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We explore the consequences of loop quantum cosmology (inverse-volume corrections) in the spectrum
of the gravitational waves using the method of the Bogoliubov coefficients. These corrections are taken into
account at the background level of the theory as well as at the first order in the perturbations theory frame-
work. We show that these corrections lead to an intense graviton production during the loop superinfla-
tionary phase prior to the standard slow-roll era, which leave their imprints through new features on the
energy spectrum of the gravitational waves as would be measured today, including a new maximum on the
low frequency end of the spectrum.
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I. INTRODUCTION

Gravitational waves (GWs) are, at the present time, the
subject of an important research effort [1,2]. In the field of
cosmology, they may provide us with important informa-
tion on the very early stages after the big bang, information
that might be unobtainable by other means [3–5]. We also
witness an increased interest in the application of the ideas
of loop quantum gravity to the problems of cosmology, a
field known as loop quantum cosmology (LQC), after a
series of seminal papers by Bojowald [6–13]. For a review
on LQC, see for example [14–18]. Among the important
results given by LQC, we have the possibility of removing
in a natural way the initial singularity [8,14,15,19–21].
LQC introduces, in the semiclassical period prior to the
classical slow-roll inflation, important modifications in
the dynamical equations driving the expansion of the
Universe; for example, it induces a superinflationary period
[22], and such changes, in turn, give rise to an extra
production of GWs, even without the appropriate modifi-
cations into the gravitational equations, as has been shown
in Refs. [23,24]. The study of GWs in LQC has been a very
active field in the past few years [23–36] including the
analysis of the power spectrum of the tensor modes (i) with
inverse-volume corrections, Refs. [24–28], (ii) with holon-
omy corrections, Refs. [29–33], and (iii) considering both
these corrections simultaneously [34]. More recently, the
evolution equations for the tensorial perturbations includ-
ing inverse-volume and holonomy corrections within a gen-
eralized anomaly-free formalism have been deduced in

Ref. [35]. The possible footprints of LQC on the B-modes
polarization of the cosmic microwave background (CMB)
has been tackled in Ref. [36].
In the present paper, we analyze the spectrum of the

GWs as would be measured today. More precisely, we
modify the equations for the GWs, introducing inverse-
volume corrections (we leave to a future paper the holon-
omy corrections), and compare the results with those
obtained in Refs. [23,24], where these corrections were
introduced only in the background dynamical equations
driving the expansion of the Universe. What we see is
an important extra production of GWs, leaving its imprint
in the low-frequency limit of today’s energy spectrum,
which, incidentally, also shows that inflation does not
remove all the information coming from phenomena taking
place in the preinflationary times. Indeed, as we have
shown recently, a bounce in modified theories of gravity
[37] as well as a topological defect phase prior to classical
inflation [38] leave some imprints on the low frequencies of
the spectrum of the GWs which are not washed out by the
inflationary phase. What happens is that the physical fea-
tures during the semiclassical period affect in different
ways different frequencies, and the memory of these
differences survives through the inflationary period, to
be shown today in the power spectrum. Besides this extra
production of gravitons, when compared with classical
models, after the usual initial decrease in the energy spec-
trum of the very low frequencies, we have then a second
maximum, brought about by LQC, which is not present
when we discard the modifications, brought in by loop
quantum cosmology, in the GW equations. In Sec. III,
we suggest an explanation for this interesting new feature.
In our model, inflation is driven by a chaotic type of

potential, of the form ð1=2Þm2
ϕϕ

2, although we believe that
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the main results will not be much modified by the use of a
different potential. Results from the Planck satellite col-
laboration [39] do not seem to particularly favor this poten-
tial, but also do not disfavor it completely. For this reason
we keep it as a simple toy model, and also because most of
the analyses presented were made in the context of classical
inflation [40], which is not the context of the present paper.
We organize the paper as follows. The LQC model used

in our work is described in Sec. II, where we summarize
the equations of motion for both the semiclassical and the
classical stages of the evolution of the Universe, and
where the values of the parameters and the initial condi-
tions for the numerical integrations are specified, taking
into account various cosmological observations like mea-
surements of the CMB. In Sec. III we review the evolution
equations for the tensorial modes in LQC taking into
account inverse-volume corrections. Then, we calculate
their energy spectrum, as would be seen today, using
the method of the continuous Bogoliubov coefficients,
first derived by Parker [41]. We compare with previous
results obtained by one of us in [24] and comment on
the differences obtained. Section IV summarizes the main
results of the paper.

II. THE MODEL

To describe the early stages of the evolution of the
Universe, the equations of standard cosmology have to
be modified by corrections due to the loop quantum effects,
defining the semiclassical stage of the expansion [16,17].
After a few Planck times, we enter into the usual classical
regime, with a period of inflation driven, in our paper, by a
scalar field ϕ with a chaotic-type potential

VðϕÞ ¼ 1

2
m2

ϕϕ
2; (2.1)

followed by a period of reheating and, finally, by radiation-
dominated, matter-dominated, and dark-energy-dominated
periods.As we said in the Introduction, in the present
paper we take into account only the inverse-volume correc-
tions for the initial semiclassical stage. The modified
Friedmann and Raychaudhury equations are then given
by [16,17]

�
_a
a

�
2

¼ 8π

3m2
P

�
_ϕ2

2dðqÞ þ VðϕÞ
�
; (2.2)

ä
a
¼ 8π

3m2
P

�
VðϕÞ − ϕ2

dðqÞ
�
þ 2π _ϕ2

m2
P

fðqÞ
dðqÞ ; (2.3)

while the evolution of the scalar field is dictated by the
equation

ϕ̈ ¼ −3 _a
a
½1 − fðqÞ� _ϕ − dðqÞ ∂V∂ϕ ; (2.4)

where we assumed a flat Friedmann-Robertson-Walker
background metric, mP being the Planck mass, and the
dot denoting a derivative with respect to the cosmic time,
t. The functions dðqÞ and fðqÞ are given by the expressions
[20,21]

dðqÞ ¼
�
3

2l

� 3
2−2l

q3=2
�

1

2þ l
½ðqþ 1Þlþ2 − jq − 1jlþ2�

− q
1þ l

½ðqþ 1Þlþ1 − signðq − 1Þjq − 1jlþ1�
� 3

2−2l

(2.5)

and

fðqÞ ¼ 1

3

d
d lnðaÞ lnðdÞ

¼ 1

l − 1

�
ðl2 − 1Þ½ðqþ 1Þlþ2 − jq − 1jlþ2�:

− ð2l − 1Þðlþ 2Þq½ðqþ 1Þlþ1 − signðq − 1Þjq − 1jlþ1�

þ ðlþ 1Þðlþ 2Þq2½ðqþ 1Þl − jq − 1jl�
�
fðlþ 1Þ½ðqþ 1Þlþ2 − jq − 1jlþ2�

− ðlþ 2Þq½ðqþ 1Þlþ1 − signðq − 1Þjq − 1jlþ1�g−1; (2.6)

with the definitions q ¼ ða=a�Þ2; a� ¼ ðγj=3Þ1=2lP, while
the value of the Barbero-Immirzi parameter, γ ¼ 0.2375,
is obtained from black-hole entropy considerations [42]
(other values can be found in the literature). The

parameters l and j are the so-called ambiguity parameters
and lP is the Planck length. Throughout our paper we use
j ¼ 100 and l ¼ 3=4. This value of l appears naturally
when we derive the Hamiltonian operator Hϕ for the
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scalar field [43], while the value of j is set so that the
slow-roll inflation lasts for at least 60 e-folds [22]. We
use the natural system of units with ℏ ¼ c ¼ 1, and
mP ¼ G−1=2 ¼ 1.22 × 1019 GeV.
To numerically integrate the equations above, we need

to fix the values of the parameters defining the model
and give the initial conditions. We use the following
values: mϕ ¼ 10−7mP, ai ¼ ffiffiffi

γ
p

lP, _ϕi ¼ 0.6 × 10−6m2
P.

The value of ϕi is then obtained by satisfying the uncer-
tainty principle [22]

jϕi
_ϕij ≥

103

j3=2

�
ai
a�

�
12

m3
P: (2.7)

The value for _ai is taken as the positive root of Eq. (2.2),
given that the Universe is expanding, and this equation is
also used to check the accuracy of our integration.
After a short period of time dðqÞ → 1 and fðqÞ → 0, and

we enter the classical period, with Eqs. (2.2), (2.3) and (2.4)
converging to the results of general relativity. During this
period, the scalar field increases from a very small number
to ϕ ≈ 3mP, enough for a 60 e-fold expansion, at which
point it begins to decrease, giving way to the standard
slow-roll inflation, and oscillate around the minimum of
the potential. It is around this time that we switch on
the dissipative coefficient Γϕ that governs the energy trans-
fer from the scalar field to a radiation fluid and the reheat-
ing of the Universe. Therefore, Eqs. (2.2), (2.3) and (2.4)
are replaced by

�
_a
a

�
2

¼ 8π

3m2
P

�
_ϕ2

2
þ VðϕÞ

�
; (2.8)

ä
a
¼ 8π

3m2
P
½VðϕÞ − _ϕ2�; (2.9)

ϕ̈ ¼ −3 _a
a
_ϕ − ∂V

∂ϕ − Γϕ
_ϕ; (2.10)

_ρr ¼ −4 _a
a
ρr þ Γϕ

_ϕ2; (2.11)

with ρr being the energy of the radiation field, and the
dissipative coefficient taking the value Γϕ ¼ 10−7mP.
The evolution of the scale factor aðtÞ, the Hubble parameter
HðtÞ, and the quotient ä=aðtÞ until the end of inflation is
shown in Fig. 1. The Universe goes through an initial super-
inflation phase, followed by deceleration, and finally the
standard slow-roll inflation that ends at the reheating.
The evolution of the scalar field ϕðtÞ is shown in Fig. 2.
The Universe then enters the radiation dominated era.

From this point onwards, the equations for the evolution
of the Universe are given by the ΛCDM model with a radi-
ation component
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FIG. 1 (color online). (a) The scale factor (plotted in units of m−1
P ) versus the cosmic time. Initially the scale factor is almost constant

until it enters the period of superinflation driven by the LQC corrections and, later, the period of classical inflation. (b) the Hubble
parameter (plotted in units ofmP) versus the cosmic time. The peak on the graphic of the Hubble parameter occurs when a ≈ a�. (c) The
absolute value of the quotient ä=a (plotted in units of m2

P) versus the cosmic time. The continuous line corresponds to the accelerating
periods while the dashed line indicates the decelerating periods.
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FIG. 2 (color online). The evolution of the scalar field φ versus
the cosmic time. The value of φ increases abruptly at a ≈ a� and
keeps increasing during the deceleration period that ensues until
it reaches its maximum value, φmax ≈ 3.mP. Afterwards, the sca-
lar field starts to decrease and enters the classical inflationary era.
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�
_a
a

�
2

¼ H2
0

�
Ωr;0

�
a0
a

�
4

þΩm;0

�
a0
a

�
3

þ Ωde;0

�
; (2.12)

ä
a
¼ −H2

0

�
Ωr;0

�
a0
a

�
4

þ Ωm;0

2

�
a0
a

�
3 −Ωde;0

�
: (2.13)

Here, Ωr, Ωm, and Ωde are the relative densities of radia-
tion, cold matter plus baryonic matter, and dark energy,
respectively. The index 0 indicates the value of a given
quantity at the present time. We have set a0 ¼ 1 while
imposing that the transition from the reheating to the
ΛCDM model is such that the derivatives _a and ä are con-
tinuous. We assign the value Ωr;0 ¼ 0.5 × 10−4, and take
the values of the other parameters from the results of the
Planck mission [44]: Ωm;0 ¼ 0.315, Ωde;0 ¼ 0.685,
and H0 ¼ 67.3 km=s=Mpc.
These and the equations for the GWs will be numerically

integrated using a fourth-order Runge-Kutta method with
variable step.

III. TODAY’S ENERGY SPECTRUM OF THE
GRAVITATIONAL WAVES

To calculate the energy spectrum of the cosmological
GWs, generated during the evolution of the Universe,
we shall be using the method of continuous Bogoliubov
coefficients, first introduced in [41]. We begin with the
wave equation satisfied by the tensor modes (cf. [20,21]
and [25,26]),

ḧþ
�
3H − _d

d

�
_h − d

∇2h
a2

¼ 0; (3.1)

and define the new variable μ ¼ ah; using, for the moment,
conformal time dτ ¼ a−1dt, we find [ð0Þ ¼ d=dτ]

μ00 − d0

d
μ0 þ

�
k2d − a00

a
þ a0

a
d0

d

�
μ ¼ 0; (3.2)

where dðqÞ is given in Eq. (2.5) above, with q a function
of time, and k ¼ aω, with ω corresponding to the angular
frequency of the GWs.
We now generalize Parker’s procedure, introducing the

variable

μ0 ¼
μ̄ffiffiffi
k

p
ffiffiffiffiffiffiffiffiffi
dðτÞ

p
exp

�
−i

Z
τ

τ0

kdτ0
�
; (3.3)

where μ̄ is an arbitrary constant. Deriving this expression,
we can see that μ0 obeys the equation

μ000 − d0

d
μ00 þ

�
k2 þ 3

4

�
d0

d

�
2 − 1

2

d00

d

�
μ0 ¼ 0. (3.4)

It is not difficult to rewrite Eq. (3.2) with the same left-hand
side (l.h.s.) as in Eq. (3.4):

μ00 − d0

d
μ0 þ

�
k2 þ 3

4

�
d0

d

�
2 − 1

2

d00

d

�
μ ¼ 2kSμ; (3.5)

with the following expression for 2kS:

2kSðτÞ ¼
�
k2ð1 − dÞ − d0

d

�
a0

a
− 3

4

d0

d

�
−
�
1

2

d00

d
− a00

a

��
;

(3.6)

being the same expression that appears in Eq. (31) of
Ref. [26]. For large volumes, d → 1, d0 → 0, 2kS →
a00=a and Eq. (3.5) becomes the well-known result of
general relativity

μ00 þ
�
k2 − a00

a

�
μ ¼ 0. (3.7)

Having reached this point we may now compare Eq. (3.5)
with Eq. (9b) in [45] and check that they are formally the
same except for the more complicated expression for 2kS,
which in that paper is simply a00=a. Following the formu-
lation developed in [45], we again obtain

μ ¼ μ̄ffiffiffi
k

p
ffiffiffiffiffiffiffiffiffi
dðτÞ

p �
αðτÞ exp

�
−i

Z
τ

τ0

kdτ0
�

þβðτÞ exp
�
i
Z

τ

τ0

kdτ0
��

; (3.8)

with the Bogoliubov coefficients α and β satisfying the rela-
tion

jαj2 − jβj2 ¼ 1. (3.9)

From Eq. (3.8) we arrive at the differential equations for α
and β:

α0 ¼ i
2k

½αðτÞ þ βðτÞe2ikðτ−τ0Þ�2kS; (3.10)

β0 ¼ − i
2k

½αðτÞe−2ikðτ−τ0Þ þ βðτÞ�2kS; (3.11)

where 2kS is given by Eq. (3.6) and where, so far, τ0 is an
arbitrary constant. Introducing now the complex functions
Xðk; τÞ and Yðk; τÞ, through the definitions

X ¼ αe−ikðτ−τ0Þ þ βeikðτ−τ0Þ (3.12)

and
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Y ¼ αe−ikðτ−τ0Þ − βeikðτ−τ0Þ; (3.13)

Eqs. (3.10) and (3.11) are replaced by the equations

X00 þ ½k2 − 2kSðτÞ�X ¼ 0; (3.14)

Y ¼ i
k
X0: (3.15)

Notice that at the end of the semiclassical period, as
2kS → a00=a, Eq. (3.14) converges to the result of general
relativity [24,37,38,46].
We may check that d00ðqÞ is singular at the point q ¼ 1;

this makes it convenient to introduce a new complex
variable ZðτÞ,

Z ¼
ffiffiffi
d

p
X; (3.16)

which eliminates the terms with d00ðqÞ in Eq. (3.14). That
differential equation now translates into

Z00 − d0

d
Z0 þ

�
k2dþ d0

d
a0

a
− a00

a

�
Z ¼ 0; (3.17)

and is now suitable for the numerical integration that
ensues. Since this integration is done in terms of the cos-
mological time, t, we rewrite Eq. (3.17) as [ð·Þ≡ d=dt]

Z̈ þ
�
_a
a
− _d
d

�
_Z þ 1

a2

�
k2dþ a _a

_d
d
− ðaäþ _a2Þ

�
Z ¼ 0.

(3.18)

We next integrate numerically this equation, using the
results of Sec. II for the evolution of the quantities aðtÞ
and dðtÞ and their derivatives. The integration is done
through the various stages of evolution of the Universe,
from the semiclassical period, followed by the classical
inflation and the reheating. At this point we change varia-
bles once more and perform the integration during the radi-
ation-dominated, the matter-dominated, and finally the
dark-energy-dominated eras, until the present time, in terms
of the scale factor. In Fig. 3 we show the evolution of the
comoving wave number, k2H ¼ ð2πaHÞ2, and the classical
potential a00=a. During the classical regime, the production
of gravitons occurs for each mode when k2 ≪ a00=a, i.e.,
when the mode is well inside the Hubble horizon as
a00=a is roughly of the order of k2H; see Fig. 3.
The power-spectrum PðωÞ is given by [47]

PðωÞ ¼ ℏω3

π2c3
jβfinalj2; (3.19)

in units of erg s cm2. We shall express our results in terms of
the relative logarithmic energy spectrum of the GWs,
defined as

ΩGWðω; t0Þ ¼
1

ρc

dρgw
d ln ω

; (3.20)

where ρc is the value of the present time critical density and
ρgw is the GW energy density,

ρgw ¼
Z

PðωÞdω: (3.21)

The final expression for Ωðω; t0Þ, in terms of present day
values, is then [47]
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FIG. 3 (color online). (a) The evolution of the absolute value of the classical potential a00=a (lower blue line) and the comoving wave-
number k2H ¼ ð2πaHÞ2 (upper red line) until the present time, and (b) zoom of the previous figure: corresponding to the semiclassical
period and the inflationary era. The functions are plotted versus the scale factor in (a) and the cosmic time in (b). The continuous lines
indicate positive values while the dashed line indicates negative values. The horizontal line indicates the mode that is entering the Hubble
horizon at the present time. The vertical lines in each figure indicate, from left to right, (i) the point when a ¼ a�, after which the LQC
corrections vanish rapidly and the Universe enters the classical evolution; and (ii) the moment of transition to the ΛCDM model with a
radiation component.
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ΩGW ¼ 8ℏG
3πc5H2

0

ω4
0jβ0j2: (3.22)

The number of gravitons, hngðtÞi, at any time t is related to
the Bogoliubov coefficient βðtÞ and can be expressed in
terms of the complex functions XðtÞ and YðtÞ as

hngðtÞi ¼ jβðtÞj2 ¼ 1

4
½XðtÞ − YðtÞ�½X�ðtÞ − Y�ðtÞ�;

(3.23)

the � denoting complex conjugation. After the integration,
XðtÞ is obtained from ZðtÞ through (3.16) [actually, at the
end of integration dðtÞ ¼ 1 and X ¼ Z] and YðtÞ is given in
Eq. (3.15), which, in terms of cosmic time t, becomes

YðtÞ ¼ i
a0ω0

aðtÞ XðtÞ: (3.24)

For simplicity, we assumed that at the beginning of the inte-
gration no GWs were present, choosing XðtiÞ; ZðtiÞ and
YðtiÞ such that βðtiÞ ¼ 0 and αðtiÞ ¼ 1 [41].
The results for the energy spectrum are shown in

Fig. 4. In this figure we compare our results with those
obtained with exactly the same background evolution, but
without inserting, in the GW equations, the inverse-vol-
ume corrections [24]. We see that, while both spectra
show a rise of the energy density of the GWs with respect
to general relativity, there are some important differences
between them.
First, when the LQC corrections are introduced only at

the background level, the imprints of those corrections
appear only on the low-frequency end of the spectrum
[23,24]; in the present case large oscillations appear on
the spectrum up to frequencies of the order of
10−15 rad=s. This is due to the fact that, if the tensorial
perturbations are treated as in standard general relativity,
i.e. we set 2kS ¼ a00=a in Eq. (3.14), the function 2kS acts
as a potential for the production of gravitons, which are
created whenever the condition k2 ≪ a00=a is satisfied.1

We can obtain an estimate of the maximum frequency
for which the oscillations appear, by calculating the
frequency ω� that corresponds to the maximum of a00=a
during the semiclassical period; see the most leftward peak
in Fig. 3(b). The value obtained for ω� was

ω� ≈ 3.19 × 10−15 rad=s; (3.25)

which is in agreement with the results of Fig. 4. For
higher frequencies the spectrum becomes almost flat and
horizontal.

However, when we consider the inverse-volume correc-
tions of LQC at the background and at the perturbative
level, we observe a considerable growth of the energy den-
sity of the GWs, up to 3=4 orders of magnitude with respect
to the results with the loop corrections only at the back-
ground level. This effect does not appear to have a clear
cutoff frequency, as it extends to frequencies of the order
of ∼10−4 rad=s. We can explain these effects in light of the
modifications introduced in Eq. (3.14) by the LQC correc-
tions at the perturbative level. Analyzing Eq. (3.6), we find
that the specific form of 2kS cancels the constant term k2 in
Eq. (3.14), which can now be recast as

X00 þ ½k2dðτÞ −UðτÞ�X ¼ 0. (3.26)

Here, UðτÞ ¼ d0
d

�
a0
a − 3

4
d0
d

	
−
�
1
2
d00
d − a00

a

	
is independent of

k and approaches a00=a at the semiclassical period. As
it contains terms with the second derivative of dðτÞ, the
function UðτÞ is singular at q ≈ 1, which seems to induce
a very intense production of gravitons during the initial
superinflationary phase. Furthermore, the fact that the term
in k2dðτÞ is no longer constant means that the higher modes
are not “blind” to the effects of the LQC corrections at
the perturbative level, in contrast with what happens when
the loop corrections are considered only at the back-
ground level.
Furthermore, we observe the presence of a local broad

maximum in the frequency range 10−15–10−14 rad=s which
is absent when the inverse-volume corrections are not
included at the perturbative level. Upon inspection we
found that the position of the maximum on the spectrum
is consistent with the frequency ω†, corresponding to
the maximum value of the term a _a _d

d − ðaäþ _a2Þ [see

†

16 14 12 10 8 6 4

16
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8

Log10 rad s

L
og
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W

FIG. 4 (color online). The relative logarithmic energy spectrum
of the cosmological GWs as could be measured today, calculated
with (upper blue line) and without (lower red line) the inverse-
volume corrections of LQC in the evolution equations of the
tensor perturbations. The vertical line indicates the frequency
ω†, which corresponds to the peak of the module of the term
a _a _d

d − ðaäþ _a2Þ in Eq. (3.18).

1In the regime k2 ≫ j2kSj or when 2kS is constant, Eq. (3.14)
admits oscillatory sinusoidal solutions and so jβj2 remains
constant.
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Eq. (3.18)] during the initial superinflationary phase. The
value calculated for ω† is

ω† ≈ 4.06 × 10−15 rad=s: (3.27)

Another feature of the energy spectrum of the GWs is the
initial slope which appears near the minimum frequency,
ωhor ≈ 1.4 × 10−17rad=s, corresponding to the current hori-
zon. This slope appears from the combination of (i) the loop
corrections in the tensorial equations, and (ii) the produc-
tion of gravitons during the matter-dominated phase. While
the first increases the energy density of the GWs by several
orders of magnitude, as mentioned above, the second orig-
inates an additional raise of the energy density only on the
very low frequencies range, on the left of the maximum that
occurs at ω ≈ ω†.
Because of the large amount of time necessary to pro-

duce each point of the spectrum, above 10−12 rad=s, we
did not complete the spectrum beyond the fre-
quency 10−4 rad=s.

IV. CONCLUSIONS

In this work we have investigated the energy spectrum
for the gravitational waves generated within a loop quan-
tum cosmological model. The evolution of the Universe, as
here modeled, goes basically through two stages, first a
semiclassical stage with superinflation, whose equations
receive important corrections coming from LQC, followed
by a classical evolution described by the usual general rela-
tivistic equations. In the semiclassical stage, the corrections
we introduced were of the inverse-volume type, leaving to a
future work the study of the influence of the holonomy cor-
rections. These corrections, particularly to the inflation
equation, push up the value of the scalar field, giving rise,
in a natural way, to those values of the order of Planck mass
which are necessary to obtain enough inflation.
By numerically integrating the equations, introduced in

Secs. II and III, we were able to calculate the relative log-
arithmic energy spectrum ΩGW for the GWs, as would be
seen today. In fact, we calculated two spectra, one with the
inverse-volume corrections inserted in all the dynamical
equations, including the GW equations, the other where

those corrections were only included in the equations gov-
erning the expansion of the Universe, but not in the equa-
tions for the GWs, as was seen before in Ref. [24]. The
physical processes taking place before the standard slow-
roll inflation leave their imprint on the spectrum in the
region of very low frequencies. Considerable differences
were observed in the two situations, demonstrating the
importance of the inverse-volume corrections, for the pro-
duction of gravitons. First, we have an important extra pro-
duction of gravitons, by at least 3 orders of magnitude and,
second, we observe a local maximum around
ω† ≈ 4 × 10−15 rad=s. This is consistent with a resonance
at the frequency corresponding to the peak of the term
a _a _d

d − ðaäþ _a2Þ in Eq. (3.18), which occurs at the end
of the initial superinflation epoch driven by loop effects,
i.e. at q ≈ 1. This maximum is absent when the LQC cor-
rections are not included in the GW equations. Finally, for
frequencies above 10−12 rad=s, the spectrum, instead of
becoming almost flat and horizontal, continues to show
important oscillations in a large interval of frequencies,
at least up to 10−4 rad=s. We would like to highlight once
more that our calculations involve only inverse volume cor-
rections, at the background and perturbative levels.
Therefore, we have disregarded the holonomy corrections.
The latter are very important on LQC as they remove the
big bang singularity through a bounce. If the bounce is
located around a�, the regime a ≤ a� is not reached, which
is precisely where we have an overproduction of gravitons.
Therefore, it could be that the inclusion of the holonomy
corrections remove or appease this overproduction.2 We
will tackle this issue in the near future.
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