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We derive constraints on elastic scattering between baryons and dark matter using the cosmic microwave
background (CMB) data from the Planck satellite and the Lyman-α forest data from the Sloan Digital Sky
Survey. Elastic scattering allows baryons and dark matter to exchange momentum, affecting the dynamics
of linear density perturbations in the early universe. We derive constraints to scattering cross sections of the
form σ ∝ vn, allowing for a wide range of velocity dependencies with −4 ≤ n ≤ 2. We improve and correct
previous estimates where they exist, including velocity-independent cross section as well as dark matter
millicharge and electromagnetic dipole moments. Lyman-α forest data dominate the constraints for
n > −3, where the improvement over CMB data alone can be several orders of magnitude. Dark matter-
baryon scattering cannot affect the halo mass function on mass scales M > 1012M⊙. Our results imply,
model independently, that a baryon in the halo of a galaxy like our own Milky Way does not scatter from
dark matter particles during the age of the galaxy.
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I. INTRODUCTION

The canonical dark matter (DM) candidate is assumed to
interact with Standard Model particles only gravitationally.
The cross section for the simplest weakly interacting
massive particles (WIMPs) [1–4] to scatter from baryons
is nonzero but sufficiently small to be considered effec-
tively zero for scales above a solar mass [5]. However, the
shrinking of the canonical-WIMP parameter space from
null LHC and direct searches, efforts to explain the
coincidence between the DM and baryon densities [6,7],
as well as possible difficulties for collisionless N-body
simulations to reproduce observational data [8–13] provide
motivation to consider stronger DM-baryon interactions.
In this paper we evaluate the constraints to elastic DM-

baryon scattering that arise from the cosmic microwave
background (CMB) and large-scale structure (LSS). In the
standard scenario of collisionless DM, perturbations to the
DM density grow in amplitude early on while the pressure in
the baryon-photon fluid prevents it from falling into the DM-
dominated potential wells. This dynamics defines the overall
shape of the CMB andmatter power spectra, and gives rise to
characteristic features such as the acoustic peaks seen in the
CMB power spectrum and the baryon acoustic oscillations in
thematter power spectrum. If there is some coupling between
DM and baryons, then the drag force between the baryon-
photon fluid and the DM affects the baryon-photon

oscillations and suppresses the growth of perturbations to
the dark matter, and hence total density. The beautiful agree-
ment between the predictions of the collisionless Cold Dark
Matter (CDM) ΛCDM model and the wealth of CMB/LSS
data imply that the DM-baryon interaction has to be quite
weak, a statement we quantify precisely below.
CMB/LSS constraints to the DM-baryon interaction

have been obtained in a variety of previous papers. The
first such paper [14] considered velocity-independent
scattering and obtained limits from Two-degree-field gal-
axy redshift Survey LSS data and from CMB data from the
set of suborbital missions that preceded the Wilkinson
Microwave Anisotropy Probe (WMAP). Reference [15]
considered constraints for DM particles that interact with
baryons through a DM electromagnetic dipole using early
WMAP data. Reference [16] considered constraints to the
DM-baryon interaction from the damping of small-scale
structure. DM millicharge have been discussed in [17–21].
Constraints to the DM-baryon interaction from galaxy
clusters were presented in Refs. [22,23]. There is also a
body of work on direct detection [24–29], gravitational
lensing [30], gas temperature in clusters [31], big-bang
nucleosynthesis [32], cosmic rays [33,34], and cosmic
gamma rays [35]. If DM annihilates, then constraints on
the Earth’s heat flow [35,36] become important, though this
constraint disappears if annihilation is absent as could be
the case for asymmetric dark matter [6,7]. Related studies
were addressed in the context of strongly self-interacting
dark matter particles, first suggested by Ref. [37].
Our work extends and improves upon previous work on

CMB/LSS constraints to the DM-baryon interaction in two
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ways. First of all, we provide a model-independent analy-
sis, considering cross sections that scale with DM-baryon
relative velocity v as vn with arbitrary power-law index n.
Second, we work out from first principles the effect of
scattering in cosmological perturbation theory, highlighting
the interplay between bulk velocities and thermal veloc-
ities. In prior work it was assumed that the relative DM-
baryon bulk velocities were small compared to the thermal
velocities. We show that this assumption becomes invalid at
redshifts z≲ 104, signaling the breakdown of the ordinary
linear theory. We introduce an approximation to account for
this nonlinearity, and estimate the theoretical uncertainty.
We use for our numerical results what we believe to be a
conservative estimate of the magnitude of the effects of this
nonlinearity. We then use not only the recent Planck data,
but also include for the first time in this context constraints
to the matter power spectrum from the Lyman-alpha forest
measurements. Inclusion of Lyman-alpha data improves, as
we will see, upon constraints obtained from the CMB by
several orders of magnitude.
The main result of this paper is that a DM-baryon

interaction strong enough to affect the global structure of
a galaxy like our ownMilky Way (MW), through scattering
at low redshift, is excluded. As we show, this result is
model independent, and cannot be circumvented by plau-
sible particle-physics model building, as long as the DMwe
infer locally by galactic rotation curves and cluster dynam-
ics is the same DM that affects the linear collapse of density
perturbations in the early universe.
This paper is organized as follows. In Sec. II we compute

the drag force produced by the baryons on the dark-matter
fluid due to the DM-baryon interactions. In Sec. III we
derive the modified Boltzmann equations for the dark
matter and the baryons, and provide simple analytical
estimates of our results before presenting our numerical
constraints in Sec. IV. In Sec. V we show the effect of

DM-baryon interactions on the halo mass function.
Finally, we present our conclusions in Sec. VI. We derive
the heating rate in Appendix A and give the DM-baryon
momentum-transfer rate beyond leading order in bulk
velocities in Appendix B. In Appendix C we compare
our results to previous studies focusing on specific particle-
physics models, including velocity-independent cross sec-
tion as well as dark matter millicharge and electromagnetic
dipole moments.

II. THE DARK MATTER-BARYON DRAG FORCE

Here we calculate the drag force dv⃗χ=dt per unit mass
exerted by the baryons on the dark-matter fluid as a
consequence of the DM-baryon interaction. Our calcula-
tions are valid for z≲ 109, where DM particles of mass
mχ ≳MeV are nonrelativistic, and we assume that DM
particles and baryons are nonrelativistic throughout our
analysis.
Consider a DM particle of velocity v⃗χ moving in a

background of nonrelativistic baryons with thermal veloc-
ity distribution fbðvbÞ as a function of baryon velocity vb,
in a frame where the baryon distribution is isotropic. In
this frame, the baryon velocity distribution depends only
on the magnitude vb of the velocity, not on its direction,
and momentum exchange with baryons drives the DM
velocity towards zero. The change in DM momentum per
collision is

Δp⃗χ ¼
mχmb

mχ þmb
jv⃗χ − v⃗bj

�
n̂ − v⃗χ − v⃗b

jv⃗χ − v⃗bj
�
; (1)

to leading order in velocities, where n̂ is the direction of the
scattered DM particle in the center-of-mass frame and mb
and mχ , respectively, the baryon and dark-matter masses.
The acceleration experienced by the DM is then

dv⃗χ
dt

¼ ρb
mχ þmb

Z
dvbv2bfbðvbÞ

Z
dn̂b
4π

Z
dn̂

�
dσðjv⃗χ − v⃗bjÞ

dn̂

�
jv⃗χ − v⃗bj2

�
n̂ − v⃗χ − v⃗b

jv⃗χ − v⃗bj
�

¼ −
ρbv⃗χ

mχ þmb

v4χ
2

Z
∞

0

dxx2fbðxvχÞ
Z

1

−1
dyσ̄ðvχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 − 2xy

q
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 − 2xy

q
ð1 − xyÞ; (2)

where ρb is the baryon mass density. Here dσðvÞ=dn̂ is the
differential cross section for DM-baryon scattering as a
function of the DM-baryon relative velocity v. We also
define the momentum-transfer cross section,

σ̄ðvÞ≡
Z

dcθð1 − cθÞ
�
dσðvÞ
dcθ

�
; (3)

where θ is the center-of-mass scattering angle, cθ ¼ cos θ.
We take the cross section σ̄ðvÞ to have a power-law

dependence on DM-baryon relative velocity v (where the
speed of light is c ¼ 1),

σ̄ðvÞ ¼ σ0vn: (4)

We work out the momentum exchange for arbitrary n,
and present results for selected values. Note that, e.g.,
n ¼ −1 comes about from a Yukawa potential (massive-
boson exchange), n ¼ −2 occurs if DM has an electric
dipole moment [15], and n ¼ −4 occurs for DM
millicharge [17–20]. We take σ̄ here to be the scattering
cross section for DM from hydrogen, and then correct
it below to account for the additional scattering from
helium.
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In the early universe, the baryon velocity distribution
(in the isotropic frame) is

fbðvbÞ ¼
ffiffiffi
2

π

r
1

u3b
e−ðvb=ubÞ2=2; (5)

with u2b ¼ Tb=mb. For the DM we assume a similar
Maxwell distribution,

fχðvχÞ ¼
ffiffiffi
2

π

r
1

u3χ
exp

�
− ðn̂χvχ − V⃗χÞ2

2u2χ

�
; (6)

with u2χ ¼ Tχ=mχ boosted with peculiar velocity V⃗χ with
respect to the baryon frame. The rate of change of the
peculiar velocity is1

dV⃗χ

dt
¼
Z

dn̂χ
4π

Z
dvχv2χfχðvχÞ

dv⃗χ
dt

: (7)

In general, there are two velocity scales that enter
dV⃗χ=dt. The first is the thermal velocity dispersion,

hðΔv⃗Þ2i ¼ hðv⃗χ − v⃗bÞ2i ¼ 3

�
Tb

mb
þ Tχ

mχ

�
; (8)

where h…i denotes thermal average. The second is the
peculiar velocity Vχ itself. In the limit where the peculiar
velocity is smaller than the velocity dispersion,
V2
χ < hðΔv⃗Þ2i, we find

dV⃗χ

dt
¼ −V⃗χ

cnρbσ0ðhðΔv⃗Þ
2i

3
Þnþ1

2

mχ þmb
; (9)

at leading order in ðV2
χ=hðΔv⃗Þ2iÞ, with

cn ¼
2

nþ5
2 Γð3þ n

2
Þ

3
ffiffiffi
π

p ; (10)

evaluating to cn ≈ f0.27; 0.33; 0.53; 1; 2.1; 5; 13; 35; 102g
for n ¼ f−4;−3;−2;−1; 0; 1; 2; 3; 4g.
In the limit that the peculiar velocity is larger than the

velocity dispersion, the calculation reduces to the deceler-
ation of the relative motion between two cold
flows. The deceleration of the DM fluid in this case is
given by

dV⃗χ

dt
¼ −V⃗χ

ρbσ0jVχ jnþ1

mχ þmb
; (11)

at leading order in ðhðΔv⃗Þ2i=V2
χÞ.

Note that in general, the dependence of dVχ=dt, the drag
force per unit mass, on the DM-baryon relative velocity is
not linear. In the limit V2

χ ≪ hðΔv⃗Þ2i, the dependence
reduces to linear. In the opposite limit, V2

χ ≫ hΔv⃗2i, the
dependence on Vχ is nonlinear unless n ¼ −1. In the early
universe, as we look further backwards in time, there comes
a time when typical peculiar velocities become small in
comparison to the thermal velocity dispersion. The tran-
sition occurs around redshift z ∼ 104 (see Fig. 1). At earlier
times (higher redshift), Eq. (9) then tell us that we may use
linear perturbation theory in order to calculate the evolution
of the peculiar velocity V⃗χ. In what follows, we use this
observation to calculate precisely the evolution of modes at
high redshift in order to compare with cosmological data.
We discuss later on the complication arising at z < 104,
where the problem becomes nonlinear.

III. LINEAR COSMOLOGICAL
PERTURBATIONS WITH DARK

MATTER-BARYON INTERACTIONS

A. Boltzmann equations

We now consider the modifications to the Boltzmann
equations for dark matter and baryons that arise from the
DM-baryon coupling. We work in synchronous gauge,
following the notation and conventions of Ref. [38]. We
allow for a nonzero peculiar velocity for DM that arises
from the interaction with baryons [14,15] and defined so
that the DM peculiar velocity vanishes in the absence of
scattering. The evolution equations for the DM and baryon
density fluctuations, δχ and δb, respectively, and velocity
divergence, θχ and θb, respectively, are given for a Fourier
mode of wave number k by

δχ
: ¼ −θχ − h

:

2
; δb

: ¼ −θb − h
:

2
;

θχ
:
¼ −

a
:

a
θχ þ c2χk2δχ þ Rχðθb − θχÞ;

θb
:
¼ −

a
:

a
θb þ c2bk

2δb þ Rγðθγ − θbÞ þ
ρχ
ρb

Rχðθχ − θbÞ;

(12)

where ρχ (ρb) is the DM (baryon) mass density, and an
overdot denotes derivative with respect to conformal time.
We derive the DM-baryon momentum-exchange coeffi-
cient Rχ below in Sec. III B.

1The subscript χ on dV⃗χ=dt is there to emphasize that the
deceleration of the DM fluid is different than that of the baryons,
due to the difference in inertia of the two fluids, even though the
instantaneous relative velocity is of course the same as measured
in either the isotropic DM or baryon frames.
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The DM and baryon temperatures evolve according to

T
:

χ ¼ −2 a
:

a
Tχ þ

2mχ

mχ þmH
R0
χðTb − TχÞ;

T
:

b ¼ −2
a
:

a
Tb þ

2μb
mχ þmH

ρχ
ρb

R0
χðTχ − TbÞ

þ 2μb
me

RγðTγ − TbÞ: (13)

Here, μb ≃mHðnH þ 4nHeÞ=ðnH þ nHe þ neÞ is the mean
molecular weight for the baryons, and Rγ ¼
ð4=3Þðργ=ρbÞaneσT is the usual Compton collision term
[38]. The thermalization rate R0

χ is related to the momen-
tum-exchange rate Rχ (with R0

χ → Rχ in the heavy DM
limit) and is given in Sec. III B below.
Our calculations apply to cold DM with mass

mχ > MeV, that is nonrelativistic at redshift z < 109.
We therefore neglect possible direct momentum transfer
between the photon and DM fluids, and consider only
direct interaction with baryons. For the calculations we will
be interested in, the DM sound speed c2χ is unimportant, and
we neglect the corresponding term in what follows.

B. The momentum-exchange rate coefficient

If the peculiar velocity is small compared with the
thermal velocity—i.e., if V2

χ ≪ hðΔv⃗Þ2i—then the
DM-baryon momentum-exchange and thermalization rate
coefficients appearing in Eqs. (12) and (13) can be read
from Eqs. (9) and (A2) to be

Rχ ¼
acnρbσ0
mχ þmH

�
Tb

mH
þ Tχ

mχ

�nþ1
2

FHe (14)

and

R0
χ ¼ Rχ

�
1þ 3mH

mχ þ 4mH

�
1 − fHe
FHe

− 1

��
; (15)

respectively, with R0
χ ≃ Rχ for heavy DM.

We include a correction factor,

FHe ¼ 1 − fHe þ fHe
σHe
σ0

1þ mH
mχ

1þ 4mH
mχ

 
1þ TχmH

Tbmχ

1þ 4TχmH

Tbmχ

!nþ1
2

≃ 1þ 0.24

�
σHe
σ0

− 1

�
; (16)

for scattering from helium with massmHe ≃ 4mH and mass
fraction fHe ≃ 0.24. The approximation on the second line
of Eq. (16) is applicable if the DM is heavier than helium.
The value of FHe depends on the ratio ðσHe=σ0Þ between
the cross section for scattering on helium to that for
scattering on hydrogen. Plausible numerical values are,

e.g., FHe ¼ 4.6 or FHe ¼ 1.7, valid for DM mass above a
few GeV with the same amplitude for scattering from
protons and neutrons and, respectively, coherent or inco-
herent scattering on helium. Nevertheless, as FHe involves
some model dependence, in reporting our numerical results
we conservatively set ðσHe=σ0Þ ¼ 0, fixing FHe ¼ 0.76
unless explicitly stated otherwise.
For V2

χ ≪ hðΔv⃗Þ2i, the coefficient Rχ is independent of
θχ − θb, and the DM-baryon drag that appears in Eq. (12) is
linear in the velocity perturbation. The usual linear-theory
approach obtained by solving the linearized Boltzmann
equations independently for each Fourier mode is valid.
However, this assumption ðV2

χ ≪ hðΔv⃗Þ2iÞ is not always
valid. The rms DM-baryon relative velocity is given by [39]

V2
RMS ¼ hV⃗2

χiξ ¼
Z

dk
k
Δξ

�
θb − θc

k

�
2

; (17)

where h…iξ denotes an average with respect to the
primordial curvature perturbation and Δξ ≃ 2.4 × 10−9 is
the primordial curvature variance per log k. The value of
VRMS is shown as the green curve in Fig. 1 (for z > 105, we
replace the direct calculation of VRMS by analytic estimate).
The peculiar velocity becomes larger than the baryon
thermal velocity (the blue curve) below z ∼ 104. At later
times (lower redshift), the effect of DM-baryon scattering
will have a nonlinear dependence on peculiar velocity, as
discussed at the end of Sec. II. This implies that the drag
terms in the Boltzmann equations for θb and θc are no
longer linear in θb and θc, mixing together the evolution of
different Fourier modes.
To improve the domain of the validity of linear theory,

we extend the rate coefficient of Eq. (14) by summing
together the thermal and peculiar rms velocity dispersion,

102 104 106 108

10−5

10−4

10−3

10−2

redshift z

ve
lo

ci
ty

(3T
b
/m

H
)1/2

peculiar Vrms

Lyα,   k ~ 1h/Mpc

Milky Way

galaxy
cluster

dwarf
galaxy

CMB,  l ~ 103

FIG. 1 (color online). Cosmological proton thermal velocity
(blue), and peculiar DM-baryon relative velocity (green). The
redshifts probed by CMB and Lyman-α forest measurements are
roughly marked by blue and orange boxes, respectively.
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Rχ →
aρbσ0FHe

mχ þmH
cn

�
Tb

mH
þ Tχ

mχ
þ V2

RMS

3

�nþ1
2

: (18)

This “mean-field” approach is generally valid at z > 104,
but should also apply at later times for modes with
wavelengths k≲ 0.1 Mpc−1, long compared with those
that contribute most to the rms peculiar velocity at z < 104.
It also obtains the correct parametric scaling for short-
wavelength modes at low redshift, though the numerical
coefficient cn encapsulating thermal velocity integrals
needs to be modified in this limit.
As we show below, models with n ≥ −2 are strongly

constrained by LSS data for which the relevant dynamics
occurs at relatively high redshift, z ≫ 104, where Eq. (14)
[and similarly, in this regime, Eq. (18)] is reliable. For all
such models (n ≥ −2), our constraints derived using
Eq. (18) are directly applicable. Models with scattering
cross sections that increase rapidly at decreasing velocity,
n ≤ −3, are less constrained by LSS and, instead, more
strongly constrained by CMB data that are sensitive to
perturbation evolution at z < 104. For such models
(n ≤ −3), using Eq. (18) rather than Eq. (14) makes a
significant difference. This means that our linear calculation
is less reliable, and that nonlinear (and thus non-Gaussian)
effects cannot be neglected. Nevertheless, note from
Eq. (10) that for models with n ≤ −3 the coefficient cn
is smaller than unity. Comparing to Eq. (11) describing the
momentum transfer in the cold-flow limit, we learn that our
use of Eq. (18) is likely conservative, meaning that a more
detailed treatment of the nonlinear z < 104 regime for these
models would most likely yield even stronger constraints.
We conclude that for our practical purpose of obtaining

conservative limits on the DM-baryon interactions, Eq. (18)
is adequate for deriving model-independent results, and
we use it in the bulk of our analysis. For completeness,
when quoting our numerical results (see Sec. IV), we also
report results using Eq. (14) instead of (18). We leave
a precise treatment of the nonlinear effects induced by
DM-baryon couplings, as well as the resulting secondary
non-Gaussianity, for future work.
In our numerical analysis, we modify CAMB to include

the new perturbation equations above. In what follows we
describe the analytic behavior of the solution before
moving on to the results.

C. Analytic discussion

Before moving to the numerical results, we provide some
simple analytic estimates. We focus on redshifts z > 300
when the baryon temperature follows the CMB temper-
ature, Tb ≃ Tγ, due to Thomson scattering. Since the dark
matter does not scatter from photons, we expect that
Tχ < Tb. Then, if mχ > mb, we can for simple estimates
neglect Tχ=mχ relative to Tb=mb. Comparing the momen-
tum-exchange rate Rχ to the comoving Hubble expansion
rate aH ¼ ða: =aÞ, we have

Rχ

aH
¼ cnρbσ0

Hmχ

�
Tb

mH

�nþ1
2

FHe

≃ 10cn
σ0=mχ

cm2=g
Hðz ¼ 105Þ

HðzÞ
�

z
105

�
3.5

×

�
1.6 × 10−4

�
z
105

�1
2

�n
FHe: (19)

At high redshift z > 104, Eq. (19) can be directly
translated to a model-independent constraint on the inter-
action between DM and baryons in a contemporary (z ¼ 0)
system like our ownMW galaxy. To see this, note that if we
choose σ0 for the different values of n so that σ̄ðvÞ is the
same at the velocity vMW ¼ 10−3, characteristic of the virial
velocity in a MW-type halo, then the scattering rates for all
nwill coincide, up to theOð1Þ coefficients cn of Eq. (10), at
a common redshift z where the thermal velocity is
approximately equal to vMW, as in Fig. 1. We illustrate
this behavior in Fig. 2, where we normalize σ0 so that the
scattering rate for all n will yield a DM-baryon mean free
path of about 1 Mpc in our MW galaxy. We learn that with
this normalization, for all values of n, the rate of momen-
tum exchange between DM and baryons is much faster than
expansion for z > 105. Comparing to the reach of CMB and
Lyman-α observables, which are sensitive to the evolution
of linear perturbations at these redshifts, we expect that
linear cosmology places strong constraints on DM-baryon
scattering for any velocity dependence, implying mean free
path λ ≫ 1 Mpc, orders of magnitude larger than the
Oð10 kpcÞ scale size of the Galaxy itself.

10
3
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5

10
6
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7

10−1

100

101

102

103

104

z

R
χ/(

aH
)

n=2
n=1
n=0
n=−1
n=−2
n=−3
n=−4

FIG. 2 (color online). Momentum-transfer rate Rχ vs redshift
for different values of n between −4 to þ2. All of the curves
are normalized to satisfy a mean free path of ∼0.5 Mpc for
proton scattering on DM at the MW solar circle; see Eq. (25) and
the discussion around it. Note that when Rχ=ðaHÞ ≫ 1, the
scattering affects the dynamics of the system.
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IV. NUMERICAL RESULTS: CMB AND
LYMAN-ALPHA CONSTRAINTS

We incorporate the parameter σ0 into a Markov Chain
Monte Carlo (MCMC) likelihood analysis2 [40] of Planck
data [41] and measurements of the Lyman-α flux power
spectrum from the Sloan Digital Sky Survey [42]. We
checked that adding Atacama Cosmology Telescope [43]
and South Pole Telescope [44] data to the CMB analysis
makes only a small improvement to the results. We run the
MCMC to determine 95% confidence level (C.L.) con-
straints on σ0, fixing the value of mχ and of the power-law
index n in each run.
Having obtained a constraint on σ0 in this way for

mχ ¼ 10 GeV, we present our result as a constraint on
ðσ0=mχÞ, valid for any value of mχ subject to mχ ≫ mH,
and quoted separately for different values of n. Note that, in
the limit of mχ ≫ mH, there is no dependence on n in the
scaling of the bound as a function of mχ for fixed σ0, to
leading order in ðmH=mχÞ. This is so because all the
dynamical difference between the models is contained in
the velocity dependence, where the thermal dispersion
becomes dominated by the baryons, hðΔv⃗Þ2i ≈ 3ðTb=mbÞ
to leading order in ðmH=mχÞ. While we do not discuss here
in detail the limit mχ < mH, we note that the set of
equations presented in Sec. III provides all of the informa-
tion required to evaluate the bounds in the low-mχ limit, as
long as the DM is nonrelativistic throughout the time of
interest z≲ 109 (satisfied for mχ ≳ 1 MeV).
We determine joint constraints on σ0 and the basic set of

ΛCDM cosmological parameters,

pμ ¼ fΩbh2;Ωχh2; τ; θ; As; nsg: (20)

HereΩbh2 is the physical baryon density,Ωχh2 is thephysical
dark matter density, τ is the reionization optical depth, and
θ is the angular size of the sound horizon at recombination.
We ignore tensor modes and assume a flat geometry.

Our numerical results are summarized in Table I. In
obtaining these bounds, instead of solving for Tχ [which
can easily be done using Eq. (13)] we simply set Tχ ¼ Tb.
The induced error is of OðmH=mχÞ for heavy DM.
These constraints are obtained using the momentum-

transfer rate given in Eq. (18). As discussed at the end of
Sec. III B, at redshift z < 104 Eq. (18) provides only an
approximate treatment of the perturbation equations as the
full evolution becomes nonlinear.3 To estimate the impact
of our approximation, we compare the constraints reported
in Table I to the constraints obtained using Eq. (14), instead
of (18). For the the n ¼ −2, n ¼ 0, and n ¼ þ2models, we
find that the CMB + Lyman-α constraints exhibit essen-
tially no change. This happens because for these models,
Lyman α dominates the constraint, and the matter power
spectrum on the scales probed by Lyman α is determined by
mode evolution at z ≫ 104, where Eqs. (14) and (18) are
equally valid. In contrast, the model with n ¼ −4 is
constrained primarily by the CMB data, and is sensitive
to the appearance of V2

RMS in Eq. (18) that regularizes an
otherwise decreasing thermal velocity. Using Eq. (14)
instead of (18) for the model with n ¼ −4, we would find
an artificially stronger bound, ðσ0=mχÞ < 1.4 × 10−18,
more constraining by a factor of 10 compared with the
number we quote in Table I. We believe that our simplified
analysis of the n ¼ −4 case in the nonlinear regime is
conservative, and leaves room for significant improvement
of the constraints. This could be of particular interest as
n ¼ −4 arises in simple particle-physics models where DM
has a small electric charge.
In Fig. 3 we show the effect of DM-baryon scattering on

the CMB and matter power spectra, using for the plots the
95% C.L. limits from the CMB + Lyman-α chains taken
from Table I. We add in Fig. 3 (right panel) the exper-
imental Lyman-α data point used in the likelihood analysis,
at k ¼ 1.03 h=Mpc, showing the 95% C.L. limit of both

TABLE I. The 95% C.L. constraints on ðσ0=mχÞ from CMB alone (with Planck data) and from CMB in
combination with Lyman-α data from the SDSS Collaboration. Results are valid for mχ ≫ mH, and conservatively
neglect scattering from helium, setting FHe ¼ 0.76 (adding coherent isospin-independent scattering on helium
would tighten the bounds by a factor of 6). First column: power-law index n of Eq. (4). Second column: CMB alone,
constraint in units of cm2=g. Third column: combined CMB and Lyman α. Fourth column: minimal mean free path
for baryon scattering on DM in the MW solar cycle (ρχ ∼ 0.4 GeV=cm3, v ¼ vMW ∼ 10−3), using the CMB +
Lyman-α constraint.

n CMB (95% C.L., cm2=g) CMB + Lyman α (95% C.L., cm2=g) λ (MW)

−4 1.8 × 10−17 1.7 × 10−17 27 Gpc
−2 3.0 × 10−9 6.2 × 10−10 738 Mpc
−1 1.6 × 10−5 1.4 × 10−6 313 Mpc
0 0.12 3.3 × 10−3 138 Mpc
þ2 1.3 × 105 9.5 × 103 46 Mpc

2http://cosmologist.info/cosmomc/.

3This issue is relevant for models with n ≠ −1. For n ¼ −1,
Eqs. (14) and (18) coincide.
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amplitude and slope. In the CMB plot, we denote the �1σ
error bars of Planck, including beam noise and cosmic
variance, as black ðþÞ marks.
In Fig. 4 we show separately the slope of the linear

matter power spectra for the different models, along with
the experimental value and its 95% C.L. limit coming from
the Lyman-α analysis done in Ref. [42].
Finally, we comment that the likelihood procedure given

in Ref. [42] strictly applies only to cosmological models
with a power-law matter power spectrum. This assumption
is not completely satisfied in our framework, where a large
scattering cross section (for models with n > −4) would
cause a cutoff in the matter power spectrum on small scales
(large k). In practice, as evident in Fig. 3, the Lyman-α data
are restrictive enough to render the power spectra of our

models, where they are not overwhelmingly excluded,
sufficiently close in form to a simple power law in the
range of k ¼ Oð1 Mpc−1Þ, where reliable data currently
exist. This statement holds true for n that are not too largely
positive, in which case the cutoff develops quickly as a
function of k; our model with n ¼ þ2 provides a marginal
example for this situation. For such models with large
positive velocity dependence, including n ≥ þ2, we expect
our analysis to be overconservative, and it should be
possible to derive stronger bounds from a dedicated
analysis. This situation is analogous to that found for
warm dark matter, where a simple likelihood analysis of the
type we used [45] finds significantly weaker constraints
than those obtained in dedicated simulations [46].

V. DM-BARYON INTERACTIONS AND
SUPPRESSION OF SMALL-SCALE STRUCTURE

DM-baryon interactions may affect small-scale structure,
and galactic substructure, in a number of ways. The most
straightforward effect is to suppress the growth in the early
universe of small-scale power and thus the halo mass
function at the low-mass end. Here we estimate the effect
compatible with our constraints. We then, in the section
that follows, discuss the possible consequences for the
evolution of galaxies at late times.
We compute the halo mass function using the extended

Press-Schechter formalism [47–49],

dnh
dM

ðMÞ ¼ ρm
M

���� dσdM
����fðδχðzÞ; σ̂Þ; (21)

where ρm is the mean matter density in the Universe, and σ̂
is the variance,

FIG. 3 (color online). Left panel: relative difference of the CMB power spectra of models with different velocity-dependent
cross sections to the best fit ΛCDM model. The cross sections of the different models correspond to the 95% C.L. limit from
the CMB + Lyman-α analysis (see Table I), while all other cosmological parameters are taken to optimize the likelihood for this
given cross section. The black ðþÞ marks denote the �1σ error bars of Planck. Right panel: matter power spectra at z ¼ 3. The data
point corresponds to the linear theory best fit amplitude using Lyman-α data from [42]. The error bar corresponds to the 95% C.L. limit
on the amplitude. The black band denotes the range of linear matter power spectra slopes allowed at the 95% C.L. limit
at k ¼ 1.03 h=Mpc .

FIG. 4 (color online). Slope d lnP=d ln k for the different
models, as a function of wave number. The data point corre-
sponds to the best fit value of the linear matter power spectrum
slope from the Lyman-α measurement in Ref. [42], and the error
bar on the point corresponds to the 95% C.L. limit.
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σ̂ðMÞ ¼
Z

dk
k
ΔmðkÞjWðk; RÞj2: (22)

Here ΔmðkÞ is the matter density variance andWðk; RÞ is a
top hat window function4 of radius R, corresponding to a
halo of mass M ¼ ð4πR3ρm=3Þ. For the function f we use
the Sheth-Tormen functional form [51] given by

fðδχ ; σ̂Þ ¼ A
ν

σ̂

ffiffiffiffiffiffi
a
2π

r �
1þ 1

ðaν2Þq
�
e−aν2=2; (23)

where ν ¼ ðδ= ffiffiffî
σ

p Þ, a ¼ 0.75, q ¼ 0.3, A ¼ 0.322, and
δ ¼ 0.686 is the critical density of collapse.
Figure 5 shows the halo mass function as a function of

mass for a model with no scattering (black-dashed line)
along with models with different velocity-dependent cross
sections with a value of ðσ0=mχÞ taken at the 95% C.L.
limit from Table I using CMB + Lyman-α data. In all cases,
the cosmological parameters were fixed to the best fit point
at the given value of ðσ0=mχÞ.
Two main lessons can be drawn from Fig. 5. First, the

combined constraints from linear cosmology imply that
DM-baryon scattering cannot affect the halo mass function
for structures more massive than ∼1012M⊙. This result is
model independent. It simply reflects the scale at which the
observational LSS constraint is applied in our analysis,
k ∼ 1 Mpc−1, since

M ¼ 4π

3

�
π

k

�
3

ρm ∼ 2 × 1012M⊙
�

k
1 Mpc−1

�−3
: (24)

For smaller mass halos, significant suppression of structure
is in principle possible.
Second, note that the model with n ¼ −4 (scattering

cross section scaling as v−4) does not have any effect on the
halo mass function. This occurs because models with
n < −3 have the feature that they freeze out towards high
redshift, when the collision velocities (governed by thermal
motion) get large, and freeze in at lower redshift when the
velocities drop. In contrast, models with n > −3 are
initially important and then subsequently freeze out as
the Universe expands and cools. As halos of smaller mass
form earlier, only modes of n > −3 can affect the primor-
dial halo mass function on small scales while still satisfying
CMB/LSS constraints that are only directly sensitive
to z≲ 106.

To conclude this section, Fig. 5 teaches us that DM-
baryon scattering can affect the halo mass function on small
scales, but this effect is purely a memory effect from early
(linear) times (high redshift). This is a useful lesson. It
means that N-body simulations aiming to study the effect of
scattering need not incorporate the scattering explicitly.
Instead, ordinary collisionless codes should be applicable,
where a modified linear matter power spectrum, as we
computed here, is used as input to encode the effect of
scattering.
Finally, we comment that the analysis of the halo mass

function above is not sufficient by itself to expose highly
nonlinear details within small scale objects, such as the
presence or absence of central cusps etc. We briefly discuss
constraints at this level of detail in Sec. VI.

VI. LATE-TIME EFFECTS OF DM-BARYON
INTERACTIONS

In Sec. V we estimated the maximal effect of DM-baryon
scattering on the primordial halo mass function. The effects
discussed in that section encoded early time dynamics, for
which our linear analysis was adequate. Here, in contrast,
we comment briefly on the implications of our constraints
for the late-time, nonlinear evolution of galaxies. Galaxies
are complicated objects, and the models for their detailed
structure contain considerable theoretical uncertainty
(see e.g. [52]). Still, in some generic cases of interest it
is straightforward to see that our results strongly constrain
the effect that DM-baryon scattering could have on the
late-time evolution of galaxies.
A clear example pertains to the halos of galaxies like

our own Milky Way. The mean free path of a hydrogen
atom traversing a typical galaxy like our Milky Way, to
elastically scatter from a DM particle is

FIG. 5 (color online). Halo mass function as a function of mass.
A model with no scattering is shown in black-dashed lines, and
models with different velocity-dependent cross sections are
shown with a value of σ0=mχ taken at the 95% C.L. limit from
the analysis with CMB and Lyman-α data in Table I.

4For the similar case of warm DM, Ref. [50] demonstrated that
choosing a sharp-k window function (rather than the top hat
function) may lead to a better agreement with simulations on
small scales. However, the different window functions give
consistent results for the scale at which the modified halo mass
function deviates from the fiducial collisionless cold DM model.
The simple top hat window is thus sufficient for our purpose in
this section, keeping in mind that N-body simulations are needed
to predict more accurately the halo mass function on smaller
scales.
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λ ∼ 0.5

�
σ̄=mχ

cm2=g

�−1� ρχ
0.4 GeV=cm3

�−1
Mpc; (25)

where we have used a density ρχ ≃ 0.4 GeV=cm3

characteristic of the Milky Way halo at the location
of the Solar System, and σ̄ is evaluated for a velocity
v ∼ 300 km s−1 ∼ 10−3, the virial velocity in the
Milky Way. The canonical numerical value σ̄ ≃
1 cm2 g−1 is chosen having in mind the distance traveled
by a particle moving at v≃ 300 km s−1 over the 1010 yr
history of the Universe, lH ∼ 3 Mpc. Looking at Table I,
we see that the mean free path for DM-baryon scattering
is constrained by CMB/Lyman-α data to be far larger
than the distance a particle travels through a halo in the
history of the Universe: ðλ=lHÞ ≫ 1, for any n.
This estimate is valid for a MW-type object at the solar

cycle. To extend this estimate to larger or smaller objects
like galaxy clusters and dwarf galaxies, we write

λ

lH
> 30

�
λTab:IðnÞ
100 Mpc

��
v

10−3

�−n−1� ρχ
0.4 GeV=cm3

�−1
;

(26)

where for λTab:IðnÞ we use the result on the last column of
Table I, and for v and ρχ we use the characteristic values for
the object of interest. We learn that n > þ2 is needed to
affect structure on galaxy cluster scales, with ρχ smaller by
some 2 orders of magnitude and v larger by a factor of 10 or
so compared to the MW halo. In contrast, n < −4 is needed
to affect dwarf galaxy scales, with v ∼ 10−4.

VII. CONCLUSIONS

We have provided a model-independent analysis of the
constraints imposed to DM-baryon interactions by CMB
data from Planck and Lyman-α forest data from the
SDSS Collaboration. Our work extended and improved
upon earlier analyses for specific models like DM
millicharge, electromagnetic dipole moments, and veloc-
ity-independent cross section (see Appendix C). We
found that the Lyman-α forest data, included here for
the first time in this context, considerably strengthen the
constraints beyond the reach of the CMB alone. We
highlighted the interplay between bulk and thermal
velocities, pointed out to the crossover between them
at z ∼ 104, and suggested an approximate way to take it
into account.
DM-baryon scattering cannot affect the halo mass

function for M > 1012M⊙. There is still room, after
the new constraints are imposed, for a potentially con-
sequential suppression of primordial power on smaller,
subgalactic scales. In the halos of galaxies like the
Milky Way, outside of the innermost 1 kpc, our

constraints imply that the DM-baryon interaction rate
is, regardless of the model, too small to affect the
distribution of matter at late times.
Our observation that bulk DM-baryon velocities

become greater than thermal velocities at redshifts z≃
104 may have interesting consequences. It suggests that
(unless the cross-section power-law index is n ¼ −1) the
DM-baryon drag does not vary linearly with the relative
velocity. If so, then the Boltzmann equations for the
evolution of baryons and dark matter become nonlinear.
This has two consequences: First, the evolution of each
Fourier mode cannot be described by the standard linear
equations, and second, different Fourier modes become
coupled, thus inducing non-Gaussianity. In this paper, we
have included these effects in a mean-field approach. In
this treatment, each Fourier mode is evolved independ-
ently, and the coupling to other Fourier modes is taken
into account by augmenting the thermal velocity
dispersion with a dispersion due to bulk velocities.
While this approach should be fairly accurate and provide
conservative quantitative constraints, it will be interesting
in future work to quantify these effects more precisely
and to investigate the implications of the non-Gaussianity
that a DM-baryon interaction may induce.
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APPENDIX A: THERMALIZATION

The thermalization rate is calculated similarly to the
momentum-exchange rate. The change in energy of a DM
particle per collision is

Δϵχ ¼
�
p⃗χ þ p⃗b

mχ þmb

�
· Δp⃗χ ¼ v⃗cm · Δp⃗χ ; (A1)

where v⃗cm is the boost velocity to the center-of-mass frame
of the collision. Focusing on the limit where peculiar
velocities are smaller than the velocity dispersion, we can
set the peculiar velocity to zero. The specific heating rate is
then
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dQχ

dt
¼ mχρb

mχ þmb

Z
dn̂b
4π

Z
dvbv2bfbðvbÞ

Z
dn̂χ
4π

Z
dvχv2χfχðvχÞ

Z
dn̂

�
dσðjv⃗χ − v⃗bjÞ

dn̂

�
jv⃗χ − v⃗bj2

×

�
n̂ − v⃗χ − v⃗b

jv⃗χ − v⃗bj
�
·

�
mχ v⃗χ þmbv⃗b
mχ þmb

�

¼ −
2
nþ5
2 Γð3þ n

2
Þffiffiffi

π
p amχρbσ0

ðmχ þmbÞ2
�
Tb

mb
þ Tχ

mχ

�nþ1
2 ðTχ − TbÞ: (A2)

From this, neglecting the time derivative of the mean
baryonic molecular weight, we obtain Eq. (13).

APPENDIX B: PECULIAR VELOCITY BEYOND
LEADING ORDER

The exact solution for the peculiar velocity Vχ is given
by

dV⃗χ

dt
¼ −V⃗χ

cnρbσ0
�
hðΔv⃗Þ2i

3

�nþ1
2

mχ þmb
Gn

�
3V⃗2

χ

hðΔv⃗Þ2i
�
; (B1)

in real space, with the dimensionless function:

GnðwÞ ¼ 1þ nþ 1

10
wþ ðnþ 1Þðn − 1Þ

280
w2

þ ðnþ 1Þðn − 1Þðn − 3Þ
15120

w3 þ � � � : (B2)

APPENDIX C: COMPARISON TO
PREVIOUS WORK AND SPECIFIC

DARK MATTER-BARYON
INTERACTION MODELS

Constraints on DM-baryon scattering were derived in
previous work for some specific particle-physics models.
Here we compare our results with existing bounds, focus-
ing on n ¼ 0;−2; and −4. An analysis of DM-baryon
scattering was also given in Ref. [53], including effectively
the n ¼ −1 case. We do not reproduce the results of [53], in
particular, our CMB analysis of the n ¼ −1 case gives a
bound that is about 3 orders of magnitude weaker than the
bound reported in [53].

1. Velocity-independent scattering

Cosmological constraints on a velocity-independent
scattering cross section were derived in Ref. [14]. We
generally agree with the derivation in [14], besides from an
Oð1Þ numerical difference in the expression for the
momentum-transfer rate Rχ and, again, from the neglect
of peculiar vs thermal velocities at low redshift. Our CMB
+ Lyman-α constraint in Table I improves on the bound of
Ref. [14] by about 2 orders of magnitude, most likely due to
the incorporation of Lyman-α data in our analysis.

2. DM millicharge

If DM carries a millicharge qχ ¼ ϵe, where e is the
electron charge and ϵ ≪ 1, then photon exchange with
protons induces a cross section

dσ
dcθ

¼
�
mχ þmH

mχmH

�
2 2πϵ2α2

v4ð1 − cθÞ2
: (C1)

We focus here on mχ ≫ mH. The scattering on helium is
suppressed by the reduced mass, σHe ¼ σ0=4, leading to
FHe ¼ 0.82 when all of the helium and hydrogen are
ionized. Helium recombination begins around z ∼ 6 · 103

and completes by z ∼ 2 · 103; it is straightforward to
include helium recombination in the momentum-transfer
equations, but for simplicity we avoid this complication
and simply set FHe ¼ 0.76, neglecting DM-helium scatter-
ing altogether. Note that scattering on electrons is negli-
gible for the momentum exchange, as it amounts to
Rχ → Rχ ½1þ xeð1 − fHeÞðme=mHÞ12�, where xe ¼ ne=nH
is the free electron fraction and me ¼ 5.44 · 10−4mH is
the electron mass.
The forward divergence in Eq. (C1) is regulated by

Debye screening due to free electrons in the plasma [18],
implying a minimum scattering angle θmin ≈ 2 ϵα=ð3TλDÞ,
with λD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T=ð4 παneÞ
p

. This gives a momentum-
exchange cross section

σ̄ðvÞ ≈
�
mχ þmH

mχmH

�
2 2πϵ2α2

v4
ln

�
9T3

4πϵ2α3xenH

�
; (C2)

or in our notation (taking mχ ≫ mH, and measuring
velocity in units of c),

n¼−4;
σ0≈9.6×10−42

�
ϵ

10−6

�
2
�
1−0.03 ln

�
ϵ

10−6

��
cm2: (C3)

This expression is valid for z > 1100 or so, when xe ≈ 1.
Upon recombination, xe falls quickly below unity
[xeðz ∼ 1000Þ ∼ 10−3], increasing the ln ϵ correction to
lnðϵ ffiffiffiffiffi

xe
p Þ. For the very small values of ϵ that we find here,

this change in the logarithm makes no significant difference
to the results. Furthermore, accounting for recombination
amounts to scaling
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Rχ → min ðxe; 1Þ × Rχ ; (C4)

so that scattering via DM millicharge halts anyway once
protons combine into neutral hydrogen.
Using the 95% C.L. bound for n ¼ −4 from Table I, we

find

ϵ < 1.8 × 10−6
�

mχ

GeV

�1
2

: (C5)

Cosmological constraints on DM millicharge were
derived in [18–20,17]. Our numerical result for the
95% C.L. limit is stronger by a factor of 2 than the bound
derived in Ref. [18]. However, there are conceptual
differences between our analysis and the one in [18].
Notably, we here computed the rate of momentum transfer
in linear theory, while the bound derived in Ref. [18] was
based on the rough argument of imposing kinetic decou-
pling at recombination, and ignored the bulk velocity
altogether. As a result, the momentum-transfer rate as
defined in Ref. [18] is not the proper quantity for linear
theory. In addition, as discussed in Sec. III B, at redshift
z < 104 the typical peculiar velocity itself becomes large
compared with the thermal motion. This regulates the low-
velocity enhancement ð∝ v−4Þ of the millicharge interac-
tion. As mentioned in Sec. IV, had we ignored this effect
and considered only the thermal motion (as was done in
Ref. [18]) we would have found a bound on ϵ that would be
stronger by a factor of ∼3 compared to Eq. (C5).

3. DM electric and magnetic dipole moment

The DM magnetic dipole moment (MDM) and electric
dipole moment (EDM) were considered in Ref. [15],
expressed as

L ¼ − i
2
χ̄σμνðMþ γ5DÞχFμν; (C6)

where the MDM is M and the EDM is D.
We agree with the cosmological calculation in [15]. The

momentum-transfer cross section for DM-proton collisions
is

σ̄ ¼ 3αM2

�
1 −mHðmH þ 4mχÞ

3ðmH þmχÞ2
�
; (C7)

for MDM, corresponding to n ¼ 0 in our notation, and

σ̄ ¼ 2αD2

v2
; (C8)

for EDM, corresponding to n ¼ −2. Assuming mχ ≫ mH,
ignoring helium again, and using Table I we find at
95% C.L.:

M < 1.7 × 10−12 e cm; (C9)

D < 9.2 × 10−16
�

mχ

1 GeV

�1
2

e cm: (C10)

The EDM (D) bound we find is stronger by about a
factor of 2 than that reported in [15] for CMB/LSS. For
MDM (M), the original analysis of [15] does not apply,
and our numerical result is new.
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