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We study inflation induced by (power-low) scalar curvature corrections to General Relativity. The class
of inflationary scalar potentials VðσÞ ∼ exp½nσ�, n general parameter, is investigated in the Einstein frame,
and the corresponding actions in the Jordan frame are derived. We found the conditions for which these
potentials are able to reproduce viable inflation according to the last cosmological data and lead to large
scalar curvature corrections that emerge only at a mass scale larger than the Planck mass. The cosmological
constant may appear or be set equal to zero in the Jordan frame action without changing the behavior of the
model during inflation. Moreover, polynomial corrections to General Relativity are analyzed in detail.
When de Sitter space-time emerges as an exact solution of the models, it is necessary to use perturbative
equations in the Jordan framework to study their dynamics during the inflation. In this case, we
demonstrate that the Ricci scalar decreases after a correct amount of inflation, making the models consistent
with the observable evolution of the Universe.
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I. INTRODUCTION

A large number of inflationary cosmology models is
based on scalar fields, which play an important role in the
particle physics theories. The inflation is produced by a
homogeneous scalar field, dubbed inflaton, which under
suitable conditions may lead to an early-time accelerated
expansion. Following the first proposal of Guth [1] and
Sato [2], in the last years many inflationary models based
on scalar fields (and inspired by modified gravity theories,
string theories, quantum effects in the hot universe, etc.)
have been proposed.
Typically the magnitude of the scalar field is very large at

the beginning of the inflation and then it rolls down towards
a potential minimum where the inflation ends (see Ref. [3]
as an example of chaotic inflation). In other models the
field can fall in a potential hole, where it starts to oscillate
and the reheating processes take place [4–7]. Some more
complicated models are based on a phase transition
between two scalar fields: they are the so-called hybrid
or double inflation models [8,9]. For the introduction to the
dynamics of inflation, see Ref. [10] and Refs. [11,12].

Recently, cosmological and astrophysical data [13] seem
to confirm the predictions of the Starobinsky inflationary
model [14]. Such a model is based on the account of the R2

term as the correction in the Einstein equations. This
quadratic correction emerges in the Planck epoch and
plays a fundamental role in the high curvature limit, when
the early-time acceleration takes place. Such theory is
conformally equivalent to a scalar-tensor theory in the
Einstein frame, where the inflaton drives the expansion in a
quasi–de Sitter space-time and slowly moves to the end of
inflation, when the reheating processes [15–17] start. Such
an inflationary model has been recently revisited in many
works. Among them, in Ref. [18] a superconformal
generalization of such a model in superconformal theory
has been investigated, and in Refs. [19,20] other applica-
tions based on the spontaneous breaking of conformal
invariance and on the scale-invariant extensions of the
Starobinsky model have been presented. In Ref. [21], a
generalization of the Starobinsky model represented by a
polynomial correction of the Einstein gravity of the type
c1R2 þ c2Rn has been studied.
In this paper, we will concentrate on inflation caused by

scalar curvature corrections to Einstein gravity; namely, we
will consider the so-called FðRÞ gravity, whose action is in
the form of FðRÞ ¼ Rþ fðRÞ, with fðRÞ a function of the
Ricci scalar (for recent reviews on modified gravity, see
Refs. [22–26] and Ref. [27]). This kind of correction may
occur due to quantum effects in the hot universe or may be
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motivated by the ultraviolet completion of the quantum
theory of gravity. Our aim is to investigate which kinds of
viable inflation can be realized in the contest of FðRÞ
gravity beyond the Starobinsky model, whose dynamics is
governed in the Einstein frame by a potential of the type
VðσÞ ∼ ð1 − exp½−σ�Þ2, with σ being the inflaton.
The paper is organized as follows. In Secs. II and III, we

will revisit the conformal transformations which permit us
to pass from the Jordan frame to the Einstein one, and we
will recall the dynamics of the viable inflation. In Sec. IVwe
will study inflation for the general class of scalar potentials
of the type VðσÞ ∼ exp½nσ�, with n being a general param-
eter, performing the analysis in the Einstein frame and
therefore reconstructing the FðRÞ-gravity theories that
correspond to the given potentials. Viable inflation must
be consistent with the last Planck data (spectral index,
tensor-to-scalar ratio…) and must correspond to Einstein
theory corrections that emerge only at mass scales larger
than the Planck one, namely at high curvatures. We will see
the conditions on n for which slow-roll conditions are
satisfied, and we will reconstruct the form of the FðRÞ
models during early-time acceleration and at small curva-
tures. Some specific examples are presented. In Sec. V,
following the recent success of higher-derivative gravity, we
will revisit and study in detail the specific class of models
FðRÞ ¼ Rþ ðRþ R0Þn. The analysis in the Einstein frame
reveals that n must be very close to two in order to realize a
viable inflation for large and negative values of the scalar
field, but other possibilities are allowed by bounding the
field in a different way. In particular, when n > 2, the de
Sitter solution emerges, but in order to study the exit from
inflation is necessary to analyze the theory in the Jordan
frame, where perturbations make possible an early time
acceleration with a sufficient amount of inflation. A sum-
mary and outlook are given in Sec. VI. Technical details and
further considerations are presented in the Appendixes.
We shall use units in which c ¼ ℏ ¼ kB ¼ 1, with c, ℏ,

kB; respectively, the speed of light, the Planck constant,
and the Boltzmann constant. Moreover, we shall denote by
GN the gravitational constant and byMPl ¼ G−1=2

N ¼ 1.2 ×
1019GeV the Planck mass. Finally, we shall set
κ2 ≡ 8πGN .

II. CONFORMAL TRANSFORMATIONS

In scalar-tensor theories of gravity, a scalar field coupled
to the metric appears in the action. The first scalar-tensor
theory was proposed by Brans and Dicke in 1961 [28] in
the attempt to incorporate the Mach’s principle into the
theory of gravity, but today the interest in such theories is
related to the possibility of reproducing the primordial
acceleration of the inflationary universe.
In principle, a modified gravity theory can be rewritten in

scalar-tensor or Einstein frame form. Let us start by
considering the general action of FðRÞ-modified gravity,

I ¼
Z
M

d4x
ffiffiffiffiffiffi−gp �

FðRÞ
2κ2

�
; (1)

where FðRÞ is a function of the Ricci scalar R, g is the
determinant of the metric tensor gμν, and M is the space-
time manifold. Now we introduce the field A into (1),

IJF ¼ 1

2κ2

Z
M

ffiffiffiffiffiffi−gp ½FAðAÞðR − AÞ þ FðAÞ�d4x: (2)

Here, JF means Jordan frame, and FAðAÞ denotes the
derivative of FðAÞ with respect to A. By making the
variation with respect to A, we immediately obtain
A ¼ R, such that (2) is equivalent to (1). We define the
scalar field σ (which in fact encodes the new degree of
freedom in the theory, namely the scalaron or inflaton) as

σ ≔ −
ffiffiffiffiffiffiffi
3

2κ2

r
ln½FAðAÞ�: (3)

By considering the conformal transformation of the metric,

~gμν ¼ e−σgμν; (4)

we finally get the Einstein frame action, line

IEF ¼
Z
M

d4x
ffiffiffiffiffiffi−~g

p �
~R

2κ2
− 1

2

�
FAAðAÞ
FAðAÞ

�
2

~gμν∂μA∂νA

− 1

2κ2

�
A

FAðAÞ
− FðAÞ
FAðAÞ2

��

¼
Z
M

d4x
ffiffiffiffiffiffi−~g

p �
~R

2κ2
− 1

2
~gμν∂μσ∂νσ − VðσÞ

�
; (5)

where ~R denotes the Ricci scalar evaluated in the conformal
metric ~gμν, and ~g is the determinant of the conformal metric,
namely ~g ¼ e−4σg. Furthermore, one has

VðσÞ≡ A
F0ðAÞ −

FðAÞ
F0ðAÞ2 ¼

1

2κ2
feð

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
ÞσRðe−ð

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
ÞσÞ

− e2ð
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
ÞσF½Rðe−ð

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
ÞσÞ�g; (6)

with Rðe−
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σÞ being the solution of Eq. (3) where

A ¼ R, with R a function of e−
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ. In what follows, we

will omit the tilde to denote all the quantities evaluated in
the Einstein frame.
Note that string-inspired inflationary models also contain

canonical and/or tachyon scalar (for recent discussion see
Refs. [29, 30]).

III. DYNAMICS OF INFLATION

In this section, for the sake of completeness, we will
recall the well-known facts on inflation. The energy density
and pressure of the inflaton σ are given by
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ρσ ¼
_σ2

2
þ VðσÞ; pσ ¼

_σ2

2
− VðσÞ; (7)

where the dot is the derivative with respect to the
cosmological time. The Friedmann equations in the pres-
ence of σ read

3H2

κ2
¼ _σ2

2
þ VðσÞ; − 1

κ2
ð2 _H þ 3H2Þ ¼ _σ2

2
− VðσÞ;

(8)

and the energy conservation law coincides with the
equation of motion for σ and reads

σ̈ þ 3H _σ ¼ −V 0ðσÞ; (9)

where the prime denotes the derivative of the potential with
respect to σ. From the Friedmann equations we obtain

_H ¼ − κ2

2
ðρσ þ pσÞ ¼ − κ2

2
_σ2: (10)

On the other hand, the acceleration can be expressed as

ä
a
¼ H2 þ _H ¼ H2ð1 − ϵÞ; (11)

where we have introduced the “slow roll” parameter

ϵ ¼ − _H
H2

: (12)

This parameter may be expressed as a function of the
inflaton as

ϵ ¼ κ2 _σ2

2H2
: (13)

We also have

ä
a
¼ κ2

3
ðV − _σ2Þ: (14)

Thus, the condition to have an acceleration is ϵ < 1 or
_σ2 < VðσÞ. There is another slow roll parameter defined by

η ¼ − Ḧ

2H _H
¼ ϵ − 1

2ϵH
_ϵ: (15)

As a function of the inflaton, one has

η ¼ − σ̈

H _σ
: (16)

For the inflation to occur and persist for a convenient
amount of time, a quasi–de Sitter space is required; namely,
_H has to be very small, and, as a result, also the two slow
roll parameters have to be very small, and one has

_σ2 ≪ VðσÞ; (17)

namely, the kinetic energy of the field has to be small
during the inflation. As a result, the Friedmann equations
reduce to

3H2

κ2
≃ VðσÞ; 3H _σ ≃−V 0ðσÞ: (18)

It is easy to show that within this slow roll regime, the slow
roll parameters may be expressed as a function of the
inflaton potential as

ϵ ¼ 1

2κ2

�
V 0ðσÞ
VðσÞ

�
2

; η ¼ 1

κ2

�
V 0ðσÞ
VðσÞ

�
: (19)

Inflation ends when ϵ, jηj ∼ 1. A useful quantity that
describes the amount of inflation is the e-foldings number
N defined by

N ≡ ln
af
ai

¼
Z

te

ti

Hdt≃ κ2
Z

σi

σe

VðσÞ
V 0ðσÞ dσ; (20)

where the indices i, f refer to the quantities at the beginning
and the end of inflation, respectively. The required e-
foldings number for inflation is at least N ≃ 60. The
amplitude of the primordial scalar power spectrum is

Δ2
R ¼ κ4V

24π2ϵ
; (21)

and for slow roll inflation the spectral index ns and the
tensor-to-scalar ratio are given by

ns ¼ 1 − 6ϵþ 2η; r ¼ 16ϵ: (22)

The last Planck data constrain these quantities as

ns ¼ 0.9603� 0.0073; r < 0.11: (23)

IV. RECONSTRUCTION OF FðRÞ THEORY FROM
THE SCALAR POTENTIAL AND ANALYSIS OF
THE INFLATION IN THE EINSTEIN FRAME

In this section, we will study some classes of scalar
potential which produce inflation in the Einstein frame.
The aim is to generalize the Starobinsky model by con-
sidering different behavior of the scalar potential as
VðσÞ ∼ exp½n

ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ�, where n is the parameter on which

it depends the dynamics of the inflation (slow roll param-
eters, spectral indices…). This analysis is motivated by the
possibility to reconstruct suitable FðRÞ corrections to
General Relativity in the corresponding Jordan frame.
By ‘suitable’ we mean corrections that vanish at mass
scales smaller than the Planck mass MPl and give rise to
corrections only in the high curvature limits, namely during
the inflationary period. Every scalar potential will be
confronted with cosmological data.
In order to reconstruct the FðRÞ gravity which corre-

sponds to a given potential, we may start from Eq. (6). By
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dividing such equation to exp ½2
ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3

p
�, and then by

taking the derivative with respect to R, we get

RFRðRÞ ¼ −2κ2
ffiffiffiffiffiffiffi
3

2κ2

r
d
dσ

�
VðσÞ

e2ð
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
Þσ

�
: (24)

As a result, giving the explicit form of the potential VðσÞ;
thanks to the relation (3), we obtain an equation for FRðRÞ,
and therefore the FðRÞ-gravity model in the Jordan frame.
In this process, one introduces the integration constant,
which has to be fixed by requiring that Eq. (6) holds true.

A. VðσÞ ∼ c0 þ c1 exp½σ� þ c2 exp½2σ�: Rþ R2 þ Λ
models

Let us start with the following inflationary potential

VðσÞ ¼ ½c0 þ c1e
ffiffiffiffiffiffiffi
κ2=3

p
σ þ c2e

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ�: (25)

This is the simplest example and is the minimal generali-
zation of the Starobinsky model. Equation (24) gives

2c0F2
R þ c1FR − RFR ¼ 0: (26)

Assuming FR ≠ 0, one gets

FRðRÞ ¼ − c1
2c0

þ R
2c0

: (27)

Thus, the corresponding Lagrangian of FðRÞ gravity is
given by

FðRÞ ¼ − c1
2c0

Rþ R2

4c0
þ Λ: (28)

Here, Λ is a constant of integration, which can be
determined by Eq. (6). The result is

Λ ¼ c21
4c0

− c2: (29)

An important remark is in order. In order to have the correct
Einstein-Hilbert term, we must put −c1=ð2c0Þ ¼ 1. Thus,
we have the class of modified quadratic models depending
on two constants,

FðRÞ ¼ Rþ R2

4c0
þ c0 − c2: (30)

Furthermore, in the specific case c2 ¼ 0, one has

FðRÞ ¼ Rþ R2

4c0
þ c0: (31)

This is an interesting model, and in the Appendix B, wewill
study its static spherically symmetric solutions.

The other interesting case is the vanishing of cosmo-
logical constant, namely

c2 ¼ c0: (32)

Since we are assuming c1=ð2c0Þ ¼ 1, it also follows
c2 ¼ −c1=2. As a consequence, we recover the Starobinsky
model FðRÞ ¼ Rþ R2

4c0
, and related Einstein frame potential

VðσÞ ¼ c0ð1 − e
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σÞ2: (33)

The model (30) is the extension of the Starobinsky model to
the case with cosmological constant and gives a viable
inflation. In what follows, we denote

c0 ¼
γ

4κ2
: (34)

The initial value of the inflaton is large (and negative) and it
rolls down toward the potential minimum at σ → 0−,
Vð0Þ ¼ −γ=ð4κ2Þ < 0. During inflation (σ → −∞),
Eq. (18) leads to

H2 ≃ γ

12
; 3H _σ ≃

�
γffiffiffiffiffiffiffi
6κ2

p
�
e

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ: (35)

It means, that a quasi–de Sitter solution can be realized. We
must require

γ ∝ M2; M ≪ MP; (36)

where MP is the Planck mass. As a consequence, the
corrections of Einstein gravity emerge at high curvature and
one gets the accelerated expansion with H ∝

ffiffiffi
α

p
. The

scalar field behaves as

σ ≃−
ffiffiffiffiffiffiffi
3

2κ2

r
ln

�
1

3

ffiffiffiffiffi
2γ

3

r
ðt0 − tÞ

�
; (37)

where t0 is bounded at the beginning of the inflation. If at
this time jσj is very large, the slow roll parameters (19),

ϵ ¼ 4

3

1

ð2 − e−
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σÞ2

≃ 0;

jηj ¼ 4

3

1

j2 − e−
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σj
≃ 0; (38)

are very small and the field moves slowly. The inflation
ends when such parameters are of the order of unit, namely
at σe ≃−0.17 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=ð2κ2Þ
p

. The e-foldings number can be
evaluated from (20)and reads (σi ≫ σe),

N ≃ 3e−
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ

4

����σi
σe

≃ 1

4

ffiffiffiffiffi
2γ

3

r
t0: (39)
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The inflation ends at te ¼ t0 − 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð2αÞp

exp. For exam-
ple, in order to obtain N ¼ 60, we must require σi≃− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=ð2κ2Þ
p

4.38≃ 1.07Mpl. Moreover, we may express
the e-foldings numbers as

ϵ≃ 3

4N2
; jηj≃ 1

N
: (40)

The amplitude of primordial power spectrum (21) is

Δ2
R ≃ κ2γN2

72π2
∝
κ2M2N2

72π2
≪

κ2M2
PN

2

72π2
; (41)

and the indexes (22) result to be

ns ≃ 1 − 2

N
; r≃ 12

N2
: (42)

Since we have ns > 1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.11=3

p ≃ 0.809when r < 0.11,
ns < 1, we see that these indices are compatible with (23).
For example, for N ¼ 60, one has ns ¼ 0.967 and
r ¼ 0.003. We stress that this behavior is the one of
Starobinsky model, with a different minimum of the
potential and a cosmological constant in the Jordan frame.
The appearance of a cosmological constant at large curva-
ture needs some explanation. It can be originated by some
quantum effects or may be supported by a modified gravity
term which makes it to vanish at small curvatures (see, for
example, Refs. [31, 32]). However, if the cosmological
constant is set equal to zero (or, if necessary, is set equal to an
other value), the feature of the model in Einstein frame does
not change during the inflation: we will see that this double
possibility, namely, taking a cosmological constant in the
Jordan frame, or taking an additional term ∝
exp½2

ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ� in the Einstein frame, does not modify

the proprieties of the scalar potentials during the early time
acceleration.

B. VðσÞ ∼ γ exp½−nσ�, n > 0: c0R
nþ2
nþ1 models

As a second example, we consider the following
potential

VðσÞ ¼ α

κ2
ð1 − e

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σÞ þ γ

κ2
e−n

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ; (43)

being γ, n > 0 constants. This potential possesses a
minimum in which the scalar field may fall at the end
of inflation. Since for large and negative values of the scalar
field the potential is not flat, we do not expect a de Sitter
universe, but if the slow roll conditions are satisfied, we can
obtain an acceleration with a sufficient amount of inflation.
By using our reconstruction, from (24) one derives

FRðRÞ − 1

2
þ γ

2α
ð2þ nÞFRðRÞ1þn ¼ R

4α
: (44)

In principle, this equation admits many solutions. At the
perturbative level, it is easy to find that, by putting

α ¼ −γðnþ 2Þ; (45)

we obtain

FRðR ≪ γÞ≃ 1þ c1Rþ c2R2 þ c3R3 þ � � � ; (46)

when jc1Rj, jc2R2j, jc3R3j � � � ≪ 1(see Appendix A). It
means that, since c1 ∝ γ−1, c2 ∝ γ−2, c3 ∝ γ−3…, if γ
satisfies (36), we recover the Einstein’s gravity when R ≪
γ and the theory is an high curvature correction to General
Relativity. Moreover, when R ≫ γ, the asymptotic solution
of Eq. (44) with (45)is given by

FRðR ≫ γÞ≃
�

1

4ðnþ 2Þ
� 1

1þn
�
R
γ

� 1
nþ1

;

FðR ≫ γÞ≃ γ

�
nþ 1

nþ 2

��
1

4ðnþ 2Þ
� 1

1þn
�
R
γ

�nþ2
nþ1

: (47)

Here, one important comment is required. In the Einstein
frame, REF ∼ γ during inflation, but the corresponding

curvature in the Jordan frame is RJF ≃ e−
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σREF (we

may neglect the kinetic energy of scalar field in the slow
roll approximation), such that RJF ≫ γ when σ → −∞ and
expression (47), which is evaluated in the Jordan frame,
effectively is valid for inflation (for n → 0 we recover
FðRÞ ∼ R2 in the Jordan frame).
The potential finally reads

VðσÞ ¼ − γðnþ 2Þ
κ2

ð1 − e
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σÞ þ γ

κ2
e−n

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ: (48)

This potential has a minimum (V 0ðσminÞ ¼ 0) at σmin ¼
− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=ð2κ2Þ
p

log½ðnþ 2Þ=n�=ðnþ 1Þ, and one gets

VðσminÞ ¼
γ

κ2

�
n

1
nþ1ðnþ 2Þ n

nþ1 þ
�
nþ 2

n

� 1
nþ1 − ðnþ 2Þ

�
> 0; γ; n > 0: (49)

When σ → −∞ (large curvature), the potential goes to
infinity, and when σ → 0−, VðσÞ ¼ γ=κ2. Since the slow
roll parameters are given by

ϵ ¼ ðn − ðnþ 2Þeðnþ1Þ
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σÞ2

3ððnþ 2Þen
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ − ðnþ 2Þeðnþ1Þ

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ − 1Þ2

;

jηj ¼ 2

3

n2 þ ðnþ 2Þeðnþ1Þ
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ

j1þ ðnþ 2Þeðnþ1Þ
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ − ðnþ 2Þen

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σj
;

(50)

one has ϵðσ → −∞Þ≃ n2=3 and jηðσ → −∞Þj≃ 2n2=3,
which implies 0 < n ≪ 1. The EOMs (18) in the slow roll
limit read
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H2≃ γ

3
e−n

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ; 3H _σ≃

ffiffiffiffiffiffiffi
2

3κ2

r
γne−n

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ: (51)

The solution for the scalar field is

σ ¼ 2

n

ffiffiffiffiffiffiffi
3

2κ2

r
ln

�
n2

3

ffiffiffi
γ

3

r
ðt0 þ tÞ

�
; (52)

where t0 is bounded to be very small at the beginning of the
inflation, such that the field is negative and its magnitude
very large. The solution for the Hubble parameter finally
reads

H¼ 3

n2ðt0þ tÞ ;

ä
a
¼H2þ _H¼ 3

n2ðt0þ tÞ2
�
3

n2
−1

�
>0; ðn<

ffiffiffi
3

p
Þ (53)

and we have an acceleration as soon as ϵ < 1. Despite to the
fact that in this kind of models the acceleration is smaller
than in the de Sitter universe, the slow roll parameters can
be small enough to justify our slow roll approximations. A
direct evaluation of the ratio of kinetic energy of the field
and potential leads to ð _σ2=2Þ=VðσÞ ¼ n2=9, which is much
smaller than one when n ≪ 1. The inflation ends when the
slow roll paramters are on the order of unit, before the
minimum of the potential. Note that, by definition, since
V 0ðσminÞ ¼ 0, one has ϵðσminÞ ¼ 0, which corresponds to
the minimum of the slow roll parameter. However, before to
this point, since the slow roll parameters behave as

ϵ≃ n2

3ððnþ 2Þen
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ − 1Þ2

;

jηj≃ 2

3

n2

j1 − ðnþ 2Þen
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σj
; (54)

we find that ϵ, jηj≃ 1 when σ ≃− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð2κ2Þ

p
×

log½ð6þ 3nÞ=ð3 − n
ffiffiffi
3

p Þ�=n. Finally, from Eq. (20), we
get the N-foldings number of inflation,

N ≃− 1

n

ffiffiffiffiffiffiffi
3κ2

2

r
σ

����σi
σe

≃− 3

n2
ln

�
n2

3

ffiffiffi
γ

3

r
t0

�
: (55)

When the inflation ends, the field falls in the minimum of
the potential and starts to oscillate. The reheating process
takes place. The amplitude of primordial power spectrum
(21) and the spectral indexes (22) can be written as

Δ2
R ≃ κ2γe

2
3
Nn2

8π2n2
; ns ≃ 1 − 2n2

3
; r≃ 16n2

3
: (56)

The corrections to ns and r are on the order of
exp ½−2n2N=3� ≪ 1. These indexes are compatible with
(23) when

n ∼
1

10
;
2

10
: (57)

These are the typical values of n which make the scalar
potential (71) able to reproduce a viable inflationary
scenario. The result suggests that only the models close
to R2 gravity are able to produce this kind of inflation.
In general, FRðRÞ in Eq. (46) may lead to a cosmological

constant proportional to γ in the FðRÞ model. However, we
can set it equal to zero, adding a suitable term in the
potential (71) proportional to exp ½2

ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ�, which

changes much more slowly than exp ½−n ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ� when

0 < n, and the dynamics of the inflation is the same
of above.

C. VðσÞ ∼ 3γ=4 − γ exp½σ=2�: R=2þ c1R2 þ
c2ðRþ R0Þ3=2 models

We continue our analysis constructing potentials for de
Sitter universe during inflation, but with a different behav-
ior with respect to the Starobinsky one (which decreases as
exp½−σ�). We propose the potential as

VðσÞ ¼ α

κ2
− γ

κ2
e

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ=2; (58)

with α, γ > 0, as usual, the constants. It follows that1

FRðRÞ ¼
9γ2 þ 8Rαþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16Rαγ2 þ 9γ4

p
32α2

: (59)

Since we must require α, γ ≫ 1 and at small curvature we
want to recover the Einstein gravity (FR ¼ 1), we set
α ¼ 3γ=4, γ > 0, and we get

FRðRÞ ¼
1

2
þ 1

3γ
Rþ

ffiffiffi
3

p

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R=γ þ 3

p
: (60)

Thus, from Eq. (6) we obtain

FðRÞ ¼ R
2
þ R2

6γ
þ

ffiffiffi
3

p

36
ð4R=γ þ 3Þ3=2 þ γ

4
: (61)

Here, we stress that the conformal transformation gives for
the Ricci scalar

R ¼ 3e−
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σð1þ e

ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3=2

p
σ=2Þ; 3e−

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ

× ð1 − e
ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3=2

p
σ=2Þ; (62)

but only the second one leads to our potential (namely, is
the one that emerges from our reconstruction). For R ≪ γ,

1Here, we exclude the solution with the minus sign in front of
the square root which leads to an imaginary value of

ffiffiffiffiffiffi
FR

p
when R

is real.
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the model reads FðR ≪ γÞ≃ Rþ γ=2. If we want to
recover the General Relativity action FðR ≪ γÞ≃ R, we
must set the cosmological constant, namely the last term in
(61), equal to −γ=4: in this case the scalar potential is

VðσÞ ¼ 3γ

4κ2
− γ

κ2
e

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ=2 − γ

e2
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ

4κ2
: (63)

Let us analyze the possibility to reproduce inflation from
the potential (58), which finally reads

VðσÞ ¼
�

3

4κ2
− e

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ=2

κ2

�
γ: (64)

The initial value of the inflaton is large (and negative) and it
rolls down toward the potential minimum at σ → 0−,
Vð0Þ ¼ −γ=ð4κ2Þ < 0. When σ → −∞ the EOMs in the
slow roll limit read

H2 ≃ γ

4
; 3H _σ ≃

�
γffiffiffiffiffiffiffi
6κ2

p
�
e

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ=2: (65)

It means that γ must satisfy condition (36), such that the
inflation takes place at the Plank epoch. The de Sitter
expansion can be realized and the field behaves as

σ ≃−
ffiffiffiffiffi
6

κ2

r
ln

� ffiffiffi
γ

p
9

ðt0 − tÞ
�
; (66)

where t0 is bounded at the beginning of the inflation. If at
this time the magnitude of σ is very large, the slow roll
parameters (19)

ϵ ¼ 4

3

1

ð4 − 3e−
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ=2Þ2

≃ 0;

jηj ¼ 2

3

1

j4 − 3e−
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ=2j

≃ 0;
(67)

are small and the field moves slowly. The inflation ends at
σe ≃−0.12 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=ð2κ2Þ
p

, when the slow roll parameters are of
the order of unit. The e-foldings number can be evaluated
from (20) and reads

N ≃ 9e−
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ=2

2

����σi
σe

≃
ffiffiffi
γ

p
2

t0: (68)

As a consequence, the slow roll parameters can be written
as

ϵ≃ 3

N2
; jηj≃ 1

N
: (69)

The amplitude of primordial power spectrum (21) and the
spectral indexes (22) are given by

Δ2
R ≃ κ2γN2

96π2
; ns ≃ 1 − 1

N
; r≃ 48

N2
: (70)

Since from these formulas we have ns > 1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.11=48

p ≃
0.9521 when r < 0.11, ns < 1, we see that these expres-
sions are compatible with (23). For example, for N ¼ 60,
one has ns ¼ 0.967 and r ¼ 0.013.
We finish this subsection with some considerations

on the potential (63), which corresponds to the
model with cosmological constant equal to −γ=4.
Since the term exp ½2

ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ� changes more slowly

than exp ½
ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ=2�, the dynamics of inflation is the

same of above. In this case, when the inflaton exits from
the slow roll region, it falls in the minimum of the
potential located at Vð0Þ ¼ −γ=ð8κ2Þ.

D. VðσÞ ∼ γð2 − nÞ=2 − γ exp½nσ�, 0 < n < 1:
c1R2 þ c2R2−n models

Now, we would like to investigate some general features
of the inflationary potential,

VðσÞ ¼ α

κ2
− γ

κ2
en

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ; (71)

where 0 < α, γ, and 0 < n < 2. The above potential is
explicitly constructed to give the de Sitter solution in the
slow roll limit when σ → −∞. Equation (24) leads to

FRðRÞ þ
γ

2α
FRðRÞ1−nðn − 2Þ ¼ R

4α
: (72)

At the perturbative level, it is easy to see that, by choosing

α ¼ γð2 − nÞ
2

> 0; (73)

if γ satisfies (36), at small curvature one gets

FRðR ≪ γÞ≃ 1þ c1Rþ c2R2 þ c3R3 þ � � � ; (74)

with c1 ∝ γ−1, c2 ∝ γ−2, c3 ∝ γ−3…, such that our theory is
the high curvature correction to General Relativity (see
Appendix A). For example, in the previous subsection we
have seen an exact solution for the case n ¼ 1=2. Since
1 ≪ γ, when R=γ ≪ 1 we can expand FRðRÞ in (60) as

FRðR ≪ γÞ≃ 1þ 2

3γ
R − R2

9γ2
þ � � � ; (75)

which returns to be (74) by using the coefficients in
Appendix A. On the other side, when R ≫ γ, the asymp-
totic solution of Eq. (72) with (73)is given by

FRðR≫ γÞ≃
�

R
2γð2−nÞ

�
þ
�

R
2γð2−nÞ

�
1−n

;

FðR≫ γÞ≃1

2

�
R2

2γð2−nÞ
�
þ 1

2−n

�
1

2γð2−nÞ
�

1−n
R2−n:

(76)
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Also in this case, by taking the exact solution of the
previous section in the high curvature limit,

FRðR ≫ γÞ≃ R
3γ

þ
ffiffiffiffiffi
R
3γ

s
; (77)

we can verify the consistency of expression (76) for
n ¼ 1=2.
As an other example, let us consider the case n ¼ 1=3.

The reconstruction leads to

FRðRÞ ¼
1

3
þ 3

10

�
R
γ

�
þ 2

3 × 51=3

�
9

�
R
γ

�
þ 5

�
1

Δ1=3

þ 1

6 × 52=3
Δ1=3; (78)

where

Δ ¼ 200þ 243

�
R
γ

�
2

þ 540

�
R
γ

�

þ 27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81

�
R
γ

�
4

þ 40

�
R
γ

�
3

s
: (79)

At small curvature, it is easy to find

FRðR ≪ γÞ≃ 1þ 9

10

�
R
γ

�
þ � � � ; (80)

and in the high curvature limit this model has the following
structure,

FRðR ≫ γÞ≃ 3

10

�
R
γ

�
þ
�
3

10

�2
3

�
R
γ

�2
3

; (81)

which corresponds to (76) with n ¼ 1=3. Finally, the
model (27) is the limiting case of n → 1.
Let us analyze this class of potentials. When the

magnitude of the inflaton is large, the scalar potential
(71) with α ¼ γð2 − nÞ=2,

VðσÞ ¼ γð2 − nÞ
2κ2

− γ

κ2
en

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ; (82)

behaves as VðσÞ≃ γð2 − nÞ=ð2κ2Þ, and the EOMs in the
slow roll limit read

H2≃
�
γð2−nÞ

6

�
; 3H _σ≃

�
nγ

ffiffiffi
2

pffiffiffiffiffiffiffi
3κ2

p
�
en

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ: (83)

As a consequence, the field results to be

σ ≃−
ffiffiffiffiffiffiffi
3

2κ2

r
1

n
ln

�
2

ffiffiffi
2

p

3
ffiffiffi
3

p n2
ffiffiffi
γ

pffiffiffiffiffiffiffiffiffiffiffi
2 − n

p ðt0 − tÞ
�
; (84)

where t0 is bounded at the beginning of the inflation. When
σ → −∞, the slow roll parameters became

ϵ ¼ 4n2

3

1

ð2þ ðn − 2Þe−n
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σÞ2

≃ 0;

jηj ¼ 4n2

3

1

j2þ ðn − 2Þe−n
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σj
≃ 0; (85)

and are very small. The inflation ends at σe≃
−ð1=nÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=ð2κ2Þ
p

log ½ðγ=αÞð1 − n=
ffiffiffi
3

p Þ�,
such that the slow roll parameters are of the order of unit

and the field reaches the minimum of the potential at
Vð0Þ ¼ −γ=ð4κ2Þ. The e-foldings number (20) is given by

N ≃ 3ð2 − nÞe−n
ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ

4n2

����σi
σe

≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2 − nÞγ

6

r
t0; (86)

and

ϵ≃ 3

4n2N2
; jηj≃ 1

N
: (87)

As a consequence, the amplitude of primordial power
spectrum and the spectral indexes read

Δ2
R ≃ κ2γð2 − nÞn2N2

36π2
; ns ≃ 1 − 1

N
; r≃ 12

n2N2
:

(88)

Since ns > 1 − ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.11=12

p Þn≃ 1 − ð0.0957Þn when
r < 0.11, ns < 1, one has that

0.3386 < n < 1; (89)

in order tomake the spectral indexes compatiblewith (22). It
means, that the potential (82) can reproduce a viable
inflation with at least n ¼ 1=3, namely we are considering
models in the form FðR≫MPlÞ≃c1R2þc2Rζ, with
1 < ζ < 5=3.
Also in this case, FRðRÞ in Eq. (75) may lead to a

cosmological constant proportional to γ in the FðRÞ
model. However, we can set it equal to zero, acquiring
an additional term in the potential (71) proportional
to exp ½2

ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ�. This term changes slower than

exp ½n
ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ� when 0 < n < 2, and the dynamics of

the inflation is the same of above. To conclude this section,
we add some comments about the scalar potentials con-
taining exponential terms like exp ½n

ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ� with n > 1.

Since in this case Eq. (73) could lead to α < 0 (when
n > 2) making the potential unable to reproduce inflation,
we may generalize the potential to the following form

VðσÞ ¼ α

κ2
ð1 − en

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σÞ − γ

κ2
e

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ; (90)
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where α, γ > 0 and n > 1. Now, in order to recover the
Einstein gravity at small curvature, we have to put

α ¼ γ

2ðn − 1Þ > 0: (91)

In the slow roll limit σ → −∞ the EOMs read

H2 ≃ γ

6ðn − 1Þ ; 3H _σ ≃
� ffiffiffi

2
p

γffiffiffiffiffiffiffi
3κ2

p
�
e

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ; (92)

and the analysis of inflation results to be the same of R2

models (with or without the cosmological constant term).
Here, we can give some comments about the results of our
investigation. Scalar inflationary potentials that satisfy
viable conditions for realistic primordial acceleration in
the contest of large scalar curvature corrections to General
Relativity can be classified in two classes. In the first one,
the scalar potential behaves as VðσÞ ∼ exp ½n

ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ�,

n > 0, and produces acceleration with a sufficient amount
of inflation only for n very close to zero, namely the FðRÞ
model must be close to the Starobinsky one. In the second
class, VðσÞ ∼ α − γ exp ½−n ffiffiffiffiffiffiffiffiffiffiffiffi

2κ2=3
p

σ�, n > 0, and a quasi
de Sitter solution emerges during inflation. Cosmological
data are satisfied if n > 1=3. This kind of scalar potentials
is originated from large scalar curvature corrections of the
type FðRÞ ∼ c1R2 þ c2Rζ, with 1 < ζ < 5=3 when
1=3 < n < 1. Finally, the cases with 1 < n show in fact
the same behavior of R2 model during inflation.

V. Rþ αðRþ R0Þn MODELS

In this section, we will consider power law corrections to
Einstein gravity in the form

FðRÞ ¼ Rþ αðRþ R0Þn þ Λ; n > 1; (93)

where α > 0 is a (dimensional) constant parameter and R0,
Λ are two (cosmological) constants introduced to general-
ize the model. This class of models, following the success
of quadratic correction, have been often analyzed in
literature in order to reproduce the dynamics of inflation
and recently, in Ref. [21], the cases of polynomial correc-
tions added to the Starobinsky model have been inves-
tigated. In what follows, at first we would like to study the
inflation in the Einstein frame given by (93) with n ≠ 2. We
will see that inflation for large magnitude values of the field
is realized for n ≲ 2. However, other possibilities are
allowed by considering intermediate values of the field.
In this case, the de Sitter solution may emerge in the models
with n > 2, but in order to study the exit from inflation is
necessary to analyze the theory in the Jordan frame, where
perturbations make possible an early time acceleration with
a sufficient amount of N-foldings number: that is the aim of
the second part of this section.
Let us start from the potential in the scalar field

representation of (93),

VðσÞ ¼ 1

2κ2

��
1

αn

� 1
n−1ð1 − e

ffiffiffiffiffiffiffiffiffiffiffi
ð2κ2=3Þ

p
σÞ

n
n−1e

ðn−2Þ
ðn−1Þ

ffiffiffiffiffiffiffiffiffiffiffi
ð2κ2=3Þ

p
σ
�
n − 1

n

�
þR0e

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σðe

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ − 1Þ − Λe2

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ

�
: (94)

We immediately see that only if n ¼ 2, when σ → −∞, one gets VðσÞ ∼ const and obtains the de Sitter solution (for n ¼ 2,
Λ ¼ R0 ¼ 0 we recover (33), VðσÞ ¼ ðexp½

ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ� − 1Þ2=ð8ακ2Þ). On the other hand, even if 1 < n < 2, the scalar field

starts from a maximum of the potential and falls toward the minimum at σ → 0−: it corresponds to the case of
Vðσ → −∞Þ ∼ exp½−ð2 − nÞ=ðn − 1Þσ�, which may be used to reproduce an accelerating expansion if the slow roll limits
are satisfied.
The derivatives of the potential read

V 0ðσÞ ¼
�
− 1

2κ2

�
1

αn

� 1
n−1ð1 − e

ffiffiffiffiffiffiffiffiffiffiffi
ð2κ2=3Þ

p
σÞ

1
n−1e

ðn−2Þ
ðn−1Þ

ffiffiffiffiffiffiffiffiffiffiffi
ð2κ2=3Þ

p
σ þ 2VðσÞþ R0

2κ2
e

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ

�� ffiffiffiffiffiffiffi
2κ2

3

r �
; (95)

V 00ðσÞ ¼ 1

3

�
1

αn

� 1
n−1½ðe−

ffiffiffiffiffiffiffiffiffiffiffi
ð2κ2=3Þ

p
σ − 1Þ

2−n
n−1 − 3ðe−

ffiffiffiffiffiffiffiffiffiffiffi
ð2κ2=3Þ

p
σ − 1Þ

1
n−1e

ffiffiffiffiffiffiffiffiffiffiffi
ð2κ2=3Þ

p
σ� þ 4VðσÞ

�
2κ2

3

�
þ R0e

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ; (96)

and the slow roll parameters (19) are derived as

ϵ ¼ 1

3

�
2 − n

ðn − 1Þ
1

y
þ fðyÞ

�
2

; η ¼ 2n
3ðn − 1Þ

�
1

y2
− 3

y

�
þ 8

3
þ gðyÞ; (97)

where we have put
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y ¼ ð1 − e
ffiffiffiffiffiffiffiffiffi
ðκ2=3Þ

p
σÞ;

fðyÞ ¼
½R0ð2n−1n−1 Þ − Λð1−yÞ

y ð n
n−1Þ�h

ð 1
αnÞ

1
n−1 y

n
n−1

ð1−yÞ 1
n−1

ðn−1n Þ þ R0y − Λð1 − yÞ
i ;

gðyÞ ¼ 2fðyÞ þ
2
3y ð n

n−1Þ½Λð1−yÞy − R0�h
ð 1
αnÞ

1
n−1 y

n
n−1

ð1−yÞ 1
n−1

ðn−1n Þ þ R0y − Λð1 − yÞ
i :
(98)

We have y < 1 for negative values of the field. If
Λ ¼ R0 ¼ 0, fðyÞ ¼ gðyÞ ¼ 0, and then for n ¼ 2 we
recover (38). For large and negative values of the field,
namely when y → 1−, one finds

ϵ≃ ð2 − nÞ2
3ðn − 1Þ2 ; jηj≃ 4jn − 2j

3ðn − 1Þ ; (99)

and n has to be

2þ ffiffiffi
3

p

1þ ffiffiffi
3

p ≃ 1.36 < n < 2: (100)

Here, we remember that we are considering only the cases
n < 2 whose EOMs in the slow roll limit read,

H2 ≃ 1

6

�
1

αn

� 1
n−1
e
ðn−2Þ
ðn−1Þ

ffiffiffiffiffiffiffiffiffiffiffi
ð2κ2=3Þ

p
σ
�
n − 1

n

�
;

3H _σ ≃
ffiffiffiffiffiffiffi
1

6κ2

r �
1

αn

� 1
n−1
e
ðn−2Þ
ðn−1Þ

ffiffiffiffiffiffiffiffiffiffiffi
ð2κ2=3Þ

p
σ
�
2 − n
n

�
: (101)

The solution for the field is given by

σ¼2

ffiffiffiffiffiffiffi
3

2κ2

r �
n−1

2−n

�
ln
� ffiffiffiffiffiffi

2

3n

r
ð2−nÞ2

6ðn−1Þ3=2
�

1

nα

� 1
2ðn−1Þðtþ t0Þ

�
:

(102)

Since 1 < n < 2, σ is negative for t0 > 0 very small
bounded at the beginning of inflation. The Hubble param-
eter reads

H ¼ 3ðn − 1Þ2
ð2 − nÞ2

1

ðt0 þ tÞ ;

ä
a
¼ 3ðn − 1Þ2ððnþ 1Þ2 − 2Þ

ðn − 2Þ4
1

ðt0 þ tÞ2 > 0; (103)

and we have an acceleration with decreasing Hubble
parameter and curvature

R ¼ 3ðn − 1Þ2ð3ðn − 1Þ2 − ð2 − nÞÞ
ð2 − nÞ4ðt0 þ tÞ : (104)

The N-foldings number of inflation is given by

N ≃− ðn − 1Þ
ð2 − nÞ

ffiffiffiffiffiffiffi
3κ2

2

r
σ

����σi
σe

≃−3
�
n − 1

2 − n

�
2

ln

� ffiffiffiffiffiffi
2

3n

r
ð2 − nÞ2

6ðn − 1Þ3=2
�

1

nα

� 1
2ðn−1Þ

t0

�
:

(105)

When the inflation ends, the field reaches the minimum of
the potential. We note that the cosmological constants
introduced in the model do not play any role at inflationary
stage, and change the behavior of the potential only at the
end of the inflation. If Λ ¼ R0 ¼ 0, it is easy to see that
Vð0Þ ¼ 0, otherwise the potential possesses a minimum
before σ ¼ 0 (in the same way of Sec. IV B), where the
field falls and starts to oscillate.
The amplitude of primordial power spectrum (21) and

the spectral indexes (22) are

Δ2
R ≃ ðn − 1Þ3κ2e

2
3
Nðn−2Þ2

ðn−1Þ2

16π2ð2 − nÞ2n
�

1

αn

� 1
n−1
;

ns ≃ 1 − 8ð2 − nÞ
3ðn − 1Þ ; r≃ 16ð2 − nÞ2

3ðn − 1Þ2 ; (106)

where we have taken into account that n is close to two. In
order to make these indexes compatible with (23), we must
require n ∼ 1.8, 1.9, such that, as a matter of fact, the
quadratic corrections with n ¼ 2 appear to be the only
possibilities of the type (93) able to reproduce a viable
inflation in the Einstein frame. However, it is interesting to
extend our investigation to the Jordan frame.

A. Inflation in the Jordan frame

In the first part of this section, we have seen how model
(93) can produce inflation in the Einstein frame represen-
tation. We have an early time acceleration followed by the
end of inflation and the slow roll conditions are satisfied if
n is very close to two. For the sake of simplicity, in this
subsection, we will put Λ ¼ R0 ¼ 0 in (93). Let us return to
the Jordan frame.
The Friedmann equation for a generic FðRÞ model read

(in vacuum)

ðRFRðRÞ − FðRÞÞ − 6H2FRðRÞ − 6H _FRðRÞ ¼ 0; (107)

such that for (93) one derives

αðRÞn−1½Rð1 − nÞ� − 6H2½1þ αnðRÞn−1�
¼ 6Hαnðn − 1ÞðRÞn−2 _R: (108)

In the high curvature limit (it means, for large and negative
values of the scalar field σ in the Einstein frame) we may
consider αnðRÞn−1 ≫ 1,
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H2 ≃ ðn − 1Þ
6n

�
R − 6nH _R

R

�
: (109)

During inflation, the Hubble parameter H evolves slowly
and we can consider the analagous of the slow roll
parameters that have the same formal dependence of
the Einstein frame, namely we require j _Hj=H2≪1,
jḦ=ðH _HÞj ≪ 1. Thus, we get

_H
H2

≃−
�

4 − 2n
nþ 4ðn − 1Þ2

�
;

ä
a
¼ H2 þ _H ¼ 1 − 4 − 2n

nþ 4ðn − 1Þ2 : (110)

It follows that the expansion is accelerated only if

n >
5

4
¼ 1.25: (111)

This value is close to the one given by the left side of (10).
Moreover, for n > 2, we see that _H > 0 and the Hubble
parameter, and therefore the curvature, grows up with the
time and the physics of standard model is not reached. This
result is in agreement with the behavior of the model
discussed in the Einstein frame: when n > 2 and the
acceleration emerges in high curvature limit, the field cannot
reach a minimum of the potential for small values and we do
not exit from inflation. We could arrive to this conclusion
also by looking for Eq. (102): when n > 2, t0 has to be very
large at the beginning of inflation and the scalar field grows
upwith the time.However, it does notmean thatmodelswith
n > 2 do not produce inflation. In scalar field representation
we start at very large and negative values of the field (it
means, that in Jordan frameworkwe can ignore theR term in
the action). It may be interesting to see what happen for
intermediate values of the field. We analyze the problem in
the Jordan frame. From Eq. (107) we have the de Sitter
condition at R0 ¼ 12H2

0, H0 constant, namely,

2FðR0Þ − R0FRðR0Þ ¼ 0; (112)

which leads in our case to

R0 ¼
	 1

αðn − 2Þ

 1

n−1
: (113)

The model with n ¼ 2 does not possess an exact de Sitter
solution, but if n > 2, we can realize it. Here, we remember
that α > 0. In the Einstein frame this solution corresponds to

σmax ¼ −
ffiffiffiffiffiffiffi
3

2κ2

r
log

�
2n − 2

n − 2

�
; (114)

where we have used (3). We note that σ < 0 only if n > 2
(we are assuming n > 1); otherwise, if n < 2, this expres-
sion becomes imaginary and meaningless. This solution
corresponds to a maximum of the potential, because of

V 0ðσmaxÞ ¼ 0;

V″ðσmaxÞ ¼
1

6

�
1

αn

� 1
n−1 n − 2

n − 1

�
n

n − 2

�ð2−nÞ
ðn−1Þ

> 0: (115)

Whenn > 2, the potential in Einstein frame has amaximum.
The scalar field produces the de Sitter solution, but the field
does not evolve with the time ( _σ ¼ 0) and we do not have a
natural exit form inflation. However, by making use of the
perturbative theory, we may study the stability of the model
in the Jordan frame.
By perturbating Eq. (107) as R → Rþ δR, jδRj ≪ 1

around the de Sitter solution, we get

ð□ −m2ÞδR≃ 0; m2 ¼ 1

3

�
F0ðRÞ
F″ðRÞ − R

�
: (116)

Here, m2 is the effective mass of the scalaron, namely the
new degree of freedom introduced by the modified gravity
through FRðRÞ, which is proportional to the opposite of the
inflaton, namely −σ. As a consequence, m2 is proportional
to the opposite of the scalar potential of the inflaton and
when m2 < 0 the solution is unstable. In our case, we get
on the de Sitter solution,

m2 ¼ −ðn − 2Þn−2n−1

�
1

αn

� 1
n−1

< 0; 2 < n: (117)

It means that a small perturbation can cause the exit from
inflation. Now, the question is: in which direction the
inflaton moves due to a perturbation and which kind of
perturbation we need to have a correct N-foldings number?
To reproduce a viable comsology, we expect that the
inflaton moves toward the minimum of the potential at
Vð0Þ ¼ 0, such that the small curvature regime can be
reached and the cosmology of standard model takes place,
and N must be at least N ∼ 60. In principle, the inflaton can
also moves to σ → −∞ (large curvature regime), for which
the potential tends also to zero.
In the hot universe scenario, we must take into account

also the presence of ultrarelativistic matter or radiation,
whose energy density is given by

ρr ¼ ρrð0ÞaðtÞ−4: (118)

Here, ρrð0Þ is a constant bounded at the beginning of
inflation. Thus, Eq. (108) reads

3H2

κ22
¼ ρMG þ ρr;

ρMG ¼ 1

2κ2
½αðRÞn−1½Rð1 − nÞ� − 6H2αnðRÞn−1

− 6Hαnðn − 1ÞðRÞn−2R: �; (119)

where ρMG encodes the amount of energy density given by
the correction term Rn to Eintein gravity. For simplicity, we
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introduce the red shift parameter z ¼ −1þ 1=aðtÞ. We also
remember that d=dt ¼ −ðzþ 1ÞHðzÞd=dz.
Let us define [33,34]

yHðzÞ≡ ρMG

M2=κ2
¼ 3H2

M2
− ~χðzþ 1Þ4; (120)

where M2 is a suitable dimensional constant, such that
½M2� ¼ ½H2� and ~χ ¼ ρrð0Þκ2=M2. By taking into account
that the Ricci scalar RðzÞ ¼ ½12HðzÞ2 − 6ðzþ 1ÞHðzÞ×
dHðzÞ=dz� results in

R ¼ M2

�
4yH − ðzþ 1Þ dyHðzÞ

dz

�
; (121)

we derive from (108),

d2yHðzÞ
dz2

−dyH
dz

1

zþ1

�
3− fRðRÞ

2M2fRRðRÞ½yHðzÞþ ~χðzþ1Þ4�
�

þ yHðzÞ
ðzþ1Þ2

�
1−fRðRÞ

M2fRRðRÞ½yHðzÞþ ~χðzþ1Þ4�
�

þ 2fRðRÞ~χðzþ1Þ4þfðRÞ=M2

ðzþ1Þ22M2fRRðRÞ½yHðzÞþ ~χðzþ1Þ4� ¼ 0; (122)

where in our case

fðRÞ ¼ αRn; fRðRÞ ¼ αnRn−1;

fRR ¼ αnðn − 1ÞRn−2:
(124)

Let us study the perturbations around the de Sitter solution
(113), namely

yHðzÞ≃y0þy1ðzÞ; y0¼
1

4M2

�
1

αðn−2Þ
� 1

n−1
; (124)

where jy1ðzÞ=y0j ≪ 1. Here, we have put R0 ¼ 4M2y0 in
the de Sitter universe. By assuming the contribution of
ultrarelativistic matter much smaller than y0 at the begin-
ning of inflation, Eq. (122) becomes, at first order in y1ðzÞ,

d2y1ðzÞ
dz2

− 2

ðzþ 1Þ
dy1ðzÞ
dz

þ 1

ðzþ 1Þ2
�
−4þ 4ð1þ fRðRÞÞ

RfRRðRÞ
�
y1ðzÞ≃ 0; (125)

where we have also used condition (112). Thus, the
solution for y1 is given by

y1ðzÞ ¼ C0ðzþ 1Þx;

x ¼ 1

2

�
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − 16ð1þ fRðRÞÞ

RfRRðRÞ

s �
; (126)

C0 being constant. Here, we do not consider the solution
with the plus sign in front of the square root of x, since it
does not cause any instability. On the other hand, by
making use of (123), one has on the de Sitter solution (113)

x¼ 1

2

�
3−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25n2−57nþ32

nðn−1Þ

s �
< 0; n> 2; (127)

since it is easy to demonstrate that x < 0 if
0 < 16ðn − 2Þ=n, that is always true when 2 < n and we
recover condition (117). As a consequence, the perturba-
tion y1ðzÞ grows up in expanding universe as

y1ðzÞ ¼ y1ðziÞ
� ðzþ 1Þ
ðzi þ 1Þ

�
x
: (128)

Here, we have considered C0 ¼ y1ðziÞ=ðzi þ 1Þx, zi being
the redshift at the beginning of inflation where perturbation
is bounded. When y1ðzÞ is on the same order of y0, the
inflation ends. A classical perturbation on the (vacuum) de
Sitter solution may be given by the ultrarelativistic matter in
(120), such that Eq. (128) reads

y1ðzÞ ¼ −~χðzi þ 1Þ4
� ðzþ 1Þ
ðzi þ 1Þ

�
x
;

y1ðziÞ ¼ −~χðzi þ 1Þ4: (129)

Thus, the N-foldings number during inflation is

N ¼ log

�
zi þ 1

ze þ 1

�
≃ 1

x
log

�
~χðzi þ 1Þ4

y0

�
: (130)

Here, ze denotes the red shift at the end of inflation and we
have considered y1ðzeÞ≃−yH. As small x is, much
unstable is inflation. It means, that also a small initial
perturbation may give arise to a large N-foldings. We can
write ~χ as

~χ ¼ y0
ðzi þ 1Þ4 × δ; δ ≪ 1; (131)

such that

δ ¼ exN: (132)

In order to obtain an N-foldings of 70, for n ¼ 3
(x≃−0.393) we need δ ∼ 10−12, for n ¼ 4 (x≃−0.562)
we need δ ∼ 10−18, for n ¼ 5 (x≃−0.656) we need
δ ∼ 10−20, for n ¼ 10 (x≃−0.835) it is enough δ ∼ 10−26.
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Moreover, the behavior of the Ricci scalar is given by

R ¼ 4y0M2 þM2

�
4y1 − ðzþ 1Þ dy1

dz

�

≃ 4y0M2 − y0δM2½4 − x�
�
zþ 1

zi þ 1

�
x
: (133)

Since x > 0, the Ricci scalar decreases with the red shift and
the physics of standard model can emerge. In Ref. [35]
numerical calculations have been executed in different infla-
tionary models provided by the specific Rn term with
2 < n < 3, whichmakes inflation unstable and in the presence
of ultrarelativistic matter, which leads to the exit from the
inflationary stage toward the physics of standard model.
In conclusion, we can say that large scalar curvature

corrections to Einstein gravity of the type Rn, n > 2, may
represent a valid inflationary scenario. In this case, the
curvature is bounded at a specific value at the beginning of
inflation, and the de Sitter space-time is an exact solution of
the model, which results to be highly unstable. From (132)
we see how extremely small perturbations in hot universe
give the correct N-foldings number and the exit from
inflation. Finally, it is important to note that positive energy
density of perturbations brings the curvature to decrease
during the early-time acceleration making the model
consistent with the observable evolution of our universe.

VI. CONCLUSIONS

The attention that recently has been paid to modified
theories of gravity is caused by the idea of the unified
description of early-time and late-time cosmic acceleration
[22]. Moreover, the gravitational action of such a kind of
theories may describe quantum effects in hot universe sce-
nario, and the last cosmological data seems to be in favor of
quadratic corrections to General Relativity during this phase.
In this paper, we have investigated some features of

FðRÞ-modified gravity models for inflationary cosmology,
by performing our analysis in the Jordan and in the Einstein
framework.
At first, we have studied inflation for the class of scalar

potentials of the type VðσÞ ∼ exp½nσ�, n being a general
parameter, in the Einstein frame. As a matter of fact, for
such models it is possible to reconstruct the FðRÞ-gravity
theories that correspond to the given potentials. Since
viable inflation must be consistent with the last Planck
data, the potentials have been carefully analyzed, by
finding the conditions on the parameters which make
possible the early-time acceleration according with N-
foldings, spectral index and tensor-to-scalar ratio coming
from observations. We have derived the form of the FðRÞ
models at the large and small curvature limits, demonstrat-
ing that these models in the Jordan frame correspond to
corrections to Einstein gravity which emerge only at mass
scales larger than the Planck mass. The investigated poten-
tials can be classified in two classes. In the first one, the

scalar potential behaves asVðσÞ ∼ exp ½n
ffiffiffiffiffiffiffiffiffiffiffiffi
2κ2=3

p
σ�; n > 0,

and produces acceleration with a sufficient amount of
inflation only for n very close to zero; namely, the FðRÞ
model must be closed to the Starobinsky one. In the second
class,VðσÞ ∼ α − γ exp ½−n ffiffiffiffiffiffiffiffiffiffiffiffi

2κ2=3
p

σ�, n > 0, and the quasi
de Sitter solution emerges during viable inflation when
n > 1=3. This kind of scalar potentials is originated from
large curvature corrections of the typeFðRÞ ∼ c1R2 þ c2Rζ,
with 1 < ζ < 5=3 when 1=3 < n < 1, or from quadratic
curvature corrections when n > 1. It is interesting to note
that R2 term which induces the early-time inflation is also
responsible for removal of finite-time future singularity in
FðRÞ gravity unifying the inflation with dark energy [36].
In the second part of the paper, we have studied in detail

the specific class of models FðRÞ ¼ Rþ ðRþ R0Þn. The
analysis in the Einstein frame reveals that n must be very
close to two in order to realize a viable inflation for large
and negative values of the scalar field, but other possibil-
ities are allowed by starting from intermediate values of the
field. To be specific, when n > 2, the de Sitter solution
emerges, but in order to study the exit from inflation, since
in this case the de Sitter space-time is an exact solution and
the field does not move and exit from inflation in a natural
way, is necessary to analyze the theory in the Jordan frame,
where perturbations make possible an early time acceler-
ation with a sufficient amount of inflation. Moreover, we
can explicitly demonstrate that the curvature decreases,
making the model consistent with the historical evolution
of our universe.
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APPENDIX A

Let us consider the equation

FRðRÞ − 1

2
− FRðRÞ1þn

2
¼ − R

4γðnþ 2Þ ; (A1)

with n, γ > 0 [it corresponds to (44) with (45)]. We want to
find solutions of the above equation as a function of R. A
simple possibility is looking for regular solutions as a
power series of R, namely setting

FRðRÞ ¼ 1þ c1Rþ c2R2 þ c3R3 þ � � � ;
where the constants c1;2;3.:: have to be determined. At first,
we are interested in solutions where jc1;2;3.::R1;2;3.::j ≪ 1,
namely we analyze the limit at small curvature. Thus,
plugging this ansatz into the above equation, one has
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ð1þ c1Rþ c2R2 þ c3R3 þ � � �Þ

− 1

2
− 1

2
ð1þ c1Rþ c2R2 þ c3R3 þ � � �Þ1þn

¼ − R
4γðnþ 2Þ :

Putting

X ¼ þc1Rþ c2R2 þ c3R3 þ � � � ;

and assuming jXj ≪ 1, the following expansion holds:

ð1þ XÞ1þn ¼ 1þ ð1þ nÞX þ ð1þ nÞn
2

X2

þ nðnþ 1Þðn − 1Þ
3!

X3 þ � � � ⋅

As a consequence, one arrives at the recursive relations

c1 ¼
1

2γðn − 1Þðnþ 2Þ ; c2 ¼ − ð1þ nÞnc21
2ðn − 1Þ ;

c3 ¼ − ð1þ nÞc31
6

;

from which it follows,

c1R ∝
R
γ
; c2R2 ∝

R
γ2

; c3R3 ∝
R3

γ3
:

This approximation is valid when R ≪ γ. On the other side,
when R ≫ γ we can check for the solutions in the form

FRðRÞ ¼ c0

�
R
γ

�
ζ

; ζ < 1:

In such a case, from (A1)we get

c1þn
0

�
R
γ

�
ζð1þnÞ ≃ 1

4ðnþ 2Þ
�
R
γ

�
;

and as a consequence,

c0 ¼
�

1

4ðnþ 2Þ
� 1

1þn

; ζ ¼ 1

1þ n
< 1:

Now let us consider the following equation [it corresponds
to (72) with (73)],

FRðRÞ − FRðRÞ1−n ¼
R

2γð2 − nÞ ; (A2)

where γ > 0 and 0 < n < 1. The solution for R ≪ γ is
given by

FRðRÞ ¼ 1þ c1Rþ c2R2 þ c3R3 þ � � � ;
with

c1¼
1

2γnð2−nÞ; c2¼−nc21
2

; c3¼
ð1−nÞðnþ1Þc31

6
;� ��

On the other hand, when R ≫ γ one can expand FRðRÞ as

FRðRÞ ¼ β1

�
R
γ

�
α1 þ β2

�
R
γ

�
α2
; α1 > α2:

Since 0 < n < 1 at the first order in R=γ one finds

β1

�
R
γ

�
α1 ≃ R

2γð2 − nÞ ;

and so

α1 ¼ 1; β1 ¼
�

1

2γð2 − nÞ
�
:

Moreover, by using (A2) again we obtain

α2 ¼ 1 − n; β2 ¼
�

1

2γð2 − nÞ
�

1−n
:

As a final result, we can conclude that at high curvatures the
model under consideration reads

FRðRÞ ¼
�

R
2γð2 − nÞ

�
þ
�

R
2γð2 − nÞ

�
1−n

:

APPENDIX B

As is well known, the Einstein-Hilbert Lagrangian
density modified by a quadratic term R2 and by a
cosmological constant term has the Schwarzshild–de
Sitter solution, and this is the most general spherically
symmetric, static solution if the parameters that enter in the
modified Lagrangian are arbitrary (unrelated).
Here we shall show that there exists a particular choice of

such parameters for which the model has a more general
spherically symmetric, static solution, which is formally
identical to the one corresponding to the Reissner-
Nordström-de Sitter black hole.
To this aim we consider the Lagrangian density

FðRÞ ¼ Rþ R2

4c0
þ c0;

which has been obtained from the reconstruction process
described in Sec. IVB. This Lagrangian depends on one
free parameter only.
Now it is easy to verify that the most general spherically

symmetric, static solution of field equations in vacuum is
given by
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ds2 ¼ −AðrÞdt2 þ dr2

BðrÞ þ r2dΩ;

AðrÞ ¼ BðrÞ ¼ 1 − a
r
− c0

6
r2 þ b

r2
;

where dΩ is the metric on the two sphere, while a and b are
arbitrary constants. The physical interpretation of such two
constants of integration is not an easy task. The presence of the
1=r2 term isquite interestingand itwill bediscussed elsewhere.
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