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Using recent simulation results, we provide the mass and speed spectrum of cosmic string loops. This is
the quantity of primary interest for many phenomenological signatures of cosmic strings, and it can be
accurately predicted using recently acquired detailed knowledge of the loop production function. We
emphasize that gravitational smoothing of long strings plays a negligible role in determining the total
number of existing loops. We derive a bound on the string tension imposed by recent constraints on the
stochastic gravitational wave background from pulsar timing arrays, finding Gμ ≤ 2.8 × 10−9. We also
provide a derivation of the Boltzmann equation for cosmic string loops in the language of differential
forms.
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I. INTRODUCTION

A longstanding problem in the theory of cosmic strings
is how to predict the distribution of loops that exist at any
given time. This distribution provides the input for calcu-
lations of many observable effects. For example, stochastic
gravitational wave signals [1–15] as well as bursts [16–21]
are proportional to the number of loops above a critical size
dependent on the frequency band of the detector. The
ionization history of the universe is affected by loops
through early star formation [22,23], which is seeded by the
large, slow loops. Neutral hydrogen overdensities caused
by loops [24,25] create bright spots in high-redshift 21 cm
surveys, and dark matter overdensities [26] have enhanced
decay signatures. Microlensing of stars may occur from
loops slow enough to be captured by galaxy halos, even for
very low tensions [27–29]. Magnetogenesis on galactic
scales [30] may be aided by large cosmic string loops.
Cosmic rays from ordinary [31–36] and superconducting
cosmic strings [37–41] are emitted via cusps and kinks
on loops. Additional couplings of the string to other
degrees of freedom could also lead to other forms of
radiation by loops [42–48].
Our goal here is to provide a definitive description of the

number density of loops of a given size and velocity, based
on recent simulations [49,50]. Simulations give us the rate
of production of the loops over the time scale of the
simulations. We then extrapolate these results and embed
them in a cosmological context. While the simulations have
not yet determined the production rate of loops that are very
small relative to the horizon size, the production of larger
loops is reasonably well agreed upon. As we will show, the
uncertainty about the production of tiny loops is of no
consequence for any known observable effect, because
small loops produced recently are dwarfed by loops of the

same (current) size produced long ago, when the string
network (and the Universe) were much more dense.
The reason that it is possible to extrapolate from simu-

lations,which can cover only a few orders ofmagnitude in the
growth of the Universe, to cosmological phenomenology is
the scaling nature of cosmic string networks; there is only one
kinematic scale, which we take to be the horizon distance,
and all other length scales, such as the Hubble length, are
proportional to the horizon distance. By understanding the
self-similar dynamics numerically, we can extrapolate the
network behavior through all cosmological epochs.
Scaling of the loop distribution means that the number of

loops of a given fraction of the horizon size contained in a
single horizon volume should not change with time, once
the scaling distribution is established. The earliest work
[51,52] seemed to indicate a scaling distribution, but
subsequent numerical simulations [53–56] found instead
that most energy went to loops at the minimum resolution
allowed in the simulations, rather than scaling with the
horizon size. Extrapolating those results in a cosmological
context, one would conclude that loops are always pro-
duced at a scale determined by gravitational backreaction,
since this is smallest relevant scale.
The question then arose [57,58] whether the simulation-

resolution loops represented a real feature of a cosmic
string network or were rather an artifact of the initial
conditions. Indeed, more recent simulations have deter-
mined that a significant fraction of loops are produced at
scales roughly a few orders of magnitude below the horizon
size, after a transient initial regime. In Ringeval,
Sakellariadou, and Bouchet [58] (hereafter RSB), a scaling
subpopulation of large loops was first shown to exist over a
range of sizes within a few orders of magnitude of the
horizon scale. Subsequently, Refs. [49,59,60] found
scaling in the rate of production of loops, rather than
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the distribution of existing loops. Although slightly
different definitions1 were used, the phenomenological
results are in agreement, namely that the spectrum of loops
in horizon units is set by a scale of order unity, rather than
the gravitational smoothing scale. The most recent simu-
lation [49] found scaling of the loop production function
over five orders of magnitude in loop size, which is enough
to determine the loop distribution to within a few percent.
The agreement between [49] and [58] is rather good in both
the radiation and matter eras, as our figures will show.
Reference [61] is not directly comparable with this paper,

since an analytic model of loop production was used to
bridge the gap between simulation data for horizon-scale
loops, and the gravitational backreaction scale. Their analytic
model assumesmost loopswere produced at the gravitational
backreaction scale, and hence differs quite significantly from
our simulated loop production function. In particular, we find
that the vast majority of loops existing at any given timewere
produced with a size within a few orders of magnitude of the
horizon size at the time of production.
An important consideration which has not been widely

appreciated is the speed of loops emitted from the network
[62]. Small loops are created with ultrarelativistic speeds,
and thus lose most of their energy to redshifting. Except for
loops so small that they decay within a few Hubble times, it
is better to classify loops by their rest mass (i.e., the total
energy of a loop viewed in the frame where the center of
mass is at rest). We find that a negligible fraction of mass is
injected into loops well below the horizon size. Thus, it is
loops produced within a few orders of magnitude of the
horizon size that account for most of the loops of any given
size that exist at any given time.
Large loops are emitted with velocities on the order of

0.3, where we take the speed of light as unity throughout. In
terms of Lorentz boost, this is of little consequence, but if
one is concerned with seeding structure formation [23] or
capture of small loops in galaxies [28], even nonrelativistic
velocities are important.

II. COSMIC STRING LOOP PRODUCTION
AND DECAY

A. Scaling of loops

Simulations have revealed that the long strings in a cosmic
string network obey a scaling solution [49,51–56,58–60,63].
We will describe all scaling quantities using the horizon
distance dh, which in a radiation-dominated or matter-
dominated universe is related to cosmic time t by dh ¼ 2t
or dh ¼ 3t, respectively. We will specify the comoving loop
production function as a function2 fðt; m; pÞ, where t is the

time of production, m the rest mass of the loop, and p is the
momentum per unit mass, i.e., p ¼ vγ ¼ v=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, where

v is the center-of-mass velocity of the loop and γ is its
Lorentz boost. We will sometimes refer to p as just the
momentum. Then fðt; m; pÞdt dmdp gives the number of
loops produced per comoving volume in time interval dt
with rest mass between m and mþ dm and momentum per
unit mass between p and pþ dp.
We define true scaling when not just the normalization,

but also the shape of the spectrum of power flowing into
loops becomes time independent when m is expressed in
units of μdh, where μ is the string tension. Thus we define a
scaling measure of the loop mass

α ¼ m
dhμ

; (1)

and a scaling loop production function fðα; pÞ, so that
fðα; pÞdαdp is essentially the number of loops produced in
volume d3h in time dh with α and p in a range of size dα and
dp. More precisely,

fðα; pÞ
d4h

¼ fðt; m; pÞ
a3

∂m
∂α ; (2)

where a is the scale factor and ∂m=∂α ¼ μdh is the
Jacobian determinant for changing coordinates from m
to α. Hence,

fðα; pÞ ¼ μd5h
a3

fðt; m; pÞ: (3)

Numerical evidence now exists that the loop production
power will eventually scale.3

We characterize the distribution of cosmic string loops at
time t by nðt; m; pÞdmdp, the comoving number density of
loops of rest mass between m and mþ dm and momentum
per unit mass between p and pþ dp. The scaling number
density distribution is given by nðα; pÞdα dp, the number
of loops in volume d3h whose α and p are in ranges of size
dα and dp. The two functions are related by

1RSB considered any closed string shorter than the horizon to
be a loop, while Refs. [49,60] additionally required a loop to be
on a non-self-intersecting trajectory.

2Such quantities can more elegantly be described in the
language of differential forms. See Appendix A.

3Numerical simulations show scaling of the spectrum of power
flowing into loops only for α > 10−4 in both radiation and matter
eras. For smaller α we see nonscaling relics of the initial
conditions [49]. However, removing initial condition relics by
a period of smoothing after a period of evolution does not change
the normalization of the large loop production. This indicates that
even though the small-loop behavior is incompletely known, the
simulations have found the correct large-loop behavior (contrary
to a speculation we made in Ref. [49] that decline in the small-
loop production would lead to an increase in large-loop pro-
duction.) As we will discuss below, the uncertainty in small-loop
behavior is immaterial for the purpose of calculating the number
density of loops.
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nðα; pÞ ¼ μd4h
a3

nðt; m; pÞ: (4)

The loop distribution can be determined by integrating
the loop production function. (We assume that strings were
formed early enough that no loop present at the time of
string formation could survive to any time of interest.)
The number of loops in a given comoving volume at time t
with m and p in given ranges is just the total number of
loops produced at all earlier times whose mass and
momentum will, after evolving to time t, fall in the given
ranges. Thus

nðt; m; pÞ ¼
Z

t

0

fðt0;M0; P0Þ ∂M
0

∂m
∂P0

∂p dt0; (5)

whereM0 and P0 are the mass and momentum at time t0 of a
loop which will eventually have mass m and momentum p
at time t.4

Loops oscillate and decay by emission of gravitational
radiation, and the momentum of a loop decreases with
the expansion of the universe. We will neglect the change
of the momentum due to gravitational wave emission, the
so-called “rocket effect,” and consider only redshifting, so
the momentum is just inversely proportional to the scale
factor,

P0 ¼ p
a
a0
; (6)

and so ∂P0=∂p ¼ a=a0. Following our convention for
primes, a0 means aðt0Þ. A more careful treatment is
necessary if one wishes to consider the effects of very
slow loops, e.g., gravitational clustering [27,28].
The rate of gravitational radiation from a loop does not

depend on its size. Thus a loop that was slightly more
massive than another at production will be the same amount
more massive today, and thus

∂M0

∂m ¼ 1. (7)

Putting Eqs. (6) and (7) in Eq. (5) we find

nðt; m; pÞ ¼
Z

t

0

fðt0;M0; P0Þ a
a0
dt0; (8)

which in scaling coordinates becomes

nðα; pÞ ¼
Z

t

0

a02

a2
d4h
d05h

fðα0; P0Þdt0; (9)

where α0 ¼ M0=ðd0hμÞ.
We can change variables and integrate over the scaling

mass of the loop at production, rather than the time of
production to get,

nðα; pÞ ¼
Z

α

∞

a02

a2
d4h
d05h

f

�
α0; p

a
a0

� ∂t0
∂α0 dα

0: (10)

For most purposes, as we will discuss, it is sufficient to
consider only nonrelativistic center-of-mass speeds. In that
case, the change of mass is given by the gravitational
radiation power ΓGμ2 without accounting for time dilation,
so

M0 ≈mþ ΓGμ2ðt − t0Þ; (11)

where Γ is a number of order 50–100. The exact flow of the
mass is given in Appendix B.
In a radiation- or matter-dominated universe, we can

write the scale factor a ∝ tν, and thus dh ¼ t=ð1 − νÞ, with
ν ¼ 1=2 for radiation and ν ¼ 2=3 for matter. Thus using
Eq. (11) we find

t0

t
¼ αþ ð1 − νÞΓGμ

α0 þ ð1 − νÞΓGμ ; (12)

and so

nðα;pÞ¼
ð1−νÞR∞

α ðα0 þ ð1−νÞΓGμÞ3−2νf
�
α0;p a

a0

�
dα0

ðαþð1−νÞΓGμÞ4−2ν ;

(13)

with

a
a0
p ¼

�
t
t0

�
ν

p ¼
�
α0 þ ð1 − νÞΓGμ
αþ ð1 − νÞΓGμ

�
ν

p: (14)

In most cases we will not be very sensitive to the precise
speed of the loops, so we can integrate over p to get the
density of loops without regard to momentum,

nðαÞ ¼ ð1 − νÞ R∞
α ðα0 þ ð1 − νÞΓGμÞ3−3νfðα0Þdα0
ðαþ ð1 − νÞΓGμÞ4−3ν ; (15)

where we have defined fðαÞ ¼ R
∞
0 fðα; pÞdp.

B. Radiation era

We show in Fig. 1 the rate of mass produced in cosmic
string loops from 8 radiation-era simulations in a box of
size 1500 initial correlation lengths with starting conformal

4The quantitiesM0 and P0 depend on the time of production, t0,
and also on the loop parameters of interest, m and p, and the time
t at which it has those parameters. We can write them as functions
M0 ¼ Mðt0; t; m; pÞ and P0 ¼ Pðt0; t; m; pÞ. These functions de-
fine the flow, which, along with Eq. (5), is derived more formally
in Appendix A. Here and below, we use capital symbols to
indicate solutions to the flow, and primed symbols indicate that
the suppressed time argument is t0, rather than t.
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time 6, ending time 1506 and thus dynamic range 251. For
details on the simulation procedure see Refs. [49,50]. For
large loops, the Lorentz boost is typically small, around 1.1,
but for very small loops it is quite high. (This happens
because the string is sufficiently smooth at small scales that
the only way for small loops to be emitted is for the
underlying string to be highly contracted and boosted.) As a
result, the nonscaling peak in mass production at small α
(scaling mass) is much smaller than the nonscaling energy
production peak at small x (scaling energy) shown
in Ref. [49].

We can disregard momenta and find the distribution of
loops by mass alone using Eq. (15) with ν ¼ 1=2,

nrðαÞ ¼
R
∞
α ðα0 þ ΓGμ=2Þ3=2frðα0Þdα0

2ðαþ ΓGμ=2Þ5=2 : (16)

Let us look first at the numerator. If gravitational effects can
be neglected, it is just

R
∞
α α03=2frðα0Þdα0. We plot the

integrand in Fig. 2. There is an extra half power of α0
relative to Fig. 1. It appears because the energy density in
loops is only diluted as 1=a3, whereas the network is
putting energy into loops as 1=a4. Thus the network
produces many more loops at early times, when the
network density is higher, so large loops from early times
are more numerous than loops of identical physical size
produced later on, despite dilution from the intervening
expansion. As a result of this extra half power, the dominant
contribution to loops of any scaling mass α comes from
production of large loops, and the peak at small scales gives
no significant contribution; for any realistic Gμ, loops with
α0 ∼ ΓGμ give no substantial contribution, as shown in
Fig. 2. Thus, even though we do not know the eventual fate
of the small-scale peak, that uncertainty does not yield any
important uncertainty in the resulting nðαÞ.
What about α0 < ΓGμ? In this range the coefficient of

frðα0Þ does not decrease below ðΓGμÞ3=2 as α0 gets smaller.
Assuming excitations on strings with wavelengths less than
ΓGμt are strongly suppressed, fðα0Þ drops rapidly for
α0 < ΓGμ, so this part of the integral does not contribute.
The possibility that long string excitations exist even below
wavelength ΓGμt is discussed in Appendix C.
The numerator of Eq. (16) has little dependence on α

except for the largest loops. We can integrate the results
shown in Fig. 2 to get

Z
∞

0

α03=2frðα0Þdα0 ≈ 1.03; (17)

FIG. 1 (color online). The scaling rate of mass flowing into
cosmic string loops in a radiation-dominated universe simulation.
The spectrum is given in logarithmic bins of scaling mass α ¼
m=ðμdhÞ and momentum/mass p ¼ v=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. The vertical

axis, α2pfðα; pÞ, is chosen so that the volume under the surface
gives the total mass flow. (This effect is described more fully in
Appendix A.) The peak at α ∼ 10−6 is nonscaling, an artifact of
the resolution of initial conditions. This error is a subdominant
total mass fraction flowing into loops, but as visible in Ref. [49],
it is a dominant energy fraction, due to very large speeds of small
loops. Wewill show that this artifact has no effect on the spectrum
of loops nðαÞ.

FIG. 2. The loop production rate frðαÞ scaled by α5=2, as a function of α on a logarithmic scale. Because
R
α3=2frdα ¼ R

α5=2frd ln α,
the area under the curve on the left gives the contribution of each region of α to Eq. (16). The right-hand panel is the same with a
logarithmic vertical scale. Notice that the nonscaling peak at α ∼ 10−6 contributes a negligible fraction of loops.
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which is the normalization for all loops with α significantly
below 0.05. Note that this result is quite different from what
one would get by normalizing nðαÞ using the flow of
energy from long strings. The scaling rate of energy flow
into loops in the radiation era is [49] 2ð1 − hv2∞iÞ=γ2r ≈ 53.
Energy conservation implies that this is equal toR
α0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þ 1

p
frdα0dp0. If one incorrectly takes this to beR

α0frdα0, and loops to be created mainly at α ¼ 0.05, one
mistakenly concludes

R
α03=2frðα0Þdα0 ≈ 53

ffiffiffiffiffiffiffiffiffi
0.05

p
≈ 12,

more than an order of magnitude too large. This error
results from neglecting two important effects: (i) Even
though most loops of a given size at any given time
originally formed with α ≈ 0.05, most energy leaving the
long string network goes into smaller loops (see Ref. [64]),
and (ii) most of the energy leaving the network goes into
loop kinetic energy, which is lost to redshifting. The latter
effect is less important, since the large loops which
contribute most to nrðαÞ are also the slowest. These effects
lead to a change in constraints resulting from nondetection
of gravity waves, which we discuss in Sec. III.
Using Eqs. (16) and (17), and a delta-function approxi-

mation for frðαÞ peaked at the typical loop production size
α ¼ 0.05, we can approximate the loop spectrum by

nrðαÞ ¼
0.52Θð0.05 − αÞ
ðαþ ΓGμ=2Þ5=2 ; (18)

where Θ is the Heaviside step function.
In Fig. 3, we plot this nrðαÞ and the loop spectrum

computed from simulation data, including relativistic time
dilation effects on the evaporation rate. There are several
universal features worth pointing out. For α≲ 0.05, there
are no (non-self-intersecting) loops, since none are

produced larger than this size. At smaller sizes
(α ≲ 10−3), the number density grows with a slope which
is universal, given by αnðαÞ ≈ 0.6α−3=2. The peak number
density per log α occurs at α ¼ ΓGμ=3, below
which αnðαÞ ∝ α.
Using Eq. (18), we can find the total loop number density

in scaling units,

nr ¼
Z

nrðαÞdα ≈ 0.97ðΓGμÞ−3=2; (19)

the average loop mass,

hαir ¼
R
αnrðαÞdαR
nrðαÞdα

≈ ΓGμ; (20)

and the loop matter density,

hαinr ≈ 0.97ðΓGμÞ−1=2: (21)

The energy density in long strings [49] is about 44 in
scaling units, so the energy density in loops is larger by the
factor

ρloopsr

ρ∞r
≈ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
50

Γ

��
10−9
Gμ

�s
: (22)

Current bounds on the string tension (see Sec. III) imply the
radiation era loop energy density is nearly two orders of
magnitude larger than the long-string energy density, at a
minimum.
Now we consider the momenta of the loops. Returning to

Eq. (13), for the radiation era we find

nrðα; pÞ ¼
R∞
α ðα0 þ ΓGμ=2Þ2frðα0; P0Þdα0

2ðαþ ΓGμ=2Þ3 ; (23)

with t0 ¼ tðαþ ΓGμ=2Þ=ðα0 þ ΓGμ=2Þ and thus

P0 ¼
�
α0 þ ΓGμ=2
αþ ΓGμ=2

�
1=2

p: (24)

By writing Eq. (23) as

nrðα; pÞ ¼
R
∞
α ðα0 þ ΓGμ=2Þ3=2frðα0; P0Þ ∂P0

∂p dα0

2ðαþ ΓGμ=2Þ5=2 ; (25)

we can see that integration over dp returns Eq. (16). The
quantity being integrated is represented in Fig. 4.
Even though the vast majority of loops are very small

ones emitted with ultrarelativistic speeds, they are sup-
pressed by the α03=2 factor, so their contribution to the
numerator of Eq. (23) is small. Some loops do exist with
p ∼ 2 and α ∼ 10−3. For these relativistic loops, the mass

FIG. 3 (color online). The loop number density during the
radiation era for various values of the evaporation rate ΓGμ. Solid
lines are computed from simulation data for f; the dashed line is
the analytic approximation of Eq. (18) for ΓGμ ¼ 10−8. As
discussed in the text, the nonscaling peak in loop production is
invisible here. The dotted line represents the simulation fit in
Eq. (3) of RSB [58], which agrees rather well with the results
presented here.
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loss formula of Eq. (11) is not accurate. However, within a
few Hubble times, before they have lost a significant
fraction of their mass, these loops will be redshifted to
nonrelativistic speeds. Thus the use of the nonrelativistic
approximation in Eq. (11) is justified.
The number density computed using simulation data for

the loop production function, and the evaporation rate
ΓGμ ¼ 10−7 is shown in Fig. 5.
Now consider the momentum distribution of loops with a

fixed α. This is shown in Fig. 6 for α ¼ 10−4 ≫ ΓGμ. If
α≲ 10−3, we can approximate the lower limit of integration
as α ¼ 0 in the numerator of Eq. (23), which thus depends
on α only through P0. Then the distribution for a different α
can be found by

nrðα2; pÞ ¼
�
α1 þ ΓGμ=2
α2 þ ΓGμ=2

�
3

nr

�
α1; p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1 þ ΓGμ=2
α2 þ ΓGμ=2

s �
;

(26)

so the shape of the distribution of nrðα; pÞ at fixed
α≲ 10−3 is shifted and scaled but not changed in shape
under a change in α.
The majority of loops (by either count or energy) at any

given time have sizes α≲ ΓGμ. Figure 6 shows loop
momenta strongly peaked at p ∼ 0.01 for α2 ¼ 10−4.
Following Eq. (26), for α ∼ ΓGμ, this peak will be shifted

FIG. 4 (color online). Linearly spaced contours of
α5=2pfrðα; pÞ, which corresponds to the quantity integrated in
Eq. (25). Expansion of the universe causes any given point to
flow downward and to the left at a slope of 1=2.

FIG. 5 (color online). The mass and momentum spectrum of loops in the radiation era, using simulation data for the loop production
function and the exact flow. Contours are of log10ðαpnrðα; pÞÞ, with each contour representing one-half of an orders of magnitude,
ranging from 100–109. Notice that the non-scaling peak at the top of the figure is subdominant by a few orders of magnitude; The vast
majority of loops are in the scaling peak at α ≈ ΓGμ=3, p ≈

ffiffiffiffiffiffiffiffiffi
ΓGμ

p
.
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to p ∼ 0.01
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓGμ=10−4

p
¼ ffiffiffiffiffiffiffiffiffi

ΓGμ
p

, so this is the typical
loop speed.

C. Matter era

Here we consider loops during the matter era. There are
always some loops produced during the matter era, but
initially they are dwarfed by relic loops from the radiation
era. The exception is loops larger than α ≈ 0.05dhðteqÞ=
dhðtÞ, of which none are from the radiation era.
The largest loops produced in the radiation era have

size about 0.1teq and thus survive until time about
0.1teq=ðΓGμÞ. Thus loops remain today from the radiation
era if

ΓGμ ≲ 0.1teq
t0

≈ 3.6 × 10−7: (27)

When we use scaling units in the matter era we will
always scale by the appropriate power of dh ≡ 3t, which
would be the horizon distance for a universe which had
always been matter dominated, rather than taking into
account the previous radiation era.
In the matter era, Eq. (15) becomes

nmðt; αÞ ¼
R αeq
α ðα0 þ ΓGμ=3Þfmðα0Þdα0

3ðαþ ΓGμ=3Þ2 : (28)

For a universe which has always been matter dominated,
αeq ¼ ∞, but in the real situation there is a cutoff, because
α0 should not be so large that the corresponding t0 < teq,
giving

αeq ≈
t
teq

ðαþ ΓGμ=3Þ: (29)

For the most part this cutoff is unimportant, since loops
surviving from the radiation era will overwhelm the
subpopulation affected by finite αeq.
The numerator in Eq. (28) is now just the total mass

production function; there is no additional half power of α0
as there was during the radiation era. In Figs. 7 and 8, we
show this quantity from 3 simulation runs of size 1000
starting at conformal time5 9 and running for time 500 for a
dynamic range of 56 [49].
The simulations have reached the scaling regime, in the

sense that the nonscaling peak at α ∼ 10−7 is subdominant.
The behavior of tiny loops is again irrelevant for the total
number of loops, thanks entirely to the large kinetic energies
of small loops. As in the radiation era, if gravitational
damping smooths long strings below the scale ΓGμt, then
much smaller α0 make no contribution. The possibility of
smaller smoothing scales is discussed in Appendix C.
In Eq. (28), the smaller power of α0 multiplying the loop

production function means that loop production effectively
happens over a broader hierarchy of scales, as compared
with the radiation era. Hence, the number density nðαÞ,
which is the integral of this broad production, will approach
the universal power law α−1 much more slowly, having a
steeper slope at larger α. This may explain why the
numerical fit of RSB is steeper than the universal slope,
since the fit was performed at large α.
An analytic approximation for the matter era loop

production function is

fmðαÞ ≈
5.34
α1.69

Θð0.06− αÞ (30)

shown in Fig. 8. Neglecting any possible contribution from
α < ΓGμ, Eq. (30) results in the analytic approximation for
the scaling loop spectrum,

FIG. 6. The momentum distribution of loops for a slice
with constant α ¼ 10−4 ≫ ΓGμ during the radiation era.
For a different α ≫ ΓGμ, the horizontal position of features in
the graph is proportional to α1=2 and the vertical position
proportional to α−3=2.

FIG. 7 (color online). The mass production function during
the matter era. The nonscaling peak is almost invisible on a
linear scale.

5In previous work [49], we used starting time 4.5 in the matter
era. The present choice of 9.0 makes the large-loop part of the
loop production function closer to its scaling value at early times.
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nmðαÞ ≈
2.4 − 5.7α0.31

ðαþ ΓGμ=3Þ2 ; (31)

and its integral

nm ≈ 7.2ðΓGμÞ−1: (32)

We illustrate nmðαÞ in Fig. 9, using simulation data and the
nonrelativistic loop evaporation rate. Including the transient
effect of αeq gives

nmðt;αÞ

≈
ð2.4−5.7α0.31ÞΘð0.06−αÞ−ð2.4−5.7α0.31eq ÞΘð0.06−αeqÞ

ðαþΓGμ=3Þ2 :

(33)

Now we consider momenta in the matter era.
Equation (13) gives

nmðt; α; pÞ ¼
R αeq
α ðα0 þ ΓGμ=3Þ5=3frðα0; P0Þdα0

3ðαþ ΓGμ=3Þ8=3 ; (34)

with t0 ¼ tðαþ ΓGμ=3Þ=ðα0 þ ΓGμ=3Þ and thus

P0 ¼
�
α0 þ ΓGμ=3
αþ ΓGμ=3

�
2=3

p: (35)

By writing this as

nmðt; α; pÞ ¼
R αeq
α ðα0 þ ΓGμ=3Þfrðα0; P0Þ ∂P0

∂p dα0

3ðαþ ΓGμ=3Þ2 ; (36)

we can see that integration over dp returns Eq. (28).
The object being integrated is represented in Fig. 10. In
Fig. 11, we show the distribution of loops in a matter-
dominated universe, including relativistic effects on loop
evaporation.
In this case, there is a substantial tail extending to high

boost. When we use the nonrelativistic formula for mass
lost to gravity waves, Eq. (11), we overestimate the change
by a factor γ. This overestimate occurs until the loop
momentum per unit mass falls from p to of order unity. If
the loop is created at time ti, this happens at tnr where
aðtnrÞ=aðtiÞ ¼ p, or tnr ¼ p3=2ti. For large p, the overesti-
mate of the total emitted mass is ΓGμ2tnr ¼ ΓGμ2p3=2ti.

FIG. 8. The loop production rate fðαÞ scaled by α2. The nonscaling peak represents a subdominant contribution to the total number of
loops, although it may contribute significantly to the small loop subpopulation. The dotted line shows the approximation of Eq. (30).
Note that the nonscaling peak would be more prominent in these graphs if we were to use the scaling energy instead of the rest mass of
the loops. See the corresponding figures in [49]. This is due to the fact that most of the energy of the small loop population is in kinetic
energy, not rest mass.

FIG. 9 (color online). The loop number density during the
matter era for various values of the evaporation rate ΓGμ. Solid
lines use pure simulation data for the loop production function
and the nonrelativistic loop evaporation rate. The dashed line is
the analytic approximation of Eq. (31) for ΓGμ ¼ 10−8. The
dotted line represents the fit (roughly for 10−3 ≲ α≲ 10−1) in
Eq. (3) of RSB [58]. Although this fit cannot be extrapolated to
small α, the data appear consistent with our results.
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This is of little consequence providing it is much less than
the original loop mass αdhμ ¼ 3αtiμ. Thus we consider
what fraction of the integral in numerator of Eq. (28) is
made up of high-momentum loops with

ΓGμp3=2 > 3α: (37)

Even for very heavy strings with ΓGμ ¼ 10−5 this
fraction only is about 11%, and for ΓGμ ¼ 10−7 it is
about 5%, so there is some error from this effect, but not a
very large one.
The distribution of velocities for loops with a fixed

α ¼ 10−6, assuming this is still greater than ΓGμ, is shown
in Fig. 12. Note that this is about the smallest αwhich today
describes loops formed in the matter era. Smaller loops
would be relics from the radiation era, which we discuss in
the next subsection.
A typical loop has mass α ∼ ΓGμ=3, and so using

Eq. (35) and the speed distribution shown in Fig. 12, we
can deduce that the typical loop’s speed is around
10ðΓGμÞ2=3, although the distribution is quite broad.
This agrees with Fig. 11.

D. Loops surviving from the radiation era

Most loops in existence during the matter era were
produced during the radiation era. A loop of size α at time t
in the matter era has mass m ¼ 3μαt and thus had mass

FIG. 10 (color online). A contour plot of the mass production
function during the matter era. This is the quantity relevant for
determining the matter era loop number density. Expansion of the
universe causes any given point to flow downward and to the left
at a slope of 2=3. Contours are of α2pfmðα; pÞ, spaced linearly
from 0.1–1.3.

FIG. 11 (color online). The mass and momentum spectrum of loops in a matter-dominated universe, using simulation data for the loop
production function and the exact flow. Contours are of log10ðαpnrðα; pÞÞ, with each contour representing one-third of an order of
magnitude, ranging from 100–1019=3. Notice that the nonscaling peak at the top of the figure is subdominant by an order of magnitude;
The majority of loops are in the scaling peak at α ≈ ΓGμ=3, p ≈ 10ðΓGμÞ2=3.
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Meq ¼ 3μαtþ ΓGμ2ðt − teqÞ at teq. Thus, at the end of the
radiation era with dh ¼ 2teq, this loop had

αeq ¼
1

2

�
ð3αþ ΓGμÞ t

teq
− ΓGμ

�
≈
ð3αþ ΓGμÞt

2teq
: (38)

In range of sizes dα at teq there were nrðαÞdα loops in a
horizon volume, ð2teqÞ3, and thus per comoving volume
there were nrðαÞdαða3eq=ð2teqÞ3Þ. These loops become the
loops in the same comoving volume at a later time t, so

nrðt > teq; αÞ ¼ nrðαeqÞ
a3eq
a3ðtÞ

ð3tÞ3
ð2teqÞ3

∂αeq
∂α ¼ 81t2

16t2eq
nrðαeqÞ;

(39)

with αeq given by Eq. (38). This is time dependent, since it
is not a scaling population. It should be pointed out that the
apparent discontinuity in nrðt; αÞ at teq is only due to the
discontinuity in our choice of the “horizon distance” dh ¼
2t → 3t at t ¼ teq. The loop number density is, of course,
continuous at t ¼ teq.
Plugging in the analytic approximation from Eq. (18),

we find

nrðt > teq; αÞ ≈ 2.6
t2

t2eq

Θð0.05 − αeqÞ
ðαeq þ ΓGμ=2Þ5=2 (40)

≈0.94
�
teq
t

�
1=2Θð0.03ðteq=tÞ − α − ΓGμ=3Þ

ðαþ ΓGμ=3Þ5=2 : (41)

The most important loops are those with α ∼ ΓGμ.
Ignoring numerical factors, if ΓGμ≳ teq=t then these loops
were formed in the matter era, and if ΓGμ ≲ teq=t they were
formed in the radiation era. The latter is the case for all
realistic values of string tension. Equation (40) has an extra
half power of αþ ΓGμ=3 in the denominator as compared

to Eq. (31). For α ∼ ΓGμ ∼ teq=t this is canceled by the
prefactor, but for smaller ΓGμ the number of loops is
enhanced by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
teq=ðΓGμtÞ

p
over what it would be in a

purely matter universe.

III. STOCHASTIC GRAVITATIONAL WAVES
AND A BOUND ON Gμ

The contribution of cosmic string loops to the stochastic
background of gravitational waves was recognized as one
of the most significant observational signatures of a net-
work of strings, and over the years it has been calculated by
several groups with various different assumptions
[1–15,65].
Having obtained a robust description of the distribution

of loops from our simulations we can now use it to update
the calculation of the spectrum of energy in gravitational
waves, Ωgwðln fÞ, with Ωgwðln fÞd ln f being the fraction
of the critical density in gravitational waves whose
frequencies lie between f and f þ fd ln f. We define
the gravitational wave energy per (physical) volume per
unit frequency ρgwðt; fÞ, and then divide by the critical
energy density to obtain

Ωgwðln fÞ ¼ 8πG
3H2

0

fρgwðt0; fÞ: (42)

We let Pgwðt; fÞdf be the power per physical volume
flowing into gravitational waves of frequencies between f
and f þ df. Then ρgw is just the time integral of Pgw,
taking into account the a−4 scaling of radiation energy
densities and the redshifting of frequency,

ρgwðt; fÞ ¼
Z

t

0

dt0
a4ðt0Þ
a4ðtÞ Pgwðt0; F0Þ ∂F

0

∂f
¼

Z
t

0

dt0
a3ðt0Þ
a3ðtÞ Pgw

�
t0;

aðtÞ
aðt0Þ f

�
; (43)

where F0 ¼ a
a0 f.

The power per volume Pgw is given by the comoving
number density of loops nðt; mÞ, and the power P radiated
by each loop,

Pgwðt; fÞ ¼
Z

dm
nðt; mÞ
a3ðtÞ Pðm; fÞ: (44)

Assuming most loops develop and maintain at least one
cusp per oscillation for much of their evolution, the power
radiated by a slowly moving loop of mass m is approx-
imately [17]

Pðm; fÞ ¼ ΓGμ2

ζ
�
4
3
; j�

�Xj�
j¼1

j−4=3δ
�
f − j

2μ

m

�
; (45)

FIG. 12. The momentum distribution of loops with α ¼
10−6 ≫ ΓGμ in a matter-dominated universe for a slice at
constant α. For a different α ≫ ΓGμ, the horizontal position
of features in the graph is proportional to α2=3 and the vertical
position proportional to α−2.
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where the maximum allowed harmonic is j� (which we will
assume to be infinite), ζð4

3
; j�Þ ¼

Pj�
j¼1 j

−4=3 ≈ 3.60, and
we have used the fact that the period of the loop is m

2μ. The
spectral index q ¼ 4=3 represents the high frequency
behavior of cusp emission.
Putting this together yields

ρgwðt0; fÞ ¼
ΓGμ2

ζð4
3
; j�Þ

Xj�
j¼1

j−4=3
Z

t0

0

dt
Z

dm
nðt; mÞ
a3ðt0Þ

× δ

�
aðt0Þ
aðtÞ f − j

2μ

m

�
; (46)

and so the fractional spectrum today is

ΩgwðlnfÞ¼
8πΓG2μ2f
3H2

0ζð43;j�Þ
Xj�
j¼1

j−4=3
Z

t0

0

dt
Z

dm
nðt;mÞ
a30

×δ

�
a0
aðtÞf−j

2μ

m

�
; (47)

¼ 8πΓG2μ2f
3H2

0ζð43 ; j�Þ
Xj�
j¼1

j−4=3
Z

∞

0

dz
HðzÞð1þ zÞ

×
Z

dm
nðtðzÞ; mÞ

a30
δ

�
ð1þ zÞf − j

2μ

m

�
; (48)

¼ 8πΓG2μ2

3H2
0ζð43 ; j�Þ

Xj�
j¼1

j−4=3
Z

∞

0

dz
HðzÞð1þ zÞ3

×
nðtðzÞ; 2μj

ð1þzÞfÞ
a30

2μj
f

; (49)

where we have used the fact that dt ¼ −dz=½HðzÞð1þ zÞ�.
For z≳ 1 the functions HðzÞ and tðzÞ are well approxi-
mated by the matter-plus-radiation solution

HmþrðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0ð1þ zÞ3

�
1þ 1þ z

1þ zeq

�s
(50)

tmþrðzÞ ¼
2

3H0

ffiffiffiffiffiffiffiffiffi
Ωm;0

p ð1þ zeqÞ3=2

×

�
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ zeq

1þ z

r �
1þ zeq
1þ z

− 2

��
: (51)

Although we neglect the details of loop production in a
matter-plus-radiation universe, the radiation era comoving
loop number density is not significantly affected by the
smooth transition to matter domination, certainly for the
small (α ∼ ΓGμ) loops which are important. Thus for
t ≤ teq ¼ tmþrðzeqÞ, the comoving loop number density

is well approximated by the pure radiation value of
Eq. (18), converted to comoving units using Eq. (4),

nrðtðzÞ; mÞ ≈ a3r
μd4h;r

nrðαrÞ; (52)

where αr ¼ m
μdh;r

, dh;r ¼ 2tðzÞ, and ar ¼
ffiffiffiffiffiffi
tðzÞ
teq

q
a0

1þzeq
×

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ3=

ffiffi
2

pp . The numerical factors in ar are chosen such that
ar → a0=ð1þ zÞ for z ≫ zeq.
For t > teq, the most numerous loops are those which

survive from the radiation era,

nr→mðtðzÞ; mÞ ¼ nrðteq; mþ ΓGμ2½tðzÞ − teq�Þ: (53)

The loops produced during the matter era are given by
Eq. (33) and

nmðtðzÞ; mÞ ¼ a3m
μd4h;m

nmðtðzÞ; αmÞ; (54)

where αm ¼ m
μdh;m

, dh;m ¼ 3tðzÞ, and am ¼ ðtðzÞteq
Þ2=3×

a0
1þzeq

ð2 − ffiffiffi
2

p Þ2=3. The numerical factors in am are chosen

such that am → a0=ð1þ zÞ for z ≪ zeq.
Dark energy becomes important for z≲ 1. Although the

additional dilution is already taken into account since we
use comoving number densities, we should now compute
cosmic time tðzÞ using the Λ-plus-matter solution

HΛþmðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ Ωm;0ð1þ zÞ3

q
; (55)

tΛþmðzÞ ¼
2 tanh−1

�
H0

ffiffiffiffiffiffiffi
ΩΛ

p
=HΛþmðzÞ

�
3H0

ffiffiffiffiffiffiffi
ΩΛ

p þ C9; (56)

where ΩΛ ¼ 1 −Ωm;0, and C9 is chosen to make
tΛþmðzÞ ¼ tmþrðzÞ at some matter-dominated splicing red-
shift, say z ¼ 9.
By using the matter-era simulated nmðαÞ, and just

plugging tðzÞ → tΛþmðzÞ in Eq. (54) and below, we are
making the assumption that the comoving loop production
function is unaffected by dark energy. This is certainly true
for all but the largest loops, since production of small loops
is always negligible.
Put another way, the vast majority of loops today were

produced at z ≫ 1, when matter-era simulation data can be
trusted. The Boltzmann equation, Eq. (A14), is just

nðt; mÞ ¼ nðti; mþ ΓGμ2ðt − tiÞÞ

þ
Z

t

ti

fðt0; mþ ΓGμ2ðt − t0ÞÞdt0; (57)
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which says that for any loop sizes whose recent
production rate is negligible (i.e., fðt0;M0Þ ¼ 0), we
simply take the previously understood comoving number
density at time ti, and age it by t − ti. It is irrelevant
whether we use fm or the true fΛþm, since they both
vanish for the vast majority of loops which exist for
0 ≤ z≲ 1. Hence using nmðt; mÞ today is justified pro-
vided we do not care about loops larger than about 2% of
the size of the observable universe. Note that this is only
true in comoving units, since scaling units assume the
wrong horizon size, and physical units neglect the extra
dilution due to dark energy. We can always convert to
physical units using scale factor a0=ð1þ zÞ, rather
than amðtΛþmðzÞÞ.
Putting the comoving number densities, Eqs. (52)–(54),

into Eq. (49), and using the analytic approximations
for the Hubble rate and proper time, Eqs. (50–51) and
Eqs. (55–56) for redshifts above and below z ¼ 9, respec-
tively, we numerically compute the stochastic gravitational
wave background for various values of Gμ, assuming
Γ ¼ 50, shown in Fig. 13.
The high frequency behavior is independent of the

spectral index q ¼ 4=3, and can be written analytically
for f ≫ ð1þ zeqÞ=ðΓGμteqÞ as

Ωgwðln fÞ → 8πΓG2μ2Ωm;0

3ð1þ zeqÞ
Z

1

0

nrðαÞdα; (58)

≈8.14
Ωm;0

1þ zeq

ffiffiffiffiffiffiffi
Gμ
Γ

r
; (59)

≈7.7 × 10−4
ffiffiffiffiffiffiffi
Gμ
Γ

r
; (60)

where we are using the best-fit cosmological parameters
from PlanckþWMAP polarization [68], zeq ¼ 3403,
Ωm;0 ¼ 0.3183, and H0 ¼ 2.171 × 10−18 Hz, i.e., h ¼
0.6704.
In Fig. 14 we graph the string tension Gμ vs. the

normalized power in gravitational waves for five character-
istic detector frequencies. Currently, the most stringent
limits on Gμ come from pulsar timing arrays (e.g. [69],
[70]). Following the analysis of Ref. [10] on the data of
Ref. [69], we use the 95% confidence limit
h2Ωgwðf ¼ 4.0 × 10−9 HzÞ ≤ 5.6 × 10−9, which using
our loop distribution provides the bound on tension

Gμ ≤ 2.8 × 10−9; (61)

as shown in Figs. 13 and 14. Notice that this bound is
consistent with the range of tensions expected from cosmic
superstrings, which are produced after brane inflation [71].
This bound should not be taken as definitive, since
we have neglected several effects, including changes in
the number of relativistic degrees of freedom at early times,

FIG. 13 (color online). The normalized spectrum of gravitational waves for various values of string tension. The red dashed
lines show the contribution from loops radiating during the radiation era, the red dotted lines represent the contribution from
loops produced during the radiation era, but radiating during the matter era, and the blue dashed lines represent loops produced
during the matter era. In light gray from left to right, the 20-, 10-, and 5-year PTA, eLISA [12,66], and LIGO [67] peak sensitivity
frequencies are shown. The arrow indicates the region not excluded by current stochastic gravitational wave data.

BLANCO-PILLADO, OLUM, AND SHLAER PHYSICAL REVIEW D 89, 023512 (2014)

023512-12



the actual spectrum of gravitational emission from realistic
loops, the possibility that some energy is in rare bursts that
we would not have observed [21], and the possible
fragmentation of loops after significant gravitational back-
reaction. We intend to do a more careful analysis of the
gravitational wave signature of loops including all these
effects.
We can compare this bound with the results of Ref. [10],

which found Gμ < 8.8 × 10−11 for the case of all loops
being produced with scaling energy x ¼ 0.05. We believe
the order of magnitude discrepancy is primarily due to the
fact that only about 10% of power actually flows into the
largest loops, as discussed below Eq. (17). A precise
comparison is difficult, since both our loop sizes and
velocities differ from models they considered.

IV. CONCLUSIONS

By extrapolation from loop production found in simu-
lations, we give the distribution of loops to be found in the
Universe at any given time. While some uncertainties
remain in the late-time behavior of the loop production
function, these make no significant contribution to the loop
number density. The numerical value for the loop number
density arising from simulations over the past decade is
now rather well agreed upon, with numerical coefficients
roughly of order unity [49,58–60].
In the radiation era, in scaling units we find to good

approximation

nrðαÞ ≈
0.52

ðαþ ΓGμ=2Þ5=2 ; (62)

up to a cutoff at α ≈ 0.05. In physical units, this gives

nrðt; lÞ
a3ðtÞ ≈

0.18

t3=2ðlþ ΓGμtÞ5=2 ; (63)

up to a cutoff at l ≈ 0.1t. While the functional form agrees
with Eq. (10.1.12) of Ref. [72], it differs by a significant
numerical factor.
In the matter era, we have

nmðαÞ ≈
2.4 − 5.7α0.31

ðαþ ΓGμ=3Þ2 (64)

for α < 0.06, or in physical units

nmðt; lÞ
a3ðtÞ ≈

0.27 − 0.45ðl=tÞ0.31
t2ðlþ ΓGμtÞ2 ; (65)

for l < 0.18t. [We ignore the small loop cutoff of Eq. (29),
since radiation era loops dominate regardless.] For l ≪ t,
the second term in the numerator can be ignored, and then
Eq. (65) agrees with Eq. (10.1.17) of Ref. [72] except for
numerical factors.
Most importantly in the matter era, there will be loops

remaining from the radiation era, given by

nrðt > teq; αÞ ≈
0.94t1=2

t1=2eq ðαþ ΓGμ=3Þ5=2
(66)

for α < 0.03ðteq=tÞ − ΓGμ=3, or

nrðt > teq; lÞ
a3ðtÞ ≈

0.18t1=2eq

t2ðlþ ΓGμtÞ5=2 (67)

for l < 0.09teq − ΓGμt. This agrees with Eq. (10.1.20) of
Ref. [72], except for a significant numerical factor, and the
effects of evaporation.
The above calculations are for a pure matter era (with a

sudden transition from a pure radiation era at teq).
Embedding these results into a realistic cosmology is done
in Sec. III. The calculation is simpler if we are only
interested in the loop number density today, which we can
compute in a way which depends only on the present
content and age of the Universe, as follows.
First consider relics from the radiation era. Let tr and zr

be some time and corresponding redshift in the radiation
era. The loop density at tr is given by Eq. (63). The density
of the same loops today is just given by dilution,

nrðt0; lÞ
a30

¼ 0.18

ð1þ zrÞ3t3=2r ðlþ ΓGμt0Þ5=2
(68)

for l < 0.09teq − ΓGμt0. In the radiation era, we have

FIG. 14 (color online). Constraints on Gμ for five detector peak
sensitivity frequencies. The horizontal axis is the upper bound on
h2Ωgw provided by a particular experiment, and the vertical axis
represents the corresponding upper bound on the cosmic string
tension. The five frequencies plotted are shown in the legend,
with PTA detector frequencies given by the inverse of the
duration of the experiment. The gray solid lines indicate the
bound of Eq. (61).
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1

4t2r
¼ H2ðtrÞ ¼ H2

0Ωr;0ð1þ zrÞ4 (69)

and thus

nrðt0; lÞ
a30

¼ 0.51ðH2
0Ωr;0Þ3=4

ðlþ ΓGμt0Þ5=2
(70)

Here Ωr refers to the radiation density that we would have
today with the present cosmic microwave background
(CMB) temperature and neutrinos being massless, i.e.,
the one that we could extrapolate backward into the
radiation era when neutrino masses did not matter.
Since

H2
0Ωr;0 ¼

8πG
3

ρrðT0Þ; (71)

nrðt0; lÞ=a30 can be computed from the present-day CMB
temperature T0 and the current age of the Universe, t0.
We can make a similar calculation for loops produced in

the matter era. Let tm and zm be some time and redshift
when the Universe was matter dominated, before dark
energy became important. Use Eq. (65) at tm, and then
advance to the present. In the matter era, we have

4

9t2m
¼ H2ðtmÞ ¼ H2

0Ωm;0ð1þ zmÞ3 (72)

and thus

nmðt0; lÞ
a30

≈
0.61 − 1.0ðl=t0Þ0.31

ðlþ ΓGμt0Þ2
H2

0Ωm;0; (73)

The presence of t0 in the numerator of Eq. (73) is correct
only in the approximation that loop production continues
unchanged during dark energy domination. The opposite
case, in which loop production stops entirely, can be
approximated by writing tm instead of t0 in the numerator
of Eq. (73), and setting tm to the start of the dark energy era.
But the effect is small and applies only to fairly large loops.
The density of the very largest loops could be determined
only by simulations of the matter to dark energy transition,
but such loops are so rare as to be of very little observa-
tional interest.

APPENDIX A: DIFFERENTIAL FORMS

1. Introduction

Quantities such as the density of loops are more
elegantly described using differential forms. Thus instead
of taking nðαÞ as our fundamental quantity, we take the
1-form nðαÞdα. The definition of this differential form is
the object which, when integrated over a range of α, gives
the number of loops whose sizes lie in that range. This
avoids some awkwardness in defining the function nðαÞ,

and makes the transformation between physical and scaling
coordinates clear.
Since a differential form returns physical, coordinate-

independent values upon integration, it is the area under the
curve (or surface) that we use to represent it, rather than the
height of the curve. In this regard it is very much like a
probability density function. For example, in a graph of
nðαÞdαwithα on a linear scale, the area under the curvenðαÞ
faithfully represents the integral

R
nðαÞdα. But when we

graph the same differential form with α on a logarithmic
scale, the horizontal measure is now d log α ¼ dα

α . Thus we
should plot αnðαÞ, since the area under this curve isR
αnðαÞd log α, which is equal to the intended

R
nðαÞdα.

This is the reason for the extra power of α that appears in
almost all of our figures. When graphing a 2-form such as
α3=2frðα; pÞdα∧dp, shown in Fig. 4, we include both an
extra power of α and p, since both axes are logarithmic.
Our conjecture that the loop production power is a

scaling quantity (even in the absence of gravitational
backreaction) can be phrased in terms of the 1-form
xfðxÞdx, where x is the scaling energy of the loop.
Since the integral of a 1-form is a scalar function, we
can define scaling of the loop production function to mean
the integral Pðt; xÞ ¼ R

x
0 x

0fðt; x0Þdx0 converges to a time-
independent smooth function PðxÞ that vanishes at x ¼ 0.
This means that no power flows into loops of size set by the
initial conditions, or any size sufficiently far below the
horizon scale.

2. The Boltzmann equation

We show how to compute the distribution of loops from
their production rate, in the language of differential forms.
This is the purpose of a Boltzmann equation (see, e.g.,
Refs. [73–75]), which describes the (non)conservation of
some current in phase space. We will consider the phase
space to be spanned by the loop’s mass and momentum per
unit mass, and so the observable quantity will be the
comoving number density, given by the two-form
nðt; m; pÞdm∧dp, which describes the number of loops
per comoving volume at time t with mass between m and
mþ dm, and with momentum between p and pþ dp.
Let us first imagine that all loops have the same mass

MðtÞ and momentum PðtÞ, where these functions smoothly
vary with time. Further, if the loops are neither created nor
destroyed, their constant comoving number density n is
described by the conserved current

J ¼ nδðm−MðtÞÞðdm− _MdtÞ∧ δðp−PðtÞÞðdp− _PdtÞ;
(A1)

where δ is the Dirac delta function, and _MðtÞ ¼ dMðtÞ
dt , etc.

Notice that this current can be written

J ¼ ndΘðm −MðtÞÞ∧dΘðp − PðtÞÞ; (A2)
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where Θ is the step function. This form of J makes it clear
that its contour surfaces are parallel to ðM;PÞ, i.e., the flow
generated by _M and _P. Since d2 ≡ 0, the current is indeed
conserved:

dJ ¼ 0. (A3)

We can generalize the above current to have support on
more than a single value of m and p by adding together
many parallel currents. We measure the number density on
surfaces of constant t, so we should define nðt; m; pÞ ×
dm∧dp as the pullback of J onto this surface. [In the
above case, nðt; m; pÞ ¼ nδðm −MðtÞÞδðp − PðtÞÞ.]
Now, the integral curves M and P will have two sets of
arguments. On the one hand, M ¼ Mðt0Þ, since a given
loop’s mass depends only on time. But each integral
curve depends only on its starting value, so M¼
Mðt0; t;m;pÞ, with Mðt; t;m;pÞ¼m. Notice _Mðt; m; pÞ ¼
d
dt0 Mðt0; t; m; pÞjt0¼t.
Let us consider a more general two-form J which is not

necessarily conserved:

dJ ¼ F ; (A4)

where F ¼ fðt; m; pÞdt∧dm∧dp is an arbitrary three-
form describing the number of loops per comoving volume
that are produced between times t and tþ dt which have
mass between m and mþ dm and momentum between p
and pþ dp. This is the abstract form of the Boltzmann
equation. Even the most general J we can consider is not
completely arbitrary, but describes a current which flows
along the integral curves of the vector field generated by
_Mðt; m; pÞ and _Pðt; m; pÞ, which means we can relate it to
nðt; m; pÞ by

J ¼ nðt; m; pÞðdm − _Mðt; m; pÞdtÞ∧ðdp − _Pðt; m; pÞdtÞ;
(A5)

i.e., this is the unique two-form whose pullback vanishes on
surfaces parallel6 to the flow, and whose pullback on
constant time surfaces is given by nðt; m; pÞdm∧dp.
Thus we can rewrite the Boltzmann equation (A4) as

d½nðdm − _MdtÞ∧ðdp − _PdtÞ� ¼ fdt∧dm∧dp; (A6)

from which we can derive the more familiar form7

∂
∂t nðt; m; pÞ þ ∂

∂m ð _Mðt; m; pÞnðt; m; pÞÞ

þ ∂
∂p ð _Pðt; m; pÞnðt; m; pÞÞ ¼ fðt; m; pÞ: (A7)

This form of the Boltzmann equation would be useful for
determining f, given n. We are interested in finding
nðt; m; pÞ for a given fðt; m; pÞ, which can be done using
Stokes’ theorem, which says

Z
B
F ¼

Z
B
dJ ¼

Z
∂B

J ; (A8)

where the last integral will contain the term
nðt; m; pÞdm∧dp if we choose B properly. Thus we will
find nðt; m; pÞ by integrating the abstract Boltzmann
equation, but along a specially chosen infinitesimally
narrow volume. Imagine drawing a narrow three dimen-
sional pill box B in extended phase space which begins at
some initial time ti, and ends at the time we are interested
in, t. The pill box intersects the t-surface to form an
infinitesimal parallelogram centered at ðm;pÞ with sides
dm and dp. We assume the initial boundary data nðti; m; pÞ
are known for some ti. Finally, we will choose the four long
sides of the pill box to follow the flow in phase space
generated by _M and _P. By doing this, we have ensured that
in Eq. (A8), the integral of J over the boundary of the pill
box will vanish on four out of six sides, and so the bulk
integral of F over B will give us nðt; m; pÞ in terms of f

FIG. 15 (color online). The pill box B. The boundary ∂B
consists of six faces, the four curved of which do not
contribute to

R
J. The top and bottom parallelograms do

contribute and have areas given by dm∧dp and
ð∂Mi∂m

∂Pi∂p − ∂Mi∂p
∂Pi∂mÞdm∧dp, respectively.

6In other words, J μνVν ¼ 0, where V ¼ ∂
∂t þ _M ∂

∂m þ _P ∂
∂p.7Notice since n is not a scalar, the following is not correct:

f ¼ d
dt n ¼ ∂

∂t nþ _M ∂
∂m nþ _P ∂

∂p n. The missing term n ∂
∂p _P is

important; even for f ¼ 0, as loop momenta redshift, the peak
value of n grows to compensate its shrinking support.
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and the initial boundary data nðti; m; pÞ. We illustrate B in
Fig. 15 below.

3. The flow ðM;PÞ
To use the Boltzmann equation, we must know what

generates the flow, i.e., given any values for the mass and
momentum m, p at time t, we must know the rate at which
they change, _Mðt; m; pÞ, _Pðt; m; pÞ. These functions define
a vector field V on extended phase space,

V ¼ ∂
∂tþ _M

∂
∂mþ _P

∂
∂p : (A9)

We can characterize the associated integral curves with the
functions M0 ¼ Mðt0; t; m; pÞ and P0 ¼ Pðt0; t; m; pÞ.
These determine the entire trajectory as a function of t0,
given the initial starting point ðm;pÞ at time t. We solve an
autonomous system of ordinary differential equations to get
from the generators _M and _P to the curves M0 and P0, and
so the solution is unique.8

4. The solution

We are now ready to solve for nðt; m; pÞ by integrating
the Boltzmann equation along the narrow pill box B. The
top face of B is denoted B∩ t and is a tiny parallelogram of
area dm∧dp. The bottom face is a parallelogram denoted
B∩ ti and has area given by the Jacobian determinant

���� ∂ðMi; PiÞ
∂ðm;pÞ

����dm∧dp ¼
�∂Mi

∂m
∂Pi

∂p − ∂Mi

∂p
∂Pi

∂m
�
dm∧dp:

(A10)

The remaining four faces contribute nothing in Eq. (A8).
Using Stokes’ theorem,

nðt; m; pÞdm∧dp ¼
Z
B∩t

J; (A11)

¼
Z
B
F þ

Z
B∩ti

J; (A12)

¼
�Z

t

ti

fðt0;Mðt0; t;m;pÞ;Pðt0; t;m;pÞÞ
����∂ðMðt0Þ;Pðt0ÞÞ

∂ðm;pÞ
����dt0

þnðti;Mðti; t;m;pÞ;Pðti; t;m;pÞÞ
����∂ðMðtiÞ;PðtiÞÞ

∂ðm;pÞ
����
�

×dm∧dp; (A13)

or

nðt; m; pÞ ¼ nðti;Mi; PiÞ
���� ∂ðMi; PiÞ
∂ðm;pÞ

����
þ
Z

t

ti

fðt0;M0; P0Þ
���� ∂ðM0; P0Þ
∂ðm;pÞ

����dt0: (A14)

Notice we have defined the integral curves Mðt0Þ and Pðt0Þ
by integrating _M and _P from the final surface t backward as
a function of t0. This enabled us to keep explicit depend-
ence on m and p. We must account for the fact that the pill
box cross-sectional area changes by a factor of the Jacobian
determinant, as shown in Fig. 15. In our approximation,
because the momentum of a loop redshifts without any
regard for the value of the mass, the Jacobian determinant
has one term, ∂M

∂m
∂P
∂p.

APPENDIX B: THE EXACT FLOW

Here we give the solution to the flow ðM;PÞ for arbitrary
loop momentum per unit mass p. The time derivatives
which generate the flow are given by

_M ¼ −ΓGμ2=γ; (B1)

_P ¼ − _a
a
P; (B2)

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

p
is the time-dilation

factor.
Changing to redshift as a time variable, the solution for P

is just

P0 ¼ Pðz0; z;m; pÞ ¼ p
1þ z0

1þ z
; (B3)

as before. The loop mass obeys

M0 ¼ Mðz0; z;m; pÞ ¼ −ΓGμ2
Z

1

γ0
dt0

dz0
dz0

¼ ΓGμ2
Z

1

ð1þ z0ÞHðz0Þγ0 dz
0; (B4)

where

γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P02 þ 1

p
: (B5)

If we neglect dark energy, we can write

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0ð1þ zÞ3

�
1þ 1þ z

1þ zeq

�s
; (B6)

which makes it possible to perform the integral in Eq. (B4)
in closed form, but the result in terms of elliptic integrals is
not very enlightening.8See [76] for a review of flows.
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APPENDIX C: TINY, RECENT LOOPS

We assumed above that long strings are smoothed by
gravitational backreaction at scales ΓGμt, and thus that no
loops are produced at time t with α ≪ ΓGμt. If this is not
the case, we can have a different situation [77]. Loops
formed recently with size α > ΓGμ are always dominated
by loops formed long ago, when the string network was
denser. But when α ≪ ΓGμ, the possible formation time for
a loop that currently has size α no longer decreases with α,
because loops from too long ago have evaporated. This
raises the possibility, which we investigate in this appendix,
that such tiny loops are mainly of recent origin.
Thus we consider a second population of loops created

with α ≪ ΓGμ. Such loops live for much less than a
Hubble time, so for them we can neglect redshifting and
increase in t from formation to observation. Thus we set
aðt0Þ ¼ aðtÞ, dhðt0Þ ¼ dhðtÞ, and P0 ¼ p in Eq. (9) to get

nrecentðα; pÞ ¼
Z

t

0

1

dh
fðαþ ΓGμðt − t0Þ=γ; pÞdt0; (C1)

where γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

p
∼ p is the Lorentz boost of a loop with

momentum p. Changing variables, we find

nrecentðα; pÞ ¼
γ

ΓGμ

Z
∞

α
fðα0; pÞdα0: (C2)

If we are not concerned with loop velocities, we can
approximate

nrecentðαÞ ¼
1

ΓGμ

Z
∞

α
γðα0Þfðα0Þdα0; (C3)

where γðα0Þ denotes the average boost with which loops of
mass α0 are emitted. The production rate fðα0Þ increases
more quickly than 1=α0 as α0 decreases, until reaching some
cutoff due to gravitational smoothing of the long-string
network. The cutoff is given by the shortest-wavelength
wiggles that have survived gravitational damping. If this
wavelength were ΓGμt, the population of recent loops
would be of no consequence. But Ref. [78] argued that
short-wavelength structures on long strings will be damped
slowly, because they are only able to interact with wiggles
of similar wavelengths, so we will consider a cutoff

λmin ∼ ðΓGμÞδt; (C4)

which gives a limit

xmin ∼ ðΓGμÞδ: (C5)

According to Ref. [78], the smallest scales depend on the
falloff of the amplitude of structures on the string with

decreasing wavelength λ. But since strings have kinks, the
amplitude-to-wavelength ratio of the Fourier components
must fall no more rapidly than λ, which implies9 δ ≥ 3=2.
Below α ¼ αmin, nrecent is a constant

nrecentð0Þ ¼
1

ΓGμ

Z
∞

αmin

γðα0Þfðα0Þdα0: (C6)

If we take a model in which the formation of loops with
xmin < x ≪ ΓGμ is given by

fðxÞ ¼ cx−β; (C7)

and all loops of size x have boost

γðxÞ ¼ c0x−κ; (C8)

and thus αðxÞ ¼ x1þκ=c0, then

nrecentð0Þ ¼
1

ΓGμ

Z
∞

xmin

γðxÞfðxÞdx0

¼ cc0

ΓGμðβ þ κ − 1Þxmin
βþκ−1 (C9)

¼ cc0

ðβ þ κ − 1ÞðΓGμÞ1þðβþκ−1Þδ : (C10)

For small α, Eq. (15) also gives a constant nðαÞ as α → 0.
The ratio of recently produced tiny loops to old tiny loops is

nrecentð0Þ
nð0Þ ¼ cc0

ð1−νÞðβþκ−1Þ
ðΓGμÞ3−3ν−ðβþκ−1ÞδR

∞
0 α03−3νfðα0Þdα0 :

(C11)

In the radiation era, fits to simulation data give

fðxÞ ≈ 1.64x−1.97; (C12)

γðxÞ ≈ 0.50x−0.21; (C13)

which with δ ¼ 3=2 give

nrecentð0Þ
nrð0Þ

¼ 1.64ðΓGμÞ−0.27: (C14)

In the matter era, we find

fðxÞ ≈ 3.40x−1.78; (C15)

9Reference [78] gave a model with δ ¼ 5=2 in the matter era,
but this model assumed no intercommutations and thus no kinks.
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γðxÞ ≈ 0.40x−0.30; (C16)

which give

nrecentð0Þ
nmð0Þ

¼ 4.4ðΓGμÞ−0.62: (C17)

Since ΓGμ ≪ 1, the negative exponents imply that most
tiny loops are recently produced.
The total number density of recently produced loops

with x < ΓGμ is

nrecent ¼
Z

ΓGμ

0

dxxfðxÞ ¼ cðΓGμÞ1−β
2 − β

: (C18)

In the radiation era

nrecent ≈ 54ðΓGμÞ−0.97; (C19)

which is much smaller than the density of old loops given
by Eq. (19). In the matter era

nrecent ≈ 16ðΓGμÞ−0.78: (C20)

For ΓGμ < 10−6 this is no more than 1=8 of the number of
old loops given by Eq. (32). If one considers loop energies,
the recent loops make an even smaller contribution.
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