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The weak lensing power spectrum is a powerful tool to probe cosmological parameters. Additionally,
lensing peak counts contain cosmological information beyond the power spectrum. Both of these statistics
can be affected by the preferential selection of source galaxies in patches of the sky with high magnifi-
cation, as well as by the dilution in the source galaxy surface density in such regions. If not accounted for,
these biases introduce systematic errors for cosmological measurements. Here we quantify these systematic
errors, using convergence maps from a suite of ray-tracing N-body simulations. At the cutoff magnitude m
of ongoing and planned major weak lensing surveys, the logarithmic slope of the cumulative number
counts s≡ d log nð> mÞ=d log m is in the range 0.1 ≲ s≲ 0.5. At s ≈ 0.2, expected in the I band for
Large Synoptic Survey Telescope, the inferred values of Ωm, w, and σ8 are biased by many σ (where
σ denotes the marginalized error), and therefore the biases will need to be carefully modeled. We also
find that the parameters are biased differently in the ðΩm; w; σ8Þ parameter space when the power spectrum
and the peak counts are used. In particular, w derived from the power spectrum is less affected than w
derived from peak counts, while the opposite is true for the best-constrained combination of σ8Ω

γ
m (with

γ ¼ 0.62 from the power spectrum and γ ¼ 0.48 from peak counts). This suggests that the combination of
the power spectrum and peak counts can help mitigate the impact of magnification and size biases.
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I. INTRODUCTION

By measuring the distortions of background galaxy
shapes by foreground masses (galaxies, galaxy clusters,
and large-scale structures), weak gravitational lensing
(WL) surveys probe the mass density fluctuations through-
out the cosmic span (see recent reviews by Refs. [1–4]).
WL observations, in conjunction with cosmological simu-
lations, can be used to place precise constraints on cosmo-
logical parameters. Recent WL surveys, such as COSMOS
[5] and CFHTLenS [6], have measured the shear power
spectrum and have already placed useful constraints on
Ωm (the matter density of the Universe), σ8 (the amplitude
of the primordial power spectrum on a scale of 8h−1
comoving Mpc), and w (the dark energy equation of state).
Becauseof the statistical nature ofWLsurveys, it is impor-

tant tohaveanunbiasedsampleofsourcegalaxies, fairlysam-
pling the foreground density fluctuations across the sky. In

this paper, we investigate possible sources of bias in flux-
limitedsurveys,arisingfromapreferentialselectionofsource
galaxies inpatchesof theskywithhighmagnification,aswell
as by the dilution in the source galaxy surface density in such
regions(knownasmagnificationbias,hereafterMB).MBhas
been studied extensively in the past for its impact on galaxy-
quasar and galaxy-galaxy correlation functions in two
dimensions [7–15], in three dimensions [16–18], and on
the statistics of the Lyman-α forest [19]. An additional size
bias (SB) can be present in surveys in which the selection
of the source galaxies depends on their angular sizes. If
not accounted for, these biases represent a systematic error
for cosmological measurements. In the context of WL, the
impact of MB and SB have been studied for the power spec-
trum [20,21] and for high peaks caused by individual
Navarro-Frenk-White halos [22].
Reference [20] has shown that ignoring MB and SB in

the shear power spectrum can cause 2–3σ deviations in
cosmological parameter estimation for the dark energy task
force [23] stage III experiment, such as the Dark Energy
Survey.1 Future WL surveys with larger sky coverage and/
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or deeper observations, such as those by planned by the
Large Synoptic Survey Telescope2 (LSST) and Euclid,3 will
have significantly better statistical sensitivity and therefore
can be more severely impacted by these biases.
In this paper, we first show that MB is indeed significant

for the power spectrum, extending earlier results [20] to
explicitly compute the biases on cosmological parameters.
We then focus on the impact of MB on peak counts.
Lensing peaks were first considered as a cosmological
probe in early ray-tracing simulations a decade ago [24].
Peak counts have received increasing attention in recent
years [25–33] as a way to access cosmological information
from the strong non-Gaussianities in the lensing fields. In
particular, these studies have shown that the number and
height distribution of peaks have high cosmological sensi-
tivity and can improve cosmological constraints by a factor
of ∼2, compared to using the power spectrum alone.
Peak counts are a simple and robust statistic, defined

by recording local maxima in a two-dimensional (2D) shear
or convergence (κ) map, smoothed by suitable filters.
Reference [28] investigated the physical origin of the indi-
vidual κ peaks by tracing their contributing light rays back
in time across their N-body simulation boxes. They found
that high peaks (with amplitudes ≳3.5σκ, where σκ is the
rms of the convergence κ) are typically created by individ-
ual massive halos. It has been shown that MB increases the
signal-to-noise ratio and therefore the total number of such
peaks [22]. By comparison, low peaks (∼1–2σκ) are typi-
cally caused by a combination of (cosmology-independent)
shape noise and a (cosmology-dependent) constellation of
4–8 lower-mass halos. These halos have masses of a few
×1012M⊙ and are offset by ∼arcmin from the line of sight
to the center of the peak. The low peaks are especially
promising, as they carry the majority of cosmological infor-
mation, and are relatively insensitive to baryonic cooling
that affects the halo cores [32]. We therefore extend the
earlier results of Ref. [22] for high peaks, where increases
in both the peak heights and number of high peaks were
seen, to the low peaks and to explicitly compute the biases
on cosmological parameters.
To study the impact of MB, we build a simple numerical

model to derive cosmological parameters (and their error
bars) using either the power spectrum or peak counts mea-
sured in our simulations. We then apply magnification bias
to a set of “true” convergence maps (which faithfully
represent the projected dark matter distribution in a fiducial
flat ΛCDM cosmology) to create mock “biased” maps,
mimicking an observed data set. For each of these biased
data sets, we find the best-fit set of the three cosmological
parameters (Ωm, w, and σ8), using the true maps for the
model fitting. Finally, we quantify the difference between
the inferred cosmology and the true fiducial cosmology, as

a function of the strength and sign of the magnification and
size bias (determined by the slope of the galaxy luminosity
function and the galaxy size distribution).
The rest of this paper is organized as follows. In Sec. II,

we introduce the formalism of magnification bias and
discuss its principal ingredient, the galaxy luminosity func-
tion. We then describe our computation methods in Sec. III,
including the convergence maps created with our ray-
tracing N-body simulations, computing the power spectra
and the peak distributions from these maps, determining
the cosmology dependence of these quantities, and finally
applying biases to the maps to create mock observations.
We present our main results in Sec. IV, where we fit the
mock data, and show that MB and SB will indeed alter
the derived cosmological parameters by many σ. Finally,
in Sec. VI, we summarize our conclusions and the impli-
cations of this work.

II. MAGNIFICATION BIAS

Gravitational lensing causes a bias by modulating the
apparent surface density of galaxies on the sky, through
two competing effects [34]. First, lensing can magnify
(or demagnify) individual source galaxies in the back-
ground, increasing (or decreasing) their total flux. In a
flux-limited WL survey, some otherwise excluded faint gal-
axies can therefore make it into (or drop out of) the sample
because of this (de)magnification. Second, a similar (de)
magnification applies to the patch of the sky around the
galaxy, geometrically diluting (or enhancing) the apparent
surface density of galaxies in this region. These two effects
counteract each other, and the net bias depends on the slope
of the intrinsic (unlensed) galaxy luminosity function at the
survey flux limit. In addition to these effects, lensing can
increase (or decrease) the apparent angular size of spatially
resolved individual galaxies. If either the survey selection,
or a derived statistic such as WL shear, depends on the ap-
parent size, then this can introduce an additional size bias.

A. Formalism

To quantify the effect of MB, we follow the discussion in
Appendix A of Ref. [17]. Including the effect of lensing on
both the flux and on the geometrical surface density, we
have the relation

nðθ Þ ¼ ngðθ Þ½1þ ð5s − 2Þκðθ Þ�; (1)

where nðθ Þ is the observed (lensed) galaxy number density
at position θ , as viewed by the observer, ngðθ Þ is the intrin-
sic (unlensed) galaxy number density, s is the slope of the
cumulative number counts evaluated at mlim, and κðθ Þ is
the convergence. This equation assumes the weak lensing
limit (κ ≪ 1), neglects the correspondingly small differ-
ence δθ between lensed and unlensed directions on the
sky, and also assumes that galaxy number density

2http://www.lsst.org.
3http://sci.esa.int/euclid.
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fluctuations δng=ng on the angular scales of interest are
small, as well. Under these assumptions, the above equa-
tion is valid to first order in κ, δθ , and δng. Finally, if we
assume a survey with a sharp magnitude cutoff at mlim,

s ¼ ∂log10 ng
∂m

����
mlim

: (2)

B. Galaxy luminosity functions and WL surveys

The magnitude of MB depends on the galaxy luminosity
function through the logarithmic slope s. Observed lumi-
nosity functions are well described by a Schechter function
[35],

ΦðMÞdM ¼ ð0.4 ln 10ÞΦ⋆½10−0.4ðM−M⋆Þ�αþ1

× exp ½−10−0.4ðM−M⋆Þ�dM; (3)

where ΦðMÞdM is the number density of galaxies with
magnitude between M and M þ dM, Φ⋆ is a characteristic
number density (in Mpc−3), andM⋆ is a characteristic mag-
nitude. It consists of a power law with index α at the faint
end and a exponential cutoff at the bright end. The cumu-
lative galaxy number density can be written as

ng ¼
Z

Mlim

−∞
ΦðMÞdM: (4)

Note that this equation holds at a given redshift. In Fig. 1,
we show s calculated using Eq. (2), as a function of cutoff
magnitudes in the G, R, I, and Z bands at redshifts z ¼ 0.5
and z ¼ 1. In this calculation, we used the measurements
of Φ⋆, M⋆, and α by Refs. [36,37], which are all redshift
dependent.4

Table I lists the magnitude limits and the corresponding
values of s for several current and future WL surveys. We
note that, in order to measure the shape of the galaxies, it is
necessary to adopt a brighter magnitude than for the point
sources. For surveys where the magnitude limit was avail-
able only for point sources, we adopted a 1-magnitude
brighter value for mlim. For simplicity, for broad multiband
filters (Rþ I þ Z), we have calculated s using the central I
band. Table I shows that surveys with mlim;I ≈ 24–25 have
s ≈ 0.2, assuming a mean redshift z ¼ 0.5, while the effect
of MB almost disappears (s ≈ 0.4) for galaxies at z ¼ 1.0.
Reference [20] has shown that the z dependence is much
weaker than the s dependence. For LSST, we expect the
effective galaxy number density after applying lensing cuts
to peak at a lower redshift (z ¼ 0.5–0.8) than the raw
sample (z≳ 1.0). To illustrate the effect of MB, we adopt

s ¼ 0.2 as our fiducial value, corresponding to z ¼ 0.5 for
the conservative cut (see Fig. 7 in Ref. [38]). We will show
in Sec. IV that MB will significantly affect the power spec-
trum and the peak counts at this value.

C. Size bias

If a survey has a cut in galaxy size r, in addition to a flux
cut, then Eq. (1) is modified to

nðθ Þ ¼ ngðθ Þ½1þ ð5sþ β − 2Þκðθ Þ�; (5)

where in the case of a sharp cut, the new term β is the log-
arithmic slope of the galaxy size distribution,

FIG. 1 (color online). The logarithmic slope s of the galaxy
number counts as a function of cutoff magnitude mlim at two dif-
ferent redshifts z ¼ 0.5 (top) and z ¼ 1 (bottom). Four different
filters (G, R, I, Z) are shown. WL surveys target a depth of
mlim > 24 to achieve a sufficiently large galaxy number density.
As a result, the relevant range of s is 0.1≲ s ≲ 0.6 (see Table I).

4Equation 1 in Ref. [36] describes the redshift evolution of Φ⋆,
M⋆, and α. The parameters can be found in Tables III and IV of
Ref. [36] for the G band and in Table IX (“case 3,”with a constant
α ¼ −1.33) of Ref. [37] for the R, I, and Z bands.
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β ¼ − ∂ ln ng
∂ ln r

����
rlim

: (6)

This equation assumes that the size and flux cuts are inde-
pendent and also that the slopes s and β only weakly
depend on r and M. Under these simple assumptions,
the effects of size and magnification bias are equivalent,
and only the combination (5sþ β) matters. A more sophis-
ticated treatment will eventually be necessary (and will
depend on the details of the survey, including how galaxy
sizes affect measurement errors). Here we simply note that
at the limiting magnitudes of mlim ≈ 24–25, the observed
angular size distribution has a slope of β ∼ 3 [21].
Therefore, the additional effect of size bias is equivalent
to increasing the value of s by 0.6; i.e., the relevant fiducial
value for LSST with a fluxþ size cut is changed from s ≈
0.2 to s ≈ 0.8. This means that the sign of the effect changes
when we add size bias to magnification bias, as the effect of
galaxy density dilution dominates over individual galaxy
magnification.

III. METHODOLOGY

A. N-body simulations

The N-body simulations and lensing maps were created
with the Inspector Gadget lensing simulation pipeline on
the New York Blue IBM BlueGene supercomputer. The
N-body simulations are the same as the ones used in our ear-
lier work [27,28,30,32,33]. We refer readers to these papers
for more detailed information. Here we briefly describe the
basis of the simulations and the parameters used.
This work uses in total 35 different N-body simulations,

covering seven different cosmological models (one fiducial
cosmology plus six variations), each with five independent
realizations of the same input primordial power spectrum.
We chose our fiducial cosmological model to be
Ωm ¼ 0.26, w ¼ −1.0, Hubble constant H0 ¼ 0.72, with
a primordial matter power spectrum with σ8 ¼ 0.798 and

a spectral index of ns ¼ 0.96, using the best-fit values from
the seven-year results by the WMAP satellite [47]. We vary
each of the three parameters (Ωm, w, and σ8) one at a time (a
higher value and a lower value than in the fiducial model),
while keeping the other two parameters at the fiducial
values. The six nonfiducial models have values of Ωm ¼
f0.23; 0.29g (while ΩΛ ¼ f0.77; 0.71g to keep a spatially
flat Universe), w ¼ f−1.2;−0.8g, and σ8 ¼ f0.75; 0.85g.
The combinations are listed in Table II.
The N-body simulations were generated using a modi-

fied version of the Gadget-2 code,5 and they consist of dark
matter only. Each run has a box size of 240h−1 comoving
Mpc, containing 5123 particles. This corresponds to a mass
resolution of 7.4 × 109h−1M⊙. The initial (linear) total
matter power spectrum was computed with the Einstein—
Boltzmann code CAMB6 [48] at z ¼ 0 and scaled back to
z ¼ 100, which is the starting point of our simulations.
The power spectrum was then fed into N-GenIC, the initial
condition generator associated with Gadget2.

B. Ray tracing and lensing maps

To construct convergence maps, we perform ray tracing.
First, we output three-dimensional (3D) boxes at redshifts
corresponding to every ∼80 Mpc (comoving). We then
divide the 3D box into many parallel pieces and project
each slice onto a two-dimensional (2D) plane perpendicular
to the observer’s line of sight, using the triangular shaped
cloud scheme [49]. In the next step, we convert the
surface density to gravitational potential at each plane using
Poisson’s equation. Each 2D plane has a resolution of
4096 × 4096 pixels. We then follow 2048 × 2048 light
rays from z ¼ 0, traveling backward through the projection
planes. The deflection angle and WL convergence and
shear are calculated at each plane for each light ray.
These depend on the first and second derivatives of the
gravitational potential, respectively. Between the planes,
the light rays travel in straight lines. Finally, for each of
the seven cosmological models, we create 1,000 conver-
gence maps of 12 deg2 each in size. This is done by mixing

TABLE I. Magnitude limits and corresponding s (number count
slope) at z ¼ 0.5 and 1.0 for current and future WL surveys. For
surveys in which only the point source magnitude limit was
available (marked by a *), we reduced mlim by 1 magnitude to
represent an extended source magnitude cut. In the broad
multiband (Rþ Iþ Z), we calculated s for the central I band.

Magnitude limit sðz ¼ 0.5Þ sðz ¼ 1.0Þ ref

LSST I ≤ 24.8 0.19 0.38 [39]
Euclid Rþ Iþ Z ≤ 24.5 0.20 0.43 [40]
COSMOS I ≤ 25 0.19 0.35 [41]
CFHTLS I ≤ 24.7 0.19 0.39 [42]
DES I ≤ 24.3 0.21 0.46 [43]
DUNE Rþ Iþ Z ≤ 24.5 0.20 0.43 [44]
KiDS R ≤ 25.2 (*) 0.24 0.69 [45]
HSC I ≤ 26.2 (*) 0.18 0.32 [46]

TABLE II. Cosmological parameters in each model. The
Universe is assumed to be spatially flat (ΩΛ þ Ωm ¼ 1).

σ8 w Ωm

Fiducial 0.798 −1.0 0.26
High-σ8 0.850 −1.0 0.26
Low-σ8 0.750 −1.0 0.26
High-w 0.798 −0.8 0.26
Low-w 0.798 −1.2 0.26
High-Ωm 0.798 −1.0 0.29
Low-Ωm 0.798 −1.0 0.23

5http://www.mpa‑garching.mpg.de/gadget/.
6http://camb.info/.
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simulations of different realizations and randomly rotating
and shifting the simulation data cubes.
We add galaxy ellipticity noise to our maps, due to var-

iations in the intrinsic shapes of galaxies, and their random
orientations on the sky. This shape noise is added to the raw
convergence maps using a redshift-dependent expression
for the noise in one component of the shear [50]:

σλðzÞ ¼ 0.15þ 0.035z: (7)

For each pixel, we add κnoise drawn from a random
Gaussian distribution centered at zero with variance [51]

σ2noise ¼
hσ2λi

ngalΔΩ
; (8)

where ngal is the number of galaxies per arcmin2 and ΔΩ
is the solid angle of a pixel in units of arcmin2. In the case
of LSST, we expect ngal ∼ 30 arcmin2 [38] for galaxies
that are usable for shape measurements, and it follows that
σnoise ¼ 0.33. This is much larger than the WL signal, for
which the rms value (at z ¼ 1) for noise-free maps is
σκ ¼ 0.02. To average out the random galaxy noise, we per-
form smoothing on individual maps with a Gaussian kernel,

κGðθ0 Þ ¼
Z

d2θWGðjθ − θ0 jÞκðθ Þ (9)

WGðθÞ ¼
1

2πθ2G
exp

�
− θ2

2θ2G

�
; (10)

where κG is the smoothed κ value at pixel θ0 and WG is the
Gaussian kernel with a smoothing scale θG¼ 1=

ffiffiffi
2

p
arcmin.7

The choice of smoothing scale has a known effect on the
total peak counts and the shape of the peak distribution.
Increasing the smoothing scale generally reduces the
total number of peaks and increases the width of the dis-
tribution. It has been shown that smaller smoothing scales
(∼1=

ffiffiffi
2

p
arcmin) generally give better constraints and also

that combining a few different scales can further improve
the errors [29,30]. Finding the range of optimal smoothing
scales and filter shapes will have to be done specifically
for each survey with different characteristics. In this paper,
we continue to use the single smoothing scale θG ¼
1=

ffiffiffi
2

p
arcmin for simplicity and to facilitate comparison

with previous works.
For simplicity, we use only convergence maps for source

galaxies at the single redshift z ¼ 1, as the z–dependence of

MB has shown to be weak [20]. Future work should employ
tomography with multiple redshifts, and fold into the analy-
sis the actual z–distribution of the source galaxies. In total,
we have 7,000 convergence maps; we call these the “true”
maps, since they do not include any magnification bias. We
use this set of maps to predict the cosmology-dependent
observables (power spectra or peak counts), which will
be described in detail in Sec. IIIE.

C. Power spectra and peak counts

The power spectrum is the most widely used statistic in
current WL surveys and has already been shown to be
affected significantly by MB [20]. We revisit the impact
of MB on the power spectrum in order to cross-check
our simulation results and to explicitly compute the result-
ing biases on the cosmological parameters.
We first compute the power spectra for spherical

harmonic index l in the range 100 < l < 100; 000, with
1000 equally spaced (linear) bins. This covers the range
of angles from our pixel size (∼6 arcsec) to the linear size
of our maps (∼3.5 deg). In our previous work [27,30],
we compared our numerical power spectrum with the semi-
analytical power spectrum obtained using the Limber
approximation [52] and integrating the nonlinear 3D matter
power spectrum along the line of sight [53]. Our power
spectrum loses power on large scales below l ∼ 400 due
to our finite box size and on small scales above l ∼
20; 000 due to spatial resolution; there is excellent agreement
with the semianalytic predictions between these scales.
Peak counting is done by simply scanning through the

pixels on a convergence map and identifying local maxima
(i.e., pixels with a higher value of κ than its surrounding
eight pixels). We then record the number of peaks as a func-
tion of their central κ value.

D. Applying bias to the convergence maps

On each of the 1000 maps in our fiducial cosmology, we
apply different levels of MB, ranging from s ¼ −0.5 to 1.0,
with a step sizeΔs ¼ 0.01. To do this, on each fiducial map,
we take into account the ð5s − 2Þκ factor in Eq. (1) and add
κnoise when smoothing the map. Equation (9) becomes (with
θ dependence suppressed for κ and κnoise)

κG ¼
R
d2θWG½ð1þ ð5s − 2ÞκÞκ þ κnoise�R

d2θWG½1þ ð5s − 2Þκ� : (11)

This is the smoothed κ at each pixel, weighted by the galaxy
number densities modified by MB. Note that we assume the
intrinsic (unlensed) galaxy number density to be a constant—
this ignores the effects of shot noise arising from a discrete
sampling of the κ field by a finite number of galaxies as well
as the clustering of galaxies. Other than applying MB, the
same procedures are then followed to add noise, smooth

7We note that in previous papers of this series [27,28,30,32], a
different definition of WGðϕÞ ¼ 1

πθ2G
expð− ϕ2

θ2G
Þ was adopted.

When using the more commonly used definition WG

[Eq. (10)], our smoothing scale of θG ¼ 1=
ffiffiffi
2

p
arcmin is equiv-

alent to their θG ¼ 1 arcmin.
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themaps, count peaks, or compute power spectra, on the bias
maps as for the true maps.

E. Predictions in other cosmologies

In this subsection, we describe how we interpolate (and
extrapolate) the peak counts and power spectra for other
cosmologies, using our set of simulations in the seven dif-
ferent cosmologies listed in Table II.
First, for individual convergence maps, we histogram

the κ peaks into 200 equally spaced bins ranging from
κ ¼ −0.02 to 0.19 (this choice for the number of bins will
be justified in Sec. V (point vii) below). We then calculate
the mean peak distribution (average of the 1,000 maps) in
each of the seven cosmology models. To predict the peak
distribution for an arbitrary combination of cosmological
parameters, we treat each κ bin individually and use a
Taylor expansion:

N̄iðΩm; w; σ8Þ ¼ N̄iðΩ⋆
m; w⋆; σ⋆8Þ

þ ∂N̄i

∂Ωm
ΔΩm þ ∂N̄i

∂w Δwþ ∂N̄i

∂σ8 Δσ8: (12)

Here N̄i denotes the total number of peaks in the ith bin
(i ¼ 1; 2…200), averaged over 1000 maps. ΔΩm, Δw,
and Δσ8 are the differences of the desired parameters
ðΩm; w; σ8Þ from the fiducial parameters ðΩ�

m; w�; σ�8Þ.
The same method was followed for the power spectrum

by simply replacing the peak counts Ni with Pi ¼ PðliÞ,
the total power in the ith l bin.
In the body of our paper below, we chose to use the fidu-

cial and the “high”models as defined in Table II to compute
the cosmology derivatives in Eq. (12) by a simple finite
difference. We call these “forward derivatives.” Given that
we also have “low” models for each parameter, ideally we
could use all three models to refine these predictions, either
by including second-order terms in the Taylor expansion or
using two-sided linear derivatives. In practice, we chose to
avoid a second–order expansion in order to be able to per-
form an analytical χ2 minimization (see the next subsec-
tion). We have attempted to use a two-sided derivative
but have found that this caused numerical problems (the
discontinuity in the derivative can cause the fitting pro-
cedure, described below, to become stuck). We therefore
use the forward derivatives in the bulk of this paper. We
will discuss the differences in our results if we use “back-
ward derivatives” instead in Sec. V.

F. Finding the best-fit cosmology

To fit a cosmology to one of our biased maps (or more
generally to an arbitrary peak count distribution), we min-
imize a χ2, defined as

χ2ðΩm; w; σ8Þ ¼ ΔNiC−1
ij ΔNj: (13)

Here ΔNi ¼ N0
i − N̄iðΩm; w; σ8Þ is the difference between

the peak distribution in a given single map (N0
i) and the

model (N̄i) in the ith bin, and C−1
ij is the unbiased estimator

of the inverse covariance matrix [54,55]. Summation is
implied over repeated indices i, j. We make the simple
assumption that the peak counts depend linearly on the
three parameters. It then becomes possible to write down
an analytical solution to the best-fitted parameters. By
defining

Xiα ¼
∂N̄i

∂pα
(14)

Yi ¼ N0
i − N̄iðΩ⋆

m; w⋆; σ⋆8Þ; (15)

where pα ¼ ðΩm; w; σ8Þ is a three-component vector and
α ¼ 1, 2, 3 denotes one of the three parameters, we can
rewrite

ΔNi ¼ Yi − Xiαdpα (16)

χ2 ¼ ðYi − XiαdpαÞC−1
ij ðYj − XjβdpβÞ: (17)

Setting dχ2=dðdpαÞ ¼ 0, we obtain

XiαC−1
ij ðYj − XjβdpβÞ þ ðYi − XiβdpβÞC−1

ij Xjα ¼ 0;

(18)

which is symmetric in i and j, and hence the two terms can
be written combined as

XiαC−1
ij ðYj − XjβdpβÞ ¼ 0; (19)

and the difference between the best fit and the fiducial
model is simply

dpβ ¼ ðXiαC−1
ij XjβÞ−1ðXiαC−1

ij YjÞ: (20)

To check these analytical calculations and to eliminate
potential numerical errors from matrix inversion, we also
directly minimize Eq. (13) using the numerical scipy rou-
tine “optimize.minimize.”8 These numerically identified
best fits are nearly indistinguishable from the analytical
calculations above. For convenience and to keep computa-
tional costs to a minimum, we use the analytic approach in
our main calculations.
The same fitting procedure was performed using the

power spectrum, by simply replacing the peak count Ni
with the power spectrum Pi ¼ PðliÞ in the above

8http://scipy.org/.
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equations. In the case of the power spectrum model (as for
the peaks), we used the covariance matrix derived using
noisy maps to include the higher power at small l induced
by the galaxy shape noise. However, to measure the power
spectrum derivatives with respect to cosmological param-
eters, we computed dP using the noiseless maps directly
(since noise adds linearly). We choose to use the noisy
maps directly, but only with 100 < l < 20; 000, as cutting
off at l ¼ 20; 000 (corresponding to ∼1 arcmin) is equiv-
alent to smoothing but has the advantage of faster
computation.
The above procedure, applied to each of the 1,000 indi-

vidual bias maps, returns a set of 1,000 best-fit parameters
for each specific value of s. We then use the distribution of
these best fits to find the average bias in the cosmology
parameters (corresponding to the mean best fit), confidence
levels, and the goodness-of-fit values.

IV. RESULTS

A. Power spectrum

The impact of MB on the power spectrum is illustrated in
Fig. 2. The levels of bias we chose to show are s ¼ 0.2, 0.4
and 0.8. The value s ¼ 0.2 is close to that expected in
LSST; s ¼ 0.4 is the special case when the MB effect
disappears completely (q≡ 5s − 2 ¼ 0); and s ¼ 0.8 cor-
responds to q ¼ 1 in Ref. [20], close to the value expected
in the presence of an additional size bias. For comparison,
we also show the impact on PðlÞ of varying each cosmo-
logical parameter.
For s ≈ 0.2, the observations suffer a negative bias mag-

nitude of q ¼ −1.0. In this case, the effect of diluting a patch
of sky wins over the number density increase due to magni-
fication.At alll bins, the power is reduced as the result of the
decreasing κ fluctuations. For s ¼ 0.4, we have q ¼ 0 and
expect theMB effect to be absent. This is verified by the lack
of any difference between the power spectrum in the s ¼ 0.4
and the fiducial (unbiased) models and merely serves as a
test of our numerical code. For s ¼ 0.8, the power is
increased on all scales; this behavior has the opposite sign
of the s ¼ 0.2 case and is consistent with the expectations
from q ¼ 5s − 2 ¼ 2 > 0. For a cross-check, we calculate
ΔP=P for s ¼ 0.8 using shear maps. Our results (Fig. 3)
are very close to the ones obtained by Ref. [20] (their
Fig. 1) in the range 1; 000 < l < 10; 000 (note that our
s ¼ 0.8 case is equivalent to their q ¼ 1 case, as they also
included the reduced shear correction).However,we noticed
that the amplitude ofΔP=P is 10 times smaller than ifwe use
convergence maps (as in this work).

B. Peak counts

Figure 4 shows the impact of MB on peak counts. For the
pure MB case of s ¼ 0.2, the height of any positive κ peak
is reduced due to the negative overall bias. The case s ¼ 0.4
continues to show no effect from MB. Finally, for the

FIG. 2 (color online). Changes in the convergence power
spectrum caused by magnification bias, as well as by varying
individual cosmological parameters. Three levels of bias on
the fiducial model are shown with s ¼ 0.2, 0.4 and 0.8. From
top to bottom, besides the fiducial model, we also show changes
due to variations in Ωm (top), w (middle), and σ8 (bottom).
Error bars are for a 12 deg2 sky; we expect them to decrease
by a factor of ∼40 after scaling the results to LSST’s
20; 000 deg2 survey. The black dotted line is the galaxy noise
for ngal ¼ 30 arcmin2.
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MB + SB case of s ¼ 0.8 (or q ¼ 5s − 2 ¼ 2), all κ peaks
are boosted to a higher value, and consequently the whole
distribution is shifted toward the right. The peak counts
change in a direction opposite to the s ¼ 0.2 case, and with
a larger amplitude, as expected. We note that for this large
positive bias, the abundance of the≳3σ (or κ ≳ 0.06) peaks
increases (as discussed in Ref. [22]), but the number of the
low peaks is reduced.
A positive MB effect (s > 0.4) also reduces the total

number of peaks (the number in brackets in Fig. 4). By
directly comparing an example of the bias maps against
its original true version, we found that out of the ∼3600
peaks in total, ∼120 peaks disappeared after MB, while
only ∼60 new peaks were created. By visual examination
of the maps, we found that peak disappearance and creation
tends to happen in complex regions, where many peaks are
interconnected through filamentlike structures. As an illus-
tration of this, in Fig. 5 we show a typical high peak. The
shape of this peak is fairly round, likely due to one single
massive halo. High peaks like this normally remain a peak
after MB. In contrast, Fig. 6 shows a typical low peak that
disappears after MB is applied. The original low peak
merges into the neighboring, somewhat higher-amplitude
peak at the lower left corner—this can be attributed to
the lensing bias creating a “ridge” between the two original
peaks. The opposite phenomenon happens when the overall
MB is negative (s < 0.4), where we see an increase in total
number of peaks, due to the bias “destroying” ridges and
causing a net increase in the number of low peaks.
We have found that MB results in a monotonic increase

or decrease for all κ peaks before smoothing, depending on
the sign of 5s − 2. Figure 7 shows the change in κ values for

FIG. 3 (color online). Fractional difference of shear power due
to bias (s ¼ 0.8). The slope and values of this curve are very close
to the ones obtained by Ref. [20] (their Fig. 1) in the range
1; 000 < l < 10; 000. Our s ¼ 0.8 case is equivalent to their
q ¼ 1 case, as they also included the reduced shear correction.

FIG. 4 (color online). Peak count changes due to varying levels
of magnification bias, as well as due to varying cosmological
parameters. Three levels of bias on the fiducial model are shown
with s ¼ 0.2, 0.4 and 0.8. As in Fig. 2, we also show changes due
to variations in Ωm, w, and σ8. The number in brackets is the total
number of peaks. One error bar is shown to represent a typical
error size for a 12 deg2 sky; we expect this to decrease by a factor
of ∼40 after scaling to an LSST-like survey.
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all individual pixels, as well as for the peaks, for the s ¼ 1.5
case. The peaks that survived the MB (the pixels that are
peaks in both true and bias maps) tend to have a smaller
increase in their κ value than other random pixels. We
speculate that these are the local dominating peaks that
could not gain a higher value due to the lack of higher peaks
around them. Interestingly, Fig. 7 also shows a clear cutoff
at κ ≲ −0.03, below which no peaks are seen.9

Figure 4 shows that the changes caused by variations
in cosmological parameters tend to be more symmetric
in the two wings of the peak distribution. For example,
at w ¼ −0.8, we see fewer high-κ peaks, as well as fewer
low-κ peaks. This shows that no single cosmological
parameter can mimic the changes caused by MB—
however, a linear combination of the three parameters
may still resemble such change and can be degenerate with
the effects of MB (as we will see below).

Examining the changes due to Ωm and σ8, we see a clear
degeneracy between these two parameters. This previously
known issue (e.g., Refs. [25,27,57,58]) is similar to that
from cluster counts—both Ωm and σ8 can change the num-
ber of massive halos; therefore, we can obtain the same
number of massive halos (hence, the same peak distribu-
tion) for a higher value of σ8, as long as we decrease
Ωm. A product of the two parameters in the form of
Ωmσ

γ
8 is much more tightly constrained by a fixed number

of halos. The value of γ depends on the relevant mass scale
being measured and varies from 0.3 to 0.6 [6,57,59–61].
From our error ellipse, we found γ ¼ 0.62 for the power
spectrum and γ ¼ 0.48 for peak counts by minimizing
Δσ8=σ8 þ γΔΩm=Ωm for the 1,000 fitted fiducial maps
(Δσ8 and ΔΩm are the differences between the fitted values
for an individual map and the fiducial parameters).

C. Cosmological parameters

We are now ready to show that without taking into
account the effect of magnification bias, WL surveys can
deliver cosmological parameters that are biased from the
true values by many times their statistical error σ—for both
the power spectrum and peak counts.
Figure 8 shows the average deviation of fitted parameters

using the power spectrum, in units of their standard
deviation (σw ¼ 0.016, σðσ8Ω0.62

m Þ ¼ 0.0007). We have com-
puted this cosmology bias for the range of −0.5 ≤ s ≤ 1.0.
The standard deviation is calculated over the 1,000 fiducial

FIG. 5 (color online). An example of a high peak (central pixel
of the true map at left panel) for s ¼ 1.5. Most high peaks are
characterized by their relatively round shape, due to one single
massive halo. After a positive magnification bias is applied to
the map (right panel), the peak remains, and with a higher κ value.

FIG. 6 (color online). An example of a typical low peak (central
pixel of the true map at left panel) that disappears when a positive
magnification bias is applied with s ¼ 1.5. Such peaks are nor-
mally found to be adjacent to another peak with a somewhat
higher height or between multiple higher peaks. After magnifi-
cation bias (right panel), this particular low peak merges, through
a “ridge,” with its neighboring peak.

FIG. 7 (color online). Comparison of κtrue and κbias on a pixel-
by-pixel basis in the s ¼ 1.5 case. A random subset (10,000 pix-
els) of all 2048 × 2048 pixels (red dots), pixels that are peaks in
true maps (green dots), and the pixels that remain peaks in the
bias maps (yellow dots) are shown. Most positive pixels are
boosted to a higher value. The true peaks that remain peaks in
the biased map tend to have smaller increases in κ than a random
pixel. This can be attributed to the fact that most such “survivor”
peaks are more dominant—i.e., stand out more in their local envi-
ronment within a smoothing scale.

9This κmin could potentially be a cosmological probe, in anal-
ogy with the cosmology-dependent minimum in the probability
distribution of κ in random directions on the sky [56].

IMPACT OF MAGNIFICATION AND SIZE BIAS ON THE … PHYSICAL REVIEW D 89, 023515 (2014)

023515-9



maps. Each fitted parameter is marginalized over the other
parameters and scaled from our simulation (12 deg2) to
LSST’s planned sky coverage of 20,000 deg2. The shaded
region indicates the values of s where the deviation of the
derived parameter is within 1σ, 2σ, and 3σ (dark to light)
for galaxy density ngal ¼ 30 arcmin2. For s¼ 0.2, Δw=σw ¼
0.9 (although interestingly, as shown in the figure, the bias
is not monotonic in s) and Δðσ8Ω0.62

m Þ=σðσ8Ω0.62
m Þ ¼ −25.0

at 1σ. We choose to plot σ8Ω0.62
m instead of σ8 and Ωm

individually because the former is much more tightly con-
strained, as discussed in Sec. IVB.
In Fig. 9, we show the deviations of cosmological

parameters inferred from the peak counts (σw ¼ 0.006,
σðσ8Ω0.48

m Þ ¼ 0.0004). For s ¼ 0.2, we find Δw=σw ¼ −3.1,
∼3 times larger in magnitude than from the power spectrum;
Δðσ8Ω0.48

m Þ=σðσ8Ω0.48
m Þ ¼ −3.0 at1σ,which, on theother hand,

ismuch lower than from the power spectrum. For s ¼ 0.8, we
see deviations at similar magnitude but in opposite directions
to the s ¼ 0.2 case for both the power spectrum and peak
counts.

The biases are again shown in two dimensions in Fig. 10,
where the Monte Carlo error ellipses, enclosing 68% of the
best fits, are explicitly shown for the fiducial unbiased maps
and biased maps (s ¼ 0.2, 0.8). In conclusion, WL observa-
tions in a survey as large as LSSTwill need to take MB into
account by including it in the modeling when fitting the
observations. Combining information from both the power
spectrum and the peak counts will be useful, as these two
observables are impacted by MB in different ways, and their
combination can help mitigate the biases. The valueof s (or
other parameters describing higher-order lensing correc-
tions) could be potentially additional parameters in a fitting
procedure, simultaneously with the cosmological parame-
ters. We expect that MB has a smaller impact on the current
surveys, mainly due to their smaller sky coverage (e.g.,
COSMOS: ≈2 deg2, CFHTLenS: 150 deg2). After scaling
σ by their sky coverage, we found the deviations to be of
order ∼0.01σ for COSMOS and ∼0.1σ for CFHTLenS.
The observed galaxy number density will also affect the

level of MB. In Figs. 8 and 9, we also show the parameter
biases for ngal ¼ 15 and 45 arcmin−2. For the power spec-
trum, the slope near s ¼ 0.4 tends to be steeper for larger

FIG. 8 (color online). The biases in cosmological parameters
inferred from the power spectrum, in units of their standard
deviation (σw ¼ 0.016, σðσ8Ω0.62

m Þ ¼ 0.0007). The shaded regions
indicate values of s where the cosmology bias is within 1, 2,
and 3σ (dark to light) for ngal ¼ 30 arcmin2 (LSST’s expected
galaxy surface density). In the case of pure MB (s ¼ 0.2) and
MBþ SB (s ¼ 0.8) for LSST, w is biased by 0.9σ and −6.1σ,
respectively. The best-constrained combination of σ8Ω0.62

m is
biased by more than 20σ in both cases. The error bar σ has been
scaled from our simulation (12 deg2) to LSST’s planned sky
coverage of 20; 000 deg2.

FIG. 9 (color online). The biases in cosmological parameters
inferred from the peak counts, in units of their standard deviation
(σw ¼ 0.006, σðσ8Ω0.48

m Þ ¼ 0.0004). The shaded regions indicate
values of s where the cosmology bias is within 1, 2, and 3σ (dark
to light) for ngal ¼ 30 arcmin2 (LSST’s expected galaxy surface
density). w is biased by −3.1σ (s ¼ 0.2) and 8.7σ (s ¼ 0.8), and
the combination σ8Ω0.48

m by −3.0σ (s ¼ 0.2) and 4.7σ (s ¼ 0.8).
The error bar σ has been scaled from our simulation (12 deg2) to
LSST’s planned sky coverage of 20; 000 deg2.
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ngal. This means deeper surveys with higher galaxy number
densities (hence, smaller galaxy noise) are more sensitive to
MB when galaxy noise [Eq. (8)] is smaller. For peak
counts, MB impacts the derived σ8Ω0.48

m for shallower sur-
veys (ngal ¼ 15 arcmin) in the opposite direction to surveys
with higher number density.

V. DISCUSSIONS

In this work, we made several assumptions and simpli-
fications, which we must highlight here:
(i) We assumed the number of peaks and the power

spectrum depend linearly on cosmology. For example,
in our analysis, we used forward derivatives for
dN̄=dp, built with the fiducial and the three high cos-

mologies from Table II for a finite difference. We can
also use the three low cosmologies to obtain backward
finite-difference derivatives. When we do so, we find
the resulting deviations to have similar magnitude
(Table III) to the ones from forward derivatives, except
for a significantly lower value for Δσ8Ω0.48

m for peak
counts.
We also attempted to use a spline interpolation, us-

ing all three data points for each parameter to describe
the cosmology dependence. This enables us to use all
seven cosmologies simultaneously, but we lose the ad-
vantage of the analytical method to obtain the best fits
[Eq. (20)]. We used the numerical method to find the
best fits with spline interpolation and found mean
biases similar to those from linear interpolations.
However, the error ellipses from spline interpolation
were considerably smaller and suspiciously coincident
with our simulated range of model parameters. This is
likely due to the spline tails that curve dramatically
outside our parameter region and hence artificially
force the fit to stay within our simulated range of
model parameters for each map. To solve this issue,
we will need to have a larger grid of simulation param-
eters, which will also help us understand the depend-
ence of peak counts on cosmology more accurately.

(ii) We used convergence maps only at a single redshift.
This is motivated by the fact that the effect of MB de-
pends weakly on z. At low redshift, s is mainly depen-
dent on the slope of this power-law tail, and MB will
have a similar level of impact for all galaxies. For gal-
axies at higher redshift, mlim, when redshifted to the
rest frame of the galaxy, moves closer to the exponen-
tial part of the luminosity function, so we expect s to
increase to a larger value. A redshift-dependent correc-
tion to MB that folds in the correct z distribution of
high-z galaxies will eventually be necessary.

FIG. 10 (color online). Error ellipses for the fiducial (unbiased)
maps and in the case of magnification bias with s ¼ 0.2 and 0.8
for both the power spectrum (using 100 < l < 20; 000) and the
peak counts (with 200 convergence bins and smoothing scale
1=

ffiffiffi
2

p
arcmin). Error ellipses contain 68\% of the best fits and

have been scaled to LSST’s sky coverage of 20; 000 deg2.

TABLE III. Deviations of cosmological parameters evaluated at s ¼ 0.2 (MB only) and s ¼ 0.8 (MBþ SB).
Results from “forward” and “backward” derivatives are compared side by side.

s ¼ 0.2 s ¼ 0.8

Power spectrum Forward Backward Forward Backward

ΔΩm=σΩm
−21.0 −23.2 61.6 67.0

Δw=σw 0.9 0.4 −6.1 −4.1
Δσ8=σσ8 7.6 8.6 −28.3 −30.9
Δðσ8Ω0.62

m Þ=σðσ8Ω0.62
m Þ −25.0 −27.3 36.0 37.4

Peak counts Forward Backward Forward Backward

ΔΩm=σΩm
1.4 1.5 −2.9 −3.2

Δw=σw −3.1 −4.4 8.7 4.5

Δσ8=σσ8 −2.6 −2.7 4.8 3.1

Δðσ8Ω0.48
m Þ=σðσ8Ω0.48

m Þ −3.0 −3.1 4.7 0.2
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(iii) We ignored all instrumental and measurement errors.
In reality, the point spread function deconvolution
and the measurement of galaxy shapes accurately is
a difficult task and have received thorough discussions
(e.g., Refs. [62,63]). Reference [33] used simulated
shear maps with realistic galaxy properties and has
taken into account distortions from both the atmos-
phere and optical errors expected for LSST. They have
shown that, though peak significance is reduced, the
addition of these errors does not significantly degrade
the cosmological constraints, compared to considering
shape noise only. While our basic conclusion, that MB
is significant, likely remains valid in the presence of
such errors, the detailed modeling of MB will need to
incorporate these additional sources of error.

(iv) In this paper, we choose to work with convergence
maps, as they are computationally simpler. Using gal-
axies with sizes larger than the point spread function,
the convergence field can potentially be inferred by
combining galaxy size and flux measurements, as
lensing modifies these two quantities by different
factors of 1þ κ and 1þ 2κ, respectively, in the weak
lensing limit [64–67]. In current practice, reduced
shear maps are obtained by measuring the shapes of
individual galaxies. The observer can deduce the aper-
ture mass (Map), a smoothed form of convergence, by
applying a convolution over tangential components of
shear [68]. Reference [31] has shown that both shear
and convergence statistics give similar constraints
when compared at the same scale, but, once again,
the impact of the lensing bias should be modeled di-
rectly on the shear field.

(v) Although WL surveys may implement a sharp flux
cut, the size bias is likely to be more complicated,
with an effective weighting on galaxies that depends
monotonically on their size but in a gradual fashion,
rather than a step function. In the idealized case of a
sharp size cut, our analysis remains applicable, with a
suitable reinterpretation of 5s as a stand in for 5sþ β,
where β is the logarithmic slope of the size distribu-
tion (at the size cut). In this simplified case, the bias
induced by the size cut is likely larger than the one
induced by the flux cut. For example, Ref. [21]
showed that, for a survey with magnitude cut iAB ¼
24 and size cut r ¼ 1.2”, the impact of MB becomes
positive, and q ¼ 5sþ β − 2 ∼ 1 − 2, which is equiv-
alent to our cases with s ¼ 0.6–0.8. From Fig. 10,
we see that the derived parameters remain many σ
away from the true parameters, but in the opposite
direction. This demonstrates that size cut is likely
to be important and also that it is necessary in future
work to investigate the effects of the size bias in more
detail.

(vi) We have tested the impact of MB on three parameters,
Ωm, w, and σ8. When additional cosmological param-

eters are considered (e.g., Ωb, H0, ns, wa), the impact
of MB may be more severe, since a combination
involving the new parameters could mimic the MB
better. To test this, we need to run more N-body sim-
ulations with other parameters varying to build a more
complete cosmological model.

(vii) Optimizing the number of bins has not been the focus
of this work. However, the choice of the number
of bins has an effect on the error sizes. As shown
in Fig. 11, for peak counts, the values of derived
parameters and marginalized errors only converge at
≳150 bins. Once the number of bins exceeds this
value, we see a roughly constant plateau extending
to ≳500 bins (beyond which the results become unre-
liable due to having too few realizations of maps and
the sample covariance matrix becoming singular near

FIG. 11 (color online). The derived cosmological parameters
and marginalized error for each parameter as a function of the
number of bins, using peak counts. The error sizes have been
scaled to LSST’s sky coverage of 20; 000 deg2. The error sizes
tend to decrease with a larger number of bins. The results for
≳500 bins are unreliable due to the limited number of realizations
in our simulation suite.
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1000 bins). Therefore, we chose to use 200 bins in
this work.

VI. SUMMARY

In this paper, we have studied the effect of magnification
bias on peak statistics, using convergence maps from
ray-tracing N-body simulations. Using maps in a suite of
simulations, we can predict the convergence power spec-
trum or peak count distribution as a function of Ωm, w,
and σ8. Using this tool, we found the biases in cosmological
parameters, when convergence maps in the fiducial cosmol-
ogy, modified by magnification bias, were used to find the
best-fit cosmology, without taking MB into account in
the fits.
Near the flux limit of future WL survey, such as LSST,

the galaxy number counts have a logarithmic slope of
s ≈ 0.2. This causes a bias in the inferred value of w by
0.9σ and of σ8Ω0.62

m by −25.0σ when using the power spec-
trum and by−3.1σ for w and −3.1σ for σ8Ω0.48

m when using
peak counts. These results are scaled to WL observations
expected from LSST. However, for recent surveys, such as
COSMOS and CFHTLenS, the deviations are generally
negligible (∼0.01σ and ∼0.1σ, respectively) due to their
smaller sky coverage.
We conclude that it is necessary that cosmological sim-

ulations consider MB effects when they are used to match
observations. We have found that w inferred from the power

spectrum is less impacted by MB, but peak count is a less
biased method to infer σ8Ω

γ
m. Future work on magnification

biases should incorporate the many improvements we
have emphasized that are necessary, including (i) the
redshift-dependence of the bias; (ii) the impact on shear
maps with realistic measurement errors and the peak statis-
tics derived from these maps; (iii) more complex biases
induced by the size-dependent measurement errors cut on
galaxies; and (iv) additionally, the potential of using a mag-
nification bias and size bias as a signal to tighten the con-
straints on convergence field [64–67]. Our results suggest
that lensing biases can be mitigated by combining the power
spectrum and the peak counts, which produce biases in very
different directions in cosmological parameter space.
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