð0; 0Þ. Therefore, for compari-
son, Fig. 4 shows the corresponding picture for the
model (4.4), with the parameter values suitably adapted.
It also shows the AH for this model, calculated
from (4.10).
The observer does not know, which spacetime he/she is

in, and only collects light signals from the light cone. For
the purpose of comparing the observations carried out in
the background of the model of (4.4) with those carried out
in the background of (4.5), we have to imagine the light
cone of (4.4) being mapped into the light cone of (4.5) in
such a way that the identity of the cosmic particles and the
angle α2 (which is a measure of the velocity of expansion)
are preserved. To preserve the identity means to move each
point of the lower curve of Fig. 2 into the upper curve along
a vertical straight line.

Figure 5 shows the result of such a mapping. The tBΛ in it
is −120, so, by (4.6), the accelerated expansion begins at
ðt; rÞ ≈ ð−96:0; 2.708Þ. With (4.5), all the flow lines have
vertical tangents, as in Fig. 2. With (4.4), the flow lines tilt
away from the vertical, more and more toward the light
cone as t increases. The observer concludes that in the
model given by (4.4) the expansion rate of the Universe
increases with time.

VI. EXPLAINING AWAY THE “ACCELERATED
EXPANSION” BY A NONSIMULTANEOUS

BIG BANG

It is shown below that the function ðkt=krÞðrÞ along the
past light cone of the observer implied by (4.4) can be
obtained using the E ¼ 0 L-T model. In order to calculate
it, the corresponding null geodesic equation for (2.15) with
(4.4) is first solved:

dt
dr

¼ −
�
6M0

−Λ
�

1=3
sinh2=3

� ffiffiffiffiffiffiffiffiffiffi−3Λp

2
ðt − tBΛÞ

�
: (6.1)

The solution (found numerically and shown in Fig. 2) will
be denoted t ¼ tFðrÞ. When it is substituted in (4.4), it
determines ðkt=krÞFðrÞ via (4.2).
The corresponding kt=kr in the L-T model (2.6) is found

from (2.12), which, with r chosen as in (2.9), reads
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FIG. 4 (color online). The geodesic radius R ¼ rSðtðrÞÞ
of the null cone corresponding to (4.4) as a function of t, and
a collection of world lines of the cosmic medium corresponding
to different values of r. The horizontal line marked “in” is where
all the world lines have their inflection points. The jagged curve is
the AH given by (4.10). The values of the parameters are
ðM0;Λ; tBΛÞ ¼ ð1;−0.0005;−200Þ.
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FIG. 5 (color online). When the observer at ðt; rÞ ¼ ð0; 0Þ
interprets the redshift observations against the background of the
model (4.4), the flow lines of cosmic matter are tilted toward the
light cone by more than was the case in (4.5). This excess tilt is a
measure of the “accelerated expansion." The horizontal line at the
bottom marks the time of the big bang for (4.5). The value of tBΛ
is −120; other parameters are the same as in Fig. 1. The inset
shows Fig. 2 with tBΛ changed from −15 to −120. The crossing
straight lines in the inset mark the inflection point, where
accelerated expansion begins.
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dt
dr

¼
�
9M0

2

�
1=3

f−½t − tBðrÞ�2=3

þ 2

3
r½t − tBðrÞ�−1=3tB;rg: (6.2)

The solution of (6.2) will be denoted t ¼ tLTðrÞ.
The same function ðkt=krÞðrÞ along the past light cone in

both models will thus follow when

�
dt
dr

�
F
¼

�
dt
dr

�
LT
: (6.3)

This means that tF and tLT will coincide at the observer’s
position when tF ¼ tLT everywhere on the cone.
Consequently, tFðrÞ must be found from (6.1), then
substituted for t in (6.2). The result can be written as

dtB
dr

¼ 3

2r

��
2

9M0

�
1=3

½tFðrÞ − tBðrÞ�1=3
dtF
dr

þ tFðrÞ − tBðrÞ
�
; (6.4)

where dtF=dr is given by (6.1). A necessary condition for
tB;r to be finite at r ¼ 0 is that the expression in braces
tends to zero when r → 0. This will happen if

lim
r→0

sinh f
ffiffiffiffiffiffiffi−3Λp
2

½tFðrÞ − tBΛ�gffiffiffiffiffiffiffi−3Λp
2

½tFðrÞ − tBðrÞ�
¼ 1. (6.5)

This determines the value of tBð0Þ:

tBð0Þ ¼ tFð0Þ − 2ffiffiffiffiffiffiffiffiffiffi−3Λp sinh

� ffiffiffiffiffiffiffiffiffiffi−3Λp

2
½tFð0Þ − tBΛ�

�
< tBΛ: (6.6)

Note that ½tFð0Þ − tBð0Þ� increases when jΛj increases.
With (6.6) fulfilled, (6.4) implies

lim
r→0

dtB
dr

r ¼ 1

2

�
6M0

−Λ
�

1=3

×

�
cosh

� ffiffiffiffiffiffiffiffiffiffi−3Λp

2
ðtFð0Þ − tBΛÞ

�
− 1

�

× sinh2=3
� ffiffiffiffiffiffiffiffiffiffi−3Λp

2
ðtFð0Þ − tBΛÞ

�

> 0. (6.7)

This implies limr→0 ρ;r>0 for the ρ of (2.8), which relates in
two ways to problems considered in the literature:

1. The property ρ;r ≠ 0 at the center was called “weak
singularity” [10]. However, this is not a singularity
in the sense of any definition used in relativity [20].

2. When ρ;r > 0 at the center, the density increases
with distance from the center, i.e. there is a void
around the center. Several astrophysicists believe
that the presence of this void is a necessary feature of
any L-T model used to mimic accelerated expansion
(see references in Sec. XVIII). The model consid-
ered in our Secs. VIII–XVII is a counterexample to
this belief.

Figure 6 shows the graph of tBðrÞ calculated from (6.4),
the corresponding past light cone for the central observer,
and the Λ < 0 past light cone from Fig. 2, included for
comparison. The two light cones coincide up to numerical
errors Δt ≈ 0.015. Assuming that −tBΛ ¼ 15 represents the
age of the Universe T ¼ 13:819 × 109 y [3], this error
translates to Δt ¼ 10−3T ¼ 1.38 × 107 y.
Since in all the models comoving coordinates were used,

the flow lines of matter are vertical straight lines in every
case. Therefore, identical light cones for the two models
mean identical functions kt=kr for both.
The inset in Fig. 6 shows the shell crossing (given by

(2.11)), which is in this case inevitable, since tBðrÞ is
increasing all the way. (At the scale of the main figure, the
shell crossing would coincide with the big bang.)
Since the example discussed up to now was not meant to

reflect any real measurements done in astronomy, the
question whether the shell crossings pose a serious problem
is irrelevant. But, for the sake of completeness, let us note
the following. The biggest time-difference between the
shell crossing and the big bang is 0.0885 time units used in
the figure, while the time-difference at the right margin is
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FIG. 6 (color online). Lowest curve: The function tBðrÞ defined
by (6.4) and (6.1). Middle curve: The L-T light cone calculated
from (6.2) with tBðrÞ as in the lowest curve. Upper curve: The
Λ < 0 light cone from Fig. 2, shifted by Δt ¼ 1 upwards,
included for comparison. The inset shows a closeup view of
the time interval between the shell crossing (upper curve) and the
big bang (lower curve).
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0.0354. This translates to 8.15 × 107 y and 3.26 × 107 y,
respectively. This is to be compared with t − tB ≈ 3.5 × 105

years for the recombination epoch; so, clearly, this is not a
realistic model of our Universe.
It is interesting to transform Fig. 6 to the variables ðt; RÞ,

in analogy to Fig. 4. The result of the transformation is
shown in Fig. 7. Now the big bang is no longer a single
point, but a segment of the t axis. This reflects the fact that
the big bang occurs at different times for different flow
lines. The flow lines no longer have a common origin, and
they intersect in the vicinity of their origins. The inter-
sections are images of the shell crossings, shown in closeup
view in Fig. 8.
The light cone in Fig. 7 does not extend to the R ¼ 0

line because of numerical errors. They cause that the light
cone in Fig. 6 ends at r ≈ 4, where it has not yet met the
big bang set, so R is not yet zero there, and the gap is
magnified in the transformation. For the same reason,
the two light cones from Fig. 6 coincide with a smaller
precision after the transformation—the image of the

Λ < 0 Friedmann cone is seen in the vicinity of the
maximal radius in Fig. 7.

VII. COMMENTS

Since solving (6.1) only requires calculating an integral
of a function of r which is evidently integrable, the solution
exists for every tBΛ. The same is true for (6.2): the tBðrÞ
determined by it exists for every tFðrÞ. However, the
solution of (6.1) defines a single light cone of (2.15).
The same L-T model will not mimic all light rays in (4.4)
reaching a given observer. The time evolution of the L-T
model with Λ ¼ 0 is different from that of the ΛCDM
model, and the two can be distinguished by observations
that are sensitive to the dynamics of the Universe, and not
just to a momentary “snapshot.” Examples of effects that
depend on the time-evolution are redshift drift [9] and
nonrepeatability of light paths [21–23].
The function tBðrÞ in Fig. 6 is increasing, and tBðrÞ <

tBΛ at all r. To get an understanding why this is so, let us
observe the following. The L-T model of (2.6) expands by
the same law as the k ¼ 0 Friedmann model with Λ ¼ 0.
Because of (4.7) the function ðkt=krÞF ¼ −SΛðtÞ decreases
faster with t than ðkt=krÞLT ¼ −R;r at r ¼ 0. Hence, in
order to slow down to the same rate of decrease as ð−SΛÞ,
the function ð−R;r Þ needs more time, so tBð0Þ must
precede tBΛ. With the age of the Universe ðtðrÞ − tBΛÞ
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FIG. 7 (color online). The geodesic radius RðtðrÞÞ of the null
cone defined by (6.2) and (6.4) as a function of t, and a collection
of flow lines of the cosmic medium corresponding to different
values of r. The big bang is now a finite segment of the t axis.
Note the intersections of the flow lines in the vicinity of their
origins—they are images of shell crossings. A closeup view of
the shell crossings is shown in Fig. 8. The second curve seen in
the neighborhood of maximal R is a copy of the light cone from
Fig. 4. The two cones do not perfectly coincide in consequence of
numerical errors.
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FIG. 8 (color online). A closeup view of the region of shell
crossings in Fig. 7. The crosses mark the Λ < 0 Friedmann
null cone.
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decreasing along the past light cone, tB − tBΛ must also
decrease, so tBðrÞ must be increasing. In order to obtain
tBðrÞ > tBΛ, one needs to consider a quantity that either
decreases slower or increases faster in the ΛCDM model
than in L–T.
Since just one of the two arbitrary functions in the L-T

model suffices to mimic accelerated expansion, it is natural
to suppose that with both functions, EðrÞ and tBðrÞ, being
arbitrary, the L–T model can be adapted to two sets of
observations. In Ref. [8] it was explicitly demonstrated that
this is indeed possible for the pairs (angular diameter
distance—mass density in the redshift space) and (angular
diameter distance—expansion rate).
Note how Eq. (6.2) displays an instability of the

Friedmann model with respect to the L–T perturbation.4 In
the Friedmann limit, we have tB;r ¼ 0, so limt→tBdt=dr¼ 0,
i.e. in the comoving coordinates, the tangent to each null
geodesic becomeshorizontal at the bigbang.However, in the
L-T model, at every r > 0 where tB;r ≠ 0, we have
limt→tB jdt=drj ¼ ∞, i.e. the tangent to the null geodesic is
vertical. The only exceptions are points in which tB;r ¼ 0,
where thesaid tangent ishorizontaleveninL-T.Thus,since in
ourL-Tmodel the current observer’s light cone is the sameas
in a Friedmann model, this light cone must be horizontal at
t ¼ tB. This means that the observer who carried out this
construction must live in a special epoch, in which her past
lightconeintersectswith theextremumorinflectionof thebig
bang set. This shouldnot be disturbing from thepoint of view
of astrophysics, for the following reasons:

1. The dust models do not apply just after the big
bang—the pressure cannot be assumed zero at those
early times. They begin to apply no earlier than after
last scattering. Considering the light cones up to the
big bang was a geometric exercise, whose results are
not to be taken as implications for our physical
Universe.

2. Light from objects that might have existed before
last scattering is not observed. Hence, we have no
observational clues as to the state of the Universe
prior to that epoch. (The situation might improve
when neutrinos and gravitational waves from the
early Universe can be registered, but this will happen
in the future, perhaps distant future.) Also, there is a
long gap between the highest-redshift objects ob-
served so far (z ≈ 10)5 and the last scattering epoch
(z ≈ 1089 [27]); we have no direct information from
that segment of our past light cone. Consequently,
the attempt to reconstruct our whole past light cone
up to its contact with the big bang is excessively
ambitious—the result is not observationally testable.

3. For simplicity, the adequacy of the ΛCDM model
was not discussed here, and the values of its
parameters were taken for granted. However, in
order to test the L-T model against observations
in earnest, one would have to use it in the analysis of
observational data from the beginning to the end.
The L-T model should be adapted directly to the
observational data, and not to the parameters of the
best-fit Friedmann model. Such an analysis still
remains to be done.

The peculiar properties of the L-T light cone will be
present also in the model discussed further on, see
Eqs. (11.2) and (11.4).
The discussion up to this place was presented for

illustrative purposes. It is related to astrophysics indirectly,
but is free from numerical complications. From the next
section on, a more realistic example will be described.

VIII. DUPLICATING THE LUMINOSITY
DISTANCE-REDSHIFT RELATION USING

THE L-T MODEL WITH Λ ¼ 0

Now it will be shown how the luminosity distance-
redshift relation of the ΛCDM model [our Eq. (2.20)] can
be duplicated using the L-T model with Λ ¼ 0. The
reasoning below was inspired by Iguchi et al. [7].
To duplicate (2.20) using the Λ ¼ 0 L-T model means, in

view of (2.14) and (2.20), to require that

RðtngðrÞ;rÞ¼
1

H0ð1þzÞ
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þz0Þ3þΩΛ

p (8.1)

holds along the past light cone of the central observer,
where H0, Ωm and ΩΛ have the values determined by
current observations, tngðrÞ is the function determined by
(2.12) and zðrÞ is determined by (2.13). Let

DðzÞ¼def
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þ ΩΛ

p : (8.2)

Note that Dð0Þ ¼ 0, DðzÞ > 0 at all z > 0 and D;z > 0 at
all z ≥ 0, but limz→∞DðzÞ is finite, since, for ΩΛ > 0 (as is
the case in the ΛCDM model) at all z we have

DðzÞ <
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3

p ¼ 2ffiffiffiffiffiffiffi
Ωm

p
�
1 − 1ffiffiffiffiffiffiffiffiffiffiffi

1þ z
p

�

<
2ffiffiffiffiffiffiffi
Ωm

p < ∞: (8.3)

Unlike in the RWmodels, light emitted at the big bang of
an L-T model and reaching an observer is in general
infinitely blueshifted, i.e. zBB ¼ −1, except when tB;r ¼ 0
at the emission point [24,25,12]—then it may have infinite

4This was first observed by Szekeres [24], and discussed in
more detail by Hellaby and Lake [25]; see also Ref. [12].

5For a somewhat outdated summary on the objects with
highest redshifts; see Ref. [26].
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redshift. As follows from (8.1) and (8.3), at the big bang,
where R ¼ 0, z → ∞ must hold. This implies that, just like
in the previous example in Sec. VII, tB;r → 0 at the
emission point of the ray (8.1) should hold. Note also,
from (8.1) and (8.3) again, that at the big bang, where
z → ∞, the following is true:

lim
z→∞

fRngð1þ zÞg ¼ C0 < ∞: (8.4)

IX. LOCATING THE APPARENT HORIZON

Recall that at the AH ðd=drÞRjng ¼ 0 [17,12]. Thus,
differentiating (8.1) by r, one obtains

�
A1

dz
dr

�
AH

¼ 0; (9.1)

where

A1¼defD − 1þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

p : (9.2)

Suppose, for a moment, that dz=drjAH ¼ 0. As a conse-
quence of (2.13), this would mean R;tr jAH ¼ 0. It is shown
in Appendix B that this equation forces a relation between
M, E and tB, thus reducing the number of arbitrary
functions to 2. So, R;tr jAH is zero only in those special
cases,6 while the general conclusion from (9.1) is

A1jAH ¼ 0. (9.3)

Note that this equation does not refer to the L-T model.
With Ωm and ΩΛ given, the equation A1 ¼ 0 can be

solved for z. Using the values ðΩm;ΩΛÞ ¼ ð0.32; 0.68Þ as
in Ref. [3], Fig. 9 shows that z ≈ 1.583 on the AH.
The equation of the AH, (3.3), may be written, using

(8.1), (8.2) and (2.9), also as

rAH ¼
�

D
2M0H0ð1þ zÞ

�
1=3

AH
. (9.4)

In what follows, it will be useful to define one more
quantity that vanishes on the AH as a consequence of (9.4),

A2¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0H0r3ð1þ zÞ

D

r
−1. (9.5)

The equation of the AH can be written in yet another
form. For the case E > 0, from (2.5) and (3.3), we have

ðt−tBÞAH¼
�

M

ð2EÞ3=2 ½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2−1

p − ln ðYþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2−1

p
Þ�
�

AH
;

(9.6)

where

Y¼def1þ 4E: (9.7)

For 2E=r2 ¼ −k ¼ constant (9.6) becomes

ðt − tBÞAH ¼ M0

ð−kÞ3=2 f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2kr2Þ2 − 1

q

− ln ½1 − 2kr2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2kr2Þ2 − 1

q
�g

AH
:

(9.8)

X. THE NUMERICAL UNITS

The following values are assumed here:

ðΩm;ΩΛ; H0;M0Þ ¼ ð0.32; 0.68; 6.71; 1Þ; (10.1)

the first two after Ref. [3]. The H0 is 1=10 of the
observationally determined value of the Hubble
constant [3],

H0 ¼ cH0 ¼ 67:1 km=ðs × MpcÞ: (10.2)

It follows that H0 is measured in 1=Mpc. Consequently,
choosing a value for H0 amounts to defining a numerical
length unit (call it NLU), which, with (10.1), obeys

H0 ¼
67:1

3 × 105
ðkm=sÞ=Mpc

ðkm=sÞ ¼ 6.71
1

NLU
: (10.3)

From here

1 NLU ¼ 3 × 104 Mpc: (10.4)
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1.041

1.57 1.575 1.58 1.585 1.59

FIG. 9 (color online). Graphical solution of the equation
A1 ¼ 0 with A1 given by (9.2) and ðΩm;ΩΛÞ ¼ ð0.32; 0.68Þ,
as in Ref. [3]. The increasing function is DðzÞ, the decreasing
function is ð1þ zÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

p
. The intersection of the

curves is at the apparent horizon, where z ≈ 1.583, D ≈ 1.038.

6The remark in Ref. [7], made after their (3.1), which implies
that the locus of R;tr ¼ 0 coincides with R ¼ 2M, is thus
incorrect.

ANDRZEJ KRASIŃSKI PHYSICAL REVIEW D 89, 023520 (2014)

023520-10



With ΩΛ and H0 given by (10.1) we obtain from (2.19)

−Λ ¼ 3ΩΛH0
2 ¼ 91:849164ðNLUÞ−2: (10.5)

Since our time coordinate is t ¼ cτ, where τ is measured in
time units, t is measured in length units. So it is natural to
take the NLU defined in (10.4) also as the numerical time
unit (NTU). We take the following approximate values for
the conversion factors [28]:

1 pc ¼ 3.086 × 1013 km; 1 y ¼ 3.156 × 107 s:

(10.6)

The following relations result, using (10.4):

1NTU¼1NLU¼3×104Mpc¼9.26×1023 km

¼9.8×1010 y: (10.7)

Using this in (10.5) we get

−Λ ¼ 1.02 × 10−7 ðMpcÞ−2: (10.8)

Finally, for the age of the Universe [3],

T ¼ 13:819 × 109 y; (10.9)

we obtain

T ¼ 13:819 × 109

9.8 × 1010
NTU ¼ 0.141NTU: (10.10)

The values (10.5) and (10.10) will be used for the model
(4.4), with tBΛ ¼ −T.
As already mentioned below (2.9), M0 represents mass,

but has the dimension of length (M0 ¼ Gm0=c2, where m0

is measured in mass units). The choiceM0 ¼ 1 NLU made
in (10.1) simplifies all computations. The associated mass
unit M0c2=G ≈ 1057 kg will not appear in any other way
than via M0.

XI. THE L–T MODEL WITH 2E ¼ −kr2 THAT
DUPLICATES THE DLðzÞ OF (2.20)

The functional shape of E might be determined by tying
it to an additional observable quantity, as was done in
Ref. [8]. However, then the equations defining tB and E
become coupled, and numerical handling becomes
instantly necessary. To keep things transparent, we will
rather follow the approach of Ref. [7], and take

2E ¼ −kr2; (11.1)

where k < 0 is an arbitrary constant. This E is the same as
in the k < 0 Friedmann model. The M will be chosen as in
(2.9). From (2.10) we have on the light cone,

dt
dr

¼ − R;rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p ; (11.2)

where the general formula for R;r is [[12],
Eq. (18.104)]

R;r ¼
�
M;r

M
− E;r

E

�
R

þ
��

3

2

E;r

E
−M;r

M

�
ðt − tBÞ − tB;r

�
R;t: (11.3)

Using (11.1), (2.2) and (2.9) this simplifies to

R;r ¼
R
r
− rtB;r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0r
R

− k

r
: (11.4)

Equation (11.4) substituted in (11.2) leads to the same
conclusions about the L-T light cone that were formulated
in paragraph 4 of Sec. VII.
With (11.1), Eqs. (2.7) become

cosh η ¼ 1 − kR
M0r

; (11.5)

t − tB ¼ M0

ð−kÞ3=2 ðsinh η − ηÞ: (11.6)

Equations (11.5)–(11.6) will now be taken along a null
geodesic, i.e. the t in (11.6) will be the tðrÞ defined by
(11.2), while the R in (11.5) will be the Rng from (8.1). We
thus have from (11.6)

dt
dr

− dtB
dr

¼ Rffiffiffiffiffiffi−kp
r

dη
dr

����
ng
; (11.7)

where, from (11.5)

dη
dr

����
ng

¼ − krffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Rng

2 − 2kM0rRng

q �
Rng

r

�
;r
: (11.8)

Substituting for dt=dr from (11.2) and (11.4), and for Rng
from (8.1), then using (9.2) and (9.5) as the definitions of
A1 and A2, we obtain from (11.7)

B2

�
D

H0rð1þ zÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 þ 1Þ2 − kr2

q dtB
dr

�

¼ A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

H0ð1þ zÞ2
dz
dr

; (11.9)

where

B2¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 þ 1Þ2 − kr2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
: (11.10)

ACCELERATING EXPANSION OR INHOMOGENEITY? A … PHYSICAL REVIEW D 89, 023520 (2014)

023520-11



Note that at the AH, where A1 ¼ A2 ¼ B2 ¼ 0, (11.9)
becomes 0 ¼ 0, so expressions of the form 0=0 will be
present when integrating (11.9) through the AH.
From (2.13), using (11.4) and (2.2), we obtain

dz
dr

¼ 1þ z

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA2 þ 1Þ2 − kr2
q

þH0rð1þ zÞðA2 þ 1Þ2
2D

dtB
dr

�
: (11.11)

Eliminating dtB=dr between (11.9) and (11.11), we get

dz
dr

¼ B2ð1þ zÞ
B3r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
�
3

2
− kr2

ðA2 þ 1Þ2
�
; (11.12)

where

B3¼def
A1

2D
þ B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 þ 1Þ2 − kr2

p
ðA2 þ 1Þ2 : (11.13)

Using this in (11.11) we get

dtB
dr

¼ 1

H0rð1þ zÞB3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 þ 1Þ2 − kr2

p
×

�
DB3 − A1

�
3

2
− kr2

ðA2 þ 1Þ2
��

: (11.14)

In some of the numerical calculations, it will be more
convenient to find rðzÞ rather than zðrÞ, and for this purpose
(11.12) will be used in the form

dr
dz

¼ B3r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

B2ð1þ zÞ½3
2
− kr2

ðA2þ1Þ2�
: (11.15)

XII. THE LIMITS OF (11.12)
AND (11.14) AT r → rAH

At the AH, where A1 ¼ A2 ¼ 0, we also have
B2 ¼ B3 ¼ 0. Consequently, in order to carry the integra-
tion through the AH in (11.12) and (11.14), the expression
B2=B3 that becomes 0=0 there must be handled with care.
This had already been noticed in Refs. [20] and [8], and
Refs. [8] and [29] demonstrated two different solutions of
this problem: in Ref. [8] an interpolating polynomial, and in
Ref. [29] a Taylor expansion in ðz − zAHÞ were used in
place of the numerically calculated functions in the
neighborhood of the AH. In the case considered here,
the limit of B2=B3 at the AH can be explicitly calculated, as
shown below.

From (11.12) and (11.13) we obtain

lim
r→rAH

dz
dr

¼ lim
r→rAH

ð1þ zÞð3=2 − kr2Þ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
ð A1

2DB2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
Þ
: (12.1)

A simple calculation shows that

lim
r→rAH

A1

B2

¼ lim
r→rAH

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p A1

A2

�
: (12.2)

Applying the de l’Hôpital rule and making use of (9.2) and
of the fact that A1 ¼ 0 on the AH, we find

lim
r→rAH

A1

A2

¼ lim
r→rAH

�
ΩmrD3

dz
dr

�
: (12.3)

Let the following new symbol be introduced

G¼def lim
r→rAH

½ð1 − kr2Þ2

þ ð1 − kr2Þð3 − 2kr2ÞΩmD2ð1þ zÞ�1=2: (12.4)

Substituting (12.3) and (12.2) in (12.1) and solving for
limr→rAHdz=dr; we obtain

lim
r→rAH

dz
dr

¼ lim
r→rAH

ð3 − 2kr2Þð1þ zÞ
rð1 − kr2 þ GÞ : (12.5)

Using this, limr→rAHðB2=B3Þ can be easily calculated from
(11.12), and the result used in (11.14), to find

lim
r→rAH

dtB
dr

¼ lim
r→rAH

2D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

H0rð1þ zÞ
�

3 − 2kr2

1 − kr2 þ G
− 1

�
:

(12.6)

Equation (9.8) is one more control value at the AH.

XIII. THE LIMITS OF (11.12)
AND (11.14) AT r → 0

Expressions of the form 0=0 also appear at r ¼ 0. From
(8.2) one finds, using Ωm þ ΩΛ ≡ 1,

lim
r→0

D
r
¼ lim

r→0

dz
dr

¼defX: (13.1)

Anticipating that X ≠ 0, so that limr→0ðr3=DÞ ¼ 0, one
finds from (9.2), (9.5), (11.10) and (11.13),

lim
r→0

A1 ¼ lim
r→0

A2 ¼ lim
r→0

B2 ¼ −1; (13.2)

lim
r→0

r
A2 þ 1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
2M0H0

s
; (13.3)
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lim
r→0

ðrB3Þ ¼ − 1

2X
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

2M0H0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kX

2M0H0

s
: (13.4)

Taking the limit of (11.12) at r → 0, then using
(13.2)–(13.4), we obtain

X3 þ kX − 2M0H0 ¼ 0: (13.5)

This equation, irrespective of the value of k, has only one
solution such that X > 0; a proof is given in Appendix C.7

This solution is located in ðU1; U2Þ, where

U1 ¼ ð2M0H0Þ1=3;
U2 >

ffiffiffiffiffiffiffiffiffiffiffi−k=3p
þmax fð2M0H0Þ1=3;

ffiffiffiffiffiffiffiffiffi−2kp
=3g: (13.6)

Using (13.5) back in (13.4) we obtain

lim
r→0

ðrB3Þ ¼ − 3

2X
þ k
2M0H0

: (13.7)

From (8.1) and (13.1) we have

lim
r→0

Rng

r
¼ lim

r→0

D
H0rð1þ zÞ ¼

X
H0

; (13.8)

and then from (11.5)–(11.6)

T ¼deftð0Þ − tBð0Þ
¼ M0

ð−kÞ3=2 ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 − 1

p − ln ðY þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 − 1

p
Þ�; (13.9)

where

Y¼def1 − kX
M0H0

: (13.10)

The T in (13.9) is the age of the Universe at r ¼ 0.
From (11.14) we can further calculate

lim
r→0

dtB
dr

¼ M0X
2ð3M0H0 − kXÞ

×

�
3ðΩm − 1Þ − kX

M0H0

�
3

2
Ωm − 1

��
: (13.11)

This calculation is tricky, so it is presented in Appendix D.
With k < 0 andΩm ¼ 0.32, the limit (13.11) is negative, so
tBðrÞ will be a decreasing function of r at least in some
neighborhood of r ¼ 0.

XIV. THE AGE OF THE UNIVERSE
AND THE VALUE OF k

The numerical values of the constants that will appear in
the calculations are given by (10.1).
Before proceeding to solve (11.12), a value for kmust be

chosen. That value determines the age of the Universe at the
center, via (13.9) and (13.10). It is to be noted that X, given
by (13.5), is a function of k. For k < 0, X > ð2M0H0Þ1=3
must hold, and X monotonically increases from
ð2M0H0Þ1=3 at k¼0 to þ∞ at k→−∞ (but dX=dk !

k→−∞0).
For the function T ðkÞ given by (13.9) we find

lim
k→0

T ¼ 2

3H0

; lim
k→−∞T ¼ 1

H0

(14.1)

lim
k→−∞

dT
dk

¼ 0: (14.2)

The graph of T ð−kÞ is shown in Fig. 10. As can be seen,
T ð−kÞ < 1=H0 everywhere. However, in the L-T model,
the “age of the Universe” is different at every r. The point,
at which the L-T age can be compared to that of ΛCDM is
the intersection of the past light cone of the L-T observer
with the big bang. This is the place that the observer can (in
principle) see and infer something about, not the central age
given by (13.9)–(13.10). The L-T age at that point (call it
“edge age”) could be assumed equal to (10.9), and the
corresponding value of k could then be determined in
numerical experiments. This can be done by assuming a
value for T , calculating k from (13.9)–(13.10), then solving
(11.12)–(11.15), and deducing a correction to the chosen
value of T .
But it turns out that a preferred unique value of k emerges

already by integrating (11.12) [or (11.15)]. With k off the
preferred value, the function zðrÞ found by integrating
(11.15) backward from r ¼ rAH, misses the point
ðr; zÞ ¼ ð0; 0Þ. The k fine-tuned to ensure that zð0Þ ¼ 0
implies the edge age close to (10.9).
However, there is a problem here. Similarly to what

has been said above, when k is off the optimal value, zðrÞ
found by integrating (11.12) forward from r ¼ 0misses the
point ðr; zÞ ¼ ðr; zÞAH. The k that ensures maximal pre-
cision at r ¼ 0 is −4.74061, the one that ensures maximal
precision at rAH is −4.7410812. A preference was given to
maximal precision at rAH. So, the k fine-tuned to zAH and
its associated X (found from (13.5) by the bisection
method) are8

7limr→0dz=dr < 0 would mean that z < 0 in a vicinity of the
observer, i.e. that the Universe locally collapses upon her. While
this happens in certain inhomogeneous models, this cannot
happen in a model designed to mimic RW.

8These numbers, and several other numbers displayed further
on, may look to be excessively precise. They are indeed–for
astrophysical applications. However, this precision is necessary
to avoid misalignments in some of the graphs. It may also be
necessary for those other authors who might wish to verify and
reproduce the results presented here.
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k ¼ −4.7410812; X ¼ 3.028567231968699: (14.3)

The reason why the value of k is determined already by
(11.2) (with zð0Þ and zðrAHÞ given) is the following.
Equation (11.2) that determines zðrÞ is of first order, so
its solution is uniquely determined by zð0Þ or zðrAHÞ alone.
If both zð0Þ and zðrAHÞ are specified, then a limitation is
imposed on the solution that determines the value of the
single free parameter in zðrÞ, which is k. It follows that an
E ¼ 0 L-T model cannot obey (8.1).

XV. NUMERICAL CALCULATION
OF zðrÞ FROM (11.12)

The precision in calculating zðrÞ and tBðrÞ depends on
the precision in determination of the function DðzÞ and of
the values of D and z at the AH. So, first, a Fortran 90
program was used to determine DðzÞ for any z by
calculating the integral in (8.2) with the step dz0 ¼ zmax ×
10−9 (the same program that produced the data for Fig. 9,
but more precise) up to zmax ¼ 1.585—slightly above the
zAH from Fig. 9. This program found the values of zAH and
DAH (at which A1 ¼ 0) to be

1.582432259768032 < zAH < 1.582432261353032;

1.037876550094136 < DAH < 1.037876550731146:

(15.1)

These lower limits of zAH and DAH were provisionally

taken as their true values. The interval Z¼def½0; zAH� was
divided into 105 segments, for each zi ∈ Z, i ¼ 0;…;
105 − 1 the value of DðziÞ was found, and the ðzi;DiÞ
were tabulated. Numerical errors caused that the last value
of z in the table was larger than the upper limit in (15.1).
Consequently, the penultimate values of z andDwere taken
as defining the AH, they are

ðz;DÞAH ¼ ð1.582430687623614; 1.037876401742206Þ;
(15.2)

and they are both lower than the lower limits in (15.1). The
corresponding rAH was calculated from (9.4)

rAH ¼ 0.3105427968086945: (15.3)

The table of values of DðzÞ was then used in integrating
(11.15) numerically backward from z ¼ zAH to z ¼ 0.
Since z → ∞ at the big bang, z is not a usable parameter

in the vicinity thereof, and DðzÞ cannot be tabulated in that
region. The value of r, at which the big bang would be
reached, was not known in advance, so it took some
experimenting to determine the step Δr ¼ 2.4rAH × 10−5
and the number of steps N ¼ 15 × 104. For each r > rAH,
the corresponding z was calculated by integrating (11.12)
forward, with the initial condition (15.2), and the corre-
sponding DðzÞ was found from

Dðzþ ΔzÞ ¼ DðzÞ þ Δzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þΩΛ

p ; (15.4)

which is a consequence of (8.2). The biggest values of
ðr; zÞ that the program could yet handle were

ðr; zÞBB ¼ ð1.422005301219788;
1.6236973619875722 × 10229Þ: (15.5)

The rBB was taken to be at the intersection of the observer’s
past light cone with the big bang.
The resulting function zðrÞ is presented in Fig. 11; for

later reference it will be denoted by zbackðrÞ. The main
graph shows zðrÞ for r ∈ ½0.0; 0.5� (the lower curve). The
upper curve is the function zΛðrÞ of the ΛCDM model,
calculated from (6.1), (4.4) and (2.16). The right curve in
the inset is zðrÞ for r ∈ ½0.3; 1.3�, i.e. from the neighbor-
hood of the AH to a value at which z begins to grow very
fast. The left curve is zΛðrÞ in the same range of r. The
panels below the main graph show that zðrÞ respects the
slopes given by (13.5) and (12.5) at r ¼ 0 and r ¼ rAH,
respectively, with a satisfactory precision.
As seen from Fig. 11, the functions zðrÞ in the L-T model

and in the ΛCDM model are different. In particular,
zΛðrÞ → ∞ at r ¼ 0.9098426708844661 < rBB. Thus, this
time it should not be expected that the light cone of the L-T
model will coincide with that of ΛCDM. The aim here is
not to duplicate the light cone, but theDLðzÞ relation (2.20)
via (2.14).
In order to verify the precision of the algorithm, the

calculation of zðrÞ was repeated by a different method.
Namely, (11.12) was integrated from r ¼ 0 up to a point
close behind the AH. For each z, the associated value of D
was calculated from (15.4). The number of steps was
11 × 104, and the size of the step was Δr ¼ 10−5rAH.
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FIG. 10 (color online). Left panel: Graph of the function
T ð−kÞ. It has the upper bound 1=H0. Right panel: A closeup
view of the same graph over a smaller range of k. The vertical line
marks the value k ¼ −4.7410812 chosen in numerical experi-
ments (see text), the horizontal line marks the associated age of
the Universe at the center T ð0Þ ¼ 0.1128971437689653 NTU.
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A problem occurred near r ¼ rAH. Namely, because of
numerical errors, A2 became zero at a smaller r than A1,
even though each of them is supposed to become zero at
r ¼ rAH. As a result, in the range where A2 > 0 (and thus
B2 > 0) while A1 < 0, dz=dr calculated by the program
became negative and could not return to positive values
when the calculation was continued. Thus, the programwas
designed to stop once A2 becomes positive. The function
thus obtained will be denoted zforwðrÞ.
At the scale of Fig. 11, the graphs of zforwðrÞ and zbackðrÞ

coincide. Near r ¼ 0 they differ by Δz ≈ 7.35 × 10−4; see
the left panel of Fig. 12. As explained in Sec. XIV, the
precision in that area could be improved to 0.5 × 10−7, but
this would cause a worse precision at the AH, where the
difference between the two curves is Δz ≈ 0.5 × 10−6. The
right panel shows that area; at that scale the end points of
the two curves seem to coincide.

XVI. NUMERICAL CALCULATION
OF tBðrÞ FROM (11.14)

Several quantities in (11.14) tend to zero as r → 0.
It is important not to let the numerical program
divide a finite quantity by one that tends to zero.
Consequently, it is advantageous to rearrange (11.14)
by introducing new quantities as follows, using (11.13)
and (11.9):

F1¼defD=r!
r→0

X; (16.1)

F2¼def
F1

2M0H0ð1þ zÞ ; (16.2)

F3¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kF2

p
; (16.3)

rB3¼defF4 ¼
A1

2F1

þ B2

ffiffiffiffiffiffi
F2

p
F3; (16.4)

F5¼def
ffiffiffiffiffiffi
F2

p
H0ð1þ zÞF3F4

; (16.5)

DB3 − A1

�
3

2
− kr2

ðA2 þ 1Þ2
�
¼defF6

¼ F3

�
−F1

ffiffiffiffiffiffi
F2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
þ F3

1þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

p �
;

(16.6)

dtB
dr

¼ F3F5

�
F6

r

�
: (16.7)

Of the quantities defined above, F1 and (F6=r) behave as
0=0 at r ¼ 0. However, limr→0F1 is given by (13.1) and
(13.5), and the value of F1 at the first grid point after r ¼ 0
is calculated without problems using (11.12). Given F1, the
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FIG. 12 (color online). Comparison of zbackðrÞ and zforwðrÞ.
Left panel: closeup view of the segment r ∈ ½0; 10−4�. The upper
line is zforwðrÞ; the lower line is zbackðrÞ. Right panel: closeup
view of the vicinity of r ¼ rAH (rAH is marked with the vertical
stroke). The sloping straight line is the tangent given by (12.5).
The broken line is zbackðrÞ. The third line is zforwðrÞ; at the scale
of this figure it seems to hit the end point ðrAH; zAHÞ exactly. The
tics on the horizontal axis go from 0.310536 to 0.310550 and are
separated by Δr ¼ 2 × 10−6.
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FIG. 11 (color online). The lower curve in the large panel is the
graph of zðrÞ calculated by integration of (11.15) backward and
of (11.12) forward from the AH, with k ¼ −4.7410812. The
upper curve is the function zΛðrÞ of the ΛCDM model. The
vertical line marks r ¼ rAH given by (15.2). The sloping straight
lines are tangents to zðrÞ at r ¼ 0 and at r ¼ rAH calculated from
(13.5) and (12.5), respectively. The right curve in the inset is zðrÞ
for r > rAH. The left curve is the corresponding segment of zΛðrÞ.
The two lower panels show closeup views of the neighborhood of
r ¼ 0 (left) and of r ¼ rAH (right). The vertical stroke in the right
panel marks r ¼ rAH.
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values of F2;…; F5 at r ¼ 0 are well defined, and the only
remaining 0=0 expression is F6=r.
The parametrization (16.1)–(16.6) works well in a

neighborhood of r ¼ 0. At r ¼ rAH other quantities in
(11.4) tend to zero (they are A1, A2, B2 and B3), and another
rearrangement minimizes numerical errors,

G1¼defA2=A1; (16.8)

G2¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 þ 1Þ2 − kr2

q
; (16.9)

G3¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
; (16.10)

G4¼defH0ð1þ zÞG2; (16.11)

B3

A1

¼defG5 ¼
1

2D
þ G1G2ðA2 þ 2Þ
ðA2 þ 1Þ2ðG2 þ G3Þ

; (16.12)

dtB
dr

¼ 1

rG4

�
D − 1

G5

�
3

2
− kr2

ðA2 þ 1Þ2
��

: (16.13)

A similar rearrangement must be made in (11.12),

B2

A1

¼defG6 ¼
A2 þ 2

G2 þ G3

G1; (16.14)

rB3

B2

¼defG7 ¼
r

2DG6

þ rG2

ðA2 þ 1Þ2 ; (16.15)

dz
dr

¼ 1þ z
G3G7

�
3

2
− kr2

ðA2 þ 1Þ2
�
: (16.16)

The only quantity in (16.8)–(16.16) that behaves like 0=0
at r → rAH is G1. The G2, G3 and G4 have well-defined
values at rAH, and once G1 is calculated, G5, G6 and G7

have values at rAH, too. Experiment showed that the
program handles G1 without any fluctuations.
It would be natural to combine the two rearrangements so

that as many occurrences of r as possible in (16.8)–(16.16)
cancel out, thus hopefully improving the accuracy of this
parametrization near r ¼ 0. Such an experiment was done,
but it did not lead to the intended improvement—the graphof
tBðrÞ did not change.
The limit of ðdtB=drÞ at r → rAH is given by (12.6), but

tBðrAHÞ cannot be calculated independently of (11.14). The
integration of (16.7) must thus begin at r ¼ 0, and tBðrAHÞ
is found in the process. The tBð0Þ is given by (13.9), with
tð0Þ ¼ 0 by assumption.
Equation (16.7) was integrated from r ¼ 0 to r ¼ rAH by

using the tabulated values of z and D, with rðzÞ calculated
along the way from (11.15). A continuation of tBðrÞ for
r > rAH was found by integrating (16.13) and calculating

the values of z and D from (11.12) and (15.4), respectively.
The initial point for the continuation was corrected as
described further on. Figure 13 shows the resulting tBðrÞ,
together with the tangents at r ¼ 0 and r ¼ rAH, and with
the vertical line marking r ¼ rAH.
In order to verify the calculation of tBðrÞ, (16.13) was

integrated backward from r ¼ rAH, with the initial value
tBðrAHÞ corrected as described below. The resulting curve
is also shown in Fig. 13, but, at this scale, looks to coincide
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FIG. 13 (color online). The function tBðrÞ calculated by
integrating (16.7) from r ¼ 0 to r ¼ rAH and by integrating
(16.13) beyond r ¼ rAH. The stroke marks r ¼ rAH. The sloping
straight lines are the tangents to tBðrÞ at r ¼ 0 and at r ¼ rAH
calculated from (13.11) and (12.6), respectively. The curve found
by integrating (16.13) backward from r ¼ rAH is also present in
the figure, but, at this scale, it coincides with the r < rAH part of
first curve. The discrepancies between the two curves are shown
in Figs. 14 and 15.
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FIG. 14 (color online). Closeup view of the neighborhood of
r ¼ 0 in Fig. 13. The upper curve in the main graph is tBðrÞ
calculated by integrating (16.13) backward from r ¼ rAH. The
lower curve is obtained by integrating (16.7) forward from r ¼ 0;
at this scale, within the figure, it coincides with its tangent given
by (13.11). The inset shows that the lower curve departs from the
correct slope already at the first grid point, but this leads to the
difference ΔtB < 0.3 × 10−7 NTU ≈2940 years.
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with the former one. Figures 14 and 15 display the
discrepancies between the two integrations. As seen in
the main graph of Fig. 14, the integration backward from
rAH gives a large discrepancy with the initial data at r ¼ 0
given by (13.9) and (13.11). At r ≈ 0.002 the difference is
ΔtB ≈ 2.0 × 10−5 NTU ≈1.96 × 106 years. The inset in
Fig. 14 displays an even closer look at the neighborhood of
r ¼ 0. It shows the forward-integrated tBðrÞ (the lower
curve) and its tangent calculated from (13.11). Numerical
instabilities cause that the curve departs from the right slope
already at the first grid point, but the resulting difference
ΔtB < 0.3 × 10−7 NTU ≈2940 years, which is cosmologi-
cally insignificant.
Figure 15 shows the neighborhood of r ¼ rAH in Fig. 13.

The tBðrÞ found by integrating (16.7) forward from r ¼ 0 is
the lower curve left of the vertical stroke, which marks
r ¼ rAH. It misses the correct slope at rAH—the tangent at
rAH, calculated from (12.6), is the sloping straight line.
(This means it also missed the correct value at rAH, but this
cannot be calculated independently.) However, it coincides
with that tangent in a certain range of r, so the intersection
of the tangent with r ¼ rAH at t ¼ −0.1362530696173036
was assumed to be the correct end point tBðrAHÞ. This end
point was then used as the initial point for the integration of
(16.13) forward and backward from r ¼ rAH. Both inte-
grations avoided numerical instabilities. At the scale of
Fig. 15, these curves coincide with the tangent.
The graphs indicate that tBðrÞ is a decreasing function in

the whole range, so no shell crossings are present.

XVII. NUMERICAL CALCULATION OF THE
LIGHT CONE

With tBðrÞ now given, Eq. (11.2) can be numerically
solved. Substituting (11.4) in (11.2), using (8.1)–(8.2) for
R, and then using (16.1)–(16.3) we obtain

dt
dr

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
�
− F1

H0ð1þ zÞ þ r
dtB
dr

F3ffiffiffiffiffiffi
F2

p
�
: (17.1)

This is well behaved at r ¼ 0 and at r ¼ rAH. The values of
tB;rðrÞ were found in integrating (16.7) and (16.13).
The resulting light cone profile is shown in Fig. 16,

compared with the light cone of theΛCDMmodel. The two
light cones, as predicted, do not coincide. In particular, the
L-T light cone is everywhere later than the ΛCDM cone,
and the difference in time increases as the big bang is
approached. The L-T light cone meets the big bang at a
larger value of r, which was seen already in Fig. 11. It
touches the tBðrÞ curve horizontally, as it should
(see Sec. VII). However, tBðrÞ asymptotes to a later value
of t than the ΛCDM big bang, namely to t ¼ −0.139 NTU.
In consequence, up to a certain r > rAH, the L-T Universe
is everywhere younger than ΛCDM. The difference
in the bang times at the edge of the figure
is Δt ≈ 0.002 NTU ≈ 1.96 × 108 y.
One might suspect that the disagreement between the two

light cones is a consequence of numerical errors. In truth, the
numerical error is much smaller, as shown by the final test:
the two sides of Eq. (8.1) were compared numerically. The

right-hand side, the function FrðrÞ¼defD=½H0ð1þ zÞ�, is
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FIG. 15 (color online). Closeup view of the curves from Fig. 13
in the neighborhood of r ¼ rAH (marked by the vertical stroke).
The sloping straight line is the tangent from (12.6). The tBðrÞ
curves, calculated by integrating (16.13) forward and backward
from r ¼ rAH, coincide at this scale with the tangent. Their initial
point had to be set by hand as described in the text. The lower
curve left of rAH is the tBðrÞ found by integrating (16.7) forward
from r ¼ 0. It misses the slope at r ¼ rAH given by (12.6). The
tics on the horizontal axis go from 0.31035 to 0.3107 with the
interval Δr ¼ 5 × 10−5.
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FIG. 16 (color online). The past light cone of the central
observer in the L-T model that duplicates the relation (8.1)
(the uppermost curve) compared with that of the ΛCDM model
(4.4) (the lower curve, partly nearly coincident with the first one).
The lowest curve is the tBðrÞ from Fig. 13, the horizontal straight
line marks the big bang of the ΛCDM model, given by (10.10).
The vertical line marks r ¼ rAH.
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calculated directly from the input data. The left-hand side,

the functionFlðrÞ¼defRðtngðrÞ; rÞ, dependson thewhole chain
of numerical calculations that were carried out to find tðrÞ.
TheFrðrÞwas calculated on top of zbackðrÞ, see Sec.XV.The
FlðrÞwascalculatedon topof tðrÞ and tBðrÞ. Each timewhen
t and tB were found for a given r, the corresponding ηðrÞ in
(2.7) was found by the bisection method (with the precision
Δη ¼ 10−15), and then theRðtðrÞ; rÞwas calculated from the
first of (2.7).
Figure 17 shows the comparison. The upper panel shows

the two functions in full range; at this scale they seem to
coincide, except that RlðrÞ ends at a smaller r. The lower
left panel shows numerical errors at the maximum.
There is a discontinuity in FlðrÞ ¼ RðtðrÞ; rÞ equal to
≈2.78 × 10−6 NLU ≈ 83.5 kpc ≈ 2.72 × 105 y, a disconti-
nuity in FrðrÞ, equal to 10−7 NLU ≈ 3 kpc ≈ 9800 y, and
the difference between RlðrÞ and RrðrÞ, which, at the
maximum, is ≈1.39×10−5NLU≈417kpc≈1.36×106 y.
The lower right panel shows the same difference
at the right end of the graph of RlðrÞ, which
is ≈1.44 × 10−4 NLU ≈ 4.32 Mpc ≈ 1.41 × 107 y.
In summary, we required that the L-T model with Λ ¼ 0,

2E=r2 ¼ −k ¼ constant and variable tBðrÞ duplicates the
DLðzÞ function given by (2.20) via (2.14). Under these
assumptions, the value of H0 ¼ 67.1 km=ðs × MpcÞ taken
from observations [3] and the value of z at the AH,
calculated from (9.3), determine the value of k, and then

the shape of tBðrÞ is determined such that it mimics the
effect of Λ on a single light cone.
Thus, using the Λ ¼ 0 L-T model with constant

E=r2 > 0, one can explain away the accelerated expansion
of the Universe as follows. In the ΛCDM model, the bang
time is constant, while in the L-T model the big bang occurs
progressively later when the position of the observer is
approached. Consequently, the time between the big bang
and the instant of crossing the observer’s past light cone
becomes progressively shorter in L-T than in ΛCDM.
Because of this, the expansion velocity of matter in the
L-T model, at the points of intersection with this cone, is
everywhere greater than in a Friedmann model with
Λ ¼ 0 ¼ k, and the difference is increasing toward the
observer, similarly to what happens in Fig. 5. Thus,
accelerating expansion is mimicked: instead of increasing
with time, the excess expansion velocity increases with
position in space.
This may look artificial (the observer being placed at that

r, where tBðrÞ is greatest). But it should be noted that the
model that led to this conclusion had from the beginning a
built-in artificial assumption, made in order to simplify the
calculations: the function E being the same as in the
Friedmann model. This left the whole task of imitating
acceleration to tB alone. See also the comments in the next
section.

XVIII. COMMENTS ON APPLICATIONS
OF THE L-T MODEL TO COSMOLOGY

There is a group of astrophysicists who treat the L-T
model as an enemy to kill rather than a useful device for
cosmology. (See quotation from Ref. [9]: [the Gaia or
E-ELTobservatories could distinguish the RWmodels from
L-T] “possibly eliminating an exotic alternative explana-
tion to dark energy.”) They try to discredit this model in
several ways. One of the legends spread by them says that a
realistic L-T model must have constant tB. This crippling
limitation allegedly must be made because dtB=dr ≠ 0
generates decreasing density perturbations, and they would
imply “extreme” inhomogeneity at early times [30]. This,
the argument goes, would contradict the predictions of
inflation.
It is questionable whether the increasing and decreasing

density perturbations can be treated as algebraically inde-
pendent, and their consequences separately investigated.
This would be correct in a linear theory. In relativity, these
two classes of perturbations are in general present simulta-
neously, and they interact nonlinearly. It was proven in
Ref. [31] that a nonconstant tB, together with an inhomo-
geneous EðrÞ, can generate a galaxy cluster out of a
localised, small in amplitude, density or velocity inhomo-
geneity at the time of last scattering, without causing any
contradiction with the observations of CMB. The required
difference in tB between the center and the edge of the
cluster is typically below 100 years (in some cases as little
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FIG. 17 (color online). Upper panel: Comparison of the two
sides of Eq. (8.1). At this scale, the two functions seem to
coincide. Lower left panel: closeup view of the maximum in the
upper panel. The upper curve is FlðrÞ, the lower curve is FrðrÞ.
The graph shows the discontinuities at the maximum that resulted
from numerical errors. Lower right panel: the functions FlðrÞ
(upper line) and FrðrÞ (lower line) at the right end of Fl. See text
for more explanation.
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as 15 years). So, clearly, this is not an “extreme” inhomo-
geneity, and at least some processes taking place after last
scattering are compatible with a nonconstant tB. The
relevant astrophysical quantity is the density (or velocity)
perturbation at the time of last scattering, and not the
gradient of tBðrÞ.
Formally, the decreasing density perturbation becomes

infinite as t → tB [12]. However, this would be a problem
for cosmology if the L-T model were supposed to apply all
the way to t ¼ tB, which is not the case. The direct
connection between the decreasing or increasing density
perturbation and dtB=dr ≠ 0 was demonstrated only for the
L-T and Szekeres [32] models (by Silk [33] and Goode and
Wainwright [34], respectively; see Ref. [12] for short
descriptions). In a more general model, still unknown,
which should apply before recombination, the correspond-
ing connection may be indirect, and need not imply infinite
perturbations close to the big bang. And, let us remember,
the big bang itself is supposed to go away when quantum
gravity provides the right description of that epoch.
Another widespread belief is that an L-T model mim-

icking accelerated expansion contains a void around its
center of symmetry; several authors just reflexively call it a
“void model.” Reference [35] is an example, and a few
more examples are listed in Ref. [36]. Our result (13.11),
from which it follows that limr→0dtB=dr < 0, provides a
counterexample to this belief. Namely, from (2.8), knowing
that limr→0M ¼ limr→0R ¼ 0, we find

lim
r→0

R3

M
¼ lim

r→0

3R2R;r

M;r
¼ 6

κρðt; 0Þ ¼
def 6

κρ̄
: (18.1)

Then, using (2.9), (11.4) and (18.1) in (2.8), we obtain

lim
r→0

ðκρ;r Þ ¼
4ðκρ̄Þ4=3
ð6M0Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0

�
κρ̄

6M0

�
1=3 − k

s
dtB
dr

< 0:

(18.2)

Hence, in this case there is a peak of density at r ¼ 0.
Much effort has been spent in the literature on the

attempts to disprove the L-T metric as a viable cosmo-
logical model by exploiting its spherical symmetry (see, for
example, Ref. [37]). Consequently, it has to be reminded
that this model is mainly used as an exercise to gain insight
into a nontrivial geometry. This insight is then exploited in
applying, for example, the Szekeres model [12,32] to
cosmological problems; see examples of such applications
in Refs. [38–45]. The Szekeres model is a generalization of
L-T; it has no symmetry and is more complicated computa-
tionally. Therefore, insights gained from carrying out the
L-T exercises are helpful.
One more argument against taking literally the predic-

tions of the L-T models and comparing them with obser-
vations interpreted on an FLRW background is given in

Ref. [35]. These authors point out that the inclusion of
radiation in the dynamics of spherically symmetric models
might upset the results obtained with radiation neglected.
They emphasise that observables deduced from the CMB
have to be recalculated from scratch, and cannot simply be
inferred from the FLRW case.
More generally, the L-T and Szekeres models are not

supposed to be the ultimate models of the whole Universe.
They are to be understood as exact perturbations super-
imposed on the background Friedmann model, and can be
sensibly applied only to the description of local structures,
such as galaxy clusters or voids, see Refs. [31,46] and
[12,15]. Consequently, in situations, in which perturbed
Friedmann models are deemed adequate, the L-T and
Szekeres models, when they are correctly understood
and applied, can only be still more adequate, being exact
solutions of Einstein’s equations. If they are to become
objects of the now so-called “precision cosmology,” then
results of observations should give information on the
shapes of their arbitrary functions. Outright rejection is not
a constructive approach.
Wewill neverknowhowgoodorhowbadanygivenmodel

is untilwe test it at full generality in asmany situations aswill
be inventedbyanyone.Thiswill help in constructing thenext
generation of still more precise models. Excluding elements
of amodelon thebasis of a speculative competinghypothesis
is not what serious science used to be about. And it is
unethical to use arguments of this kind to reject papers
submitted for publication, as sometimes happens.
The artificial elements of the model considered here (the

DLðzÞ being reproduced only on a single past light cone,
the cone reaching the big bang where dtB=dr ¼ 0) are
present because it was designed to mimic the observations
via their projection on the ΛCDM past light cone. They do
not appear when the L-T model is directly adapted to
observations. The point made in this paper is: using the L-T
model, observations can be accounted for without intro-
ducing the dark energy.
The way, in which the DLðzÞ function was reproduced

here is not the only one possible. Iguchi et al. [7]
demonstrated that such a reproduction is also possible
with constant tB, and EðrÞ designed to mimic the effect of
Λ. This dual approach will be a subject of a similar analysis
as done here in a future paper.
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APPENDIX A: PROOF THAT (3.2) HAS A
SOLUTION FOR EVERY Λ

Consider the equation equivalent to (3.2),

FðRÞ¼def 1
3
ΛR3 þ R − 2M ¼ 0: (A1)
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For Λ ¼ 0 the solution R ¼ 2M obviously exists. In all
models with Λ > 0 R is oscillating between R ¼ 0 and a
finite maximal value R ¼ Rm.

9 At R ¼ Rm, where R;t ¼ 0
in (2.2), the following holds

GðRmÞ¼def
1

3
ΛRm

3 − 2ERm − 2M ¼ 0; (A2)

and there is only one value of Rm > 0 that obeys (A2).
Thus, at R ¼ Rm

FðRmÞ ¼ ð2Eþ 1ÞRm: (A3)

Since 2Eþ 1 ≥ 0 (see (2.3)), we have FðRmÞ ≥ 0, while at
R ¼ 0, FðRÞ ¼ −2M ≤ 0 (F ¼ 0 only at the center, where
M ¼ 0). So, FðRÞ ¼ 0 has a solution for every Λ > 0; the
solution is R ¼ Rm where E ¼ −1=2 and R < Rm where
E > −1=2. Consequently, an AH exists.
Now consider Λ < 0. For 0 > Λ > ΛE¼def − 8E3=ð9M2Þ

(the Einstein value, see Ref. [12]) the reasoning above still
applies to the oscillating models. For nonoscillating models
in the same range of Λ, the subcases E < 0 and E ≥ 0 have
to be considered separately. When E < 0, the value of R is
always greater than the Rm given by (A2), so it follows that
FðRÞ ¼ 0 has no solutions in that range of R (but it had a
solution in the range of oscillating models, so the statement
being proven is not contradicted). When E ≥ 0, R changes
between 0 and ∞, and the reasoning given below applies.
For Λ ¼ ΛE the situation is similar, except that there

exists in addition the static Einstein model, but this does not
contradict the statement being proven.
For Λ < ΛE, R necessarily varies between 0 and ∞.

Then, from (A1), Fð0Þ ¼ −2M ≤ 0, and

dF=dR ¼ ΛR2 þ 1: (A4)

This is zero at R ¼ �1=
ffiffiffiffiffiffiffi−Λp

, so F has a maximum at
R ¼ 1=

ffiffiffiffiffiffiffi−Λp
, and Fð1= ffiffiffiffiffiffiffi−Λp Þ ¼ 4

ffiffiffiffiffiffiffi−Λp − 2M. This is
positive in some range M ∈ ½0; ffiffiffiffiffiffiffi−Λp Þ, so FðRÞ ¼ 0 has
a solution in this range, i.e. an AH exists. ▪

APPENDIX B: PROOF THAT THE AH
COINCIDES WITH THE SET R;tr ¼ 0 ONLY

IN EXCEPTIONAL CASES

Calculating R;tr from (11.3) and taking the result at
R ¼ 2M, one obtains, using (2.2) with Λ ¼ 0

R;trjAH ¼
�
E;r

2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ 1

p

þ 1

4M

��
3

2

E;r

E
−M;r

M

�
ðt − tBÞ − tB;r

��
AH

:

(B1)

For E ¼ 0, the analogue of (11.3) is [[12], Eq. (18.112)]

R;r ¼
M;r

3M
R −

ffiffiffiffiffiffiffi
2M
R

r
tB;r: (B2)

The cases E > 0, E ¼ 0 and E > 0 must be considered
separately. Only the case E < 0 is presented here; the
corresponding result for E > 0 follows analogously, and
the one for E ¼ 0 follows easily from (B2).
For E < 0 one finds ðt − tBÞ as a function of R from (2.5)

and takes it at R ¼ 2M, obtaining

ðt − tBÞAH ¼ M

ð−2EÞ3=2
× ½arccos ð1þ 4EÞ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−2Eð1þ 2EÞ
p

�
(B3)

(the arccos is to be calculated for 0 ≤ 1þ 2ER=M ≤ π, i.e.
for the expanding phase of the Universe). After substituting
this in (B1), the following is obtained:

R;trjAH ¼ tB;r
4M

− 1

4ð−2EÞ3=2
�
3

2

E;r

E
−M;r

M

�
arccos ð1þ 4EÞ

− 1

4E

�
E;r

2E
−M;r

M

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ 1

p
: (B4)

The AH is a curve in the ðt; rÞ plane, so if R;tr ¼ 0 should
hold along the whole AH, (B4) would force a relation
betweenM, E and tB, thus reducing the number of arbitrary
functions to 2. This means that R;tr ¼ 0 can hold along the
AH only in special cases.
The corresponding equation for E ¼ 0 is

tB;r ¼ 2M;r=3; (B5)

from (B2), and it also limits the generality of the model.
Note that (B4) and (B5) do not hold in the Friedmann

model, where M=r3 ¼ M0, 2E=r2 ¼ −k and tB are con-
stant. Thus, R;trjAH ≠ 0 even in the Friedmann limit. ▪

APPENDIX C: PROOF THAT (13.5) HAS ONLY
ONE REAL SOLUTION X > 0

Let us write (13.3) as

fðXÞ¼defX3 þ kX − b ¼ 0; (C1)

9Recall: (2.2) has the same algebraic form for the L-T and
Friedmann models. The proof that all models with Λ > 0 are
oscillating had been given by Friedmann [47]; see Ref. [12]
(Friedmann’s cosmological constant λ is related to our Λ by
λ ¼ −Λ).
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where k < 0 and b¼def2M0H0 > 0. The function fðXÞ has a
local maximum at X− ¼ − ffiffiffiffiffiffiffiffiffiffiffi−k=3p

< 0 and a local mini-
mum at Xþ ¼ ffiffiffiffiffiffiffiffiffiffiffi−k=3p

> 0. We have

fðXþÞ ¼ − 2ð−kÞ3=2
3

ffiffiffi
3

p − b < 0; (C2)

so there must be a zero of fðXÞ in ðXþ;þ∞Þ, and

fðX−Þ ¼
2ð−kÞ3=2
3

ffiffiffi
3

p − b: (C3)

When ðfðX−Þ < 0, there are no more real zeros of fðXÞ.
When ðfðX−Þ ¼ 0, X ¼ X− is a double real zero of fðXÞ,
additional to that guaranteed by (C2). When ðfðX−Þ > 0,
there are two more real zeros of fðXÞ. However, the
additional zeros are at X < 0, since fð0Þ < 0. ▪

APPENDIX D: THE DERIVATION OF (13.11)

Using (13.1) and (13.5) we find

lim
r→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0H0rð1þ zÞ

D
− k

r
¼ X: (D1)

Using (13.7), (11.10), (9.5) and (D1) in (11.14), we obtain

lim
r→0

dtB
dr

¼ 2M0

−3M0H0 þ kX
lim
r→0

�
1

r

�
DB3 − 3

2
A1

þ kr2A1

ðA2 þ 1Þ2
��

¼def 2M0

−3M0H0 þ kX
Z: (D2)

In what follows, two more new symbols will be used:

Q¼def 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

p ; (D3)

U¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0H0rð1þ zÞ

D
− k

r
: (D4)

After writing out B3, A1 and A2 we find from (D2),

Z ¼ lim
r→0

�
1

r

�
ð1þ zÞQ − kDQ

2M0H0r
− D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
U

2M0H0r2ð1þ zÞ
��

:

(D5)

The limit at r → 0 of the expression in square brackets is
zero, so we can apply the de l’Hôpital rule and obtain

Z ¼ lim
r→0

�
dz
dr

�
Q − 3

2
Ωmð1þ zÞ3Q3 þ D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
U

2M0H0r2ð1þ zÞ2 −
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

2rð1þ zÞU þ 3

4
kΩm

ð1þ zÞ2DQ3

M0H0r

�

þ kD2U

2M0H0rð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
�

þ lim
r→0

�
kQ

2M0H0

− kD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

M0H0rð1þ zÞU þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

2U

�
× lim

r→0

�
1

r

�
D
r
−Q

dz
dr

��
; (D6)

where the expression in the first two lines and the first limit
in the third line can be readily calculated,

Z ¼ F1 þ
�

3

2X
− k
2M0H0

�
lim
r→0

�
1

r

�
D
r
−Q

dz
dr

��
; (D7)

where

F1¼defX
�
3

2
ð1 −ΩmÞ − kX

2M0H0

�
1 − 3

2
Ωm

��
: (D8)

In (D7) we now substitute for dz=dr from (11.12), then
factor out 1=ðrB3Þ and use (13.7). The result is

Z ¼ F1 − lim
r→0

�
DB3

r
−QB2ð1þ zÞ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
�
3

2
− kr2

ðA2 þ 1Þ2
��

:

(D9)

Comparing (D9) with (D2) we see that

Z¼F1−Z

− lim
r→0

�
1

r

�
3

2
− kr2

ðA2þ1Þ2
��

A1−QB2ð1þzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p
��

: (D10)

The second factor in square brackets has the limit zero; the
first one is finite. Consequently,

Z ¼ 1

2
F1 ¼

1

4
X

�
3ð1 −ΩmÞ − kX

M0H0

�
1 − 3

2
Ωm

��
:

(D11)

Using this in (D2) we obtain (13.11). ▪
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