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Primordial isocurvature fluctuations between photons and either neutrinos or nonrelativistic species

such as baryons or dark matter are known to be subdominant to adiabatic fluctuations. Perturbations in the

relative densities of baryons and dark matter (known as compensated isocurvature perturbations or CIPs),

however, are surprisingly poorly constrained. CIPs leave no imprint in the cosmic microwave background

(CMB) on observable scales, at least at linear order in their amplitude and zeroth order in the amplitude of

adiabatic perturbations. It is thus not yet empirically known if baryons trace dark matter at the surface of

last scattering. If CIPs exist, they would spatially modulate the Silk damping scale and acoustic horizon,

causing distinct fluctuations in the CMB temperature/polarization power spectra across the sky: this effect

is first order in both the CIP and adiabatic mode amplitudes. Here, temperature data from the Wilkinson

Microwave Anisotropy Probe (WMAP) are used to conduct the first CMB-based observational search for

CIPs, using off-diagonal correlations and the CMB trispectrum. Reconstruction noise from weak lensing

and point sources is shown to be negligible for this data set. No evidence for CIPs is observed, and a 95%

confidence upper limit of 1:1� 10�2 is imposed to the amplitude of a scale-invariant CIP power spectrum.

This limit agrees with CIP sensitivity forecasts for WMAP and is competitive with smaller-scale

constraints from measurements of the baryon fraction in galaxy clusters. It is shown that the root-

mean-squared CIP amplitude on 5–100� scales is smaller than�0:07–0:17 (depending on the scale) at the

95% confidence level. Temperature data from the Planck satellite will provide an even more sensitive

probe for the existence of CIPs, as will the upcoming ACTPol and SPTPol experiments on smaller angular

scales.
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I. INTRODUCTION

Measurements of primordial density perturbations are
consistent with adiabatic initial conditions, for which the
ratios of neutrino, photon, baryon, and dark-matter number
densities are initially spatially constant. The simplest
inflationary models predict adiabatic fluctuations [1–6].
Isocurvature perturbations, on the other hand, are fluctua-
tions in the relative number densities of different species.
They are produced in topological-defect models for struc-
ture formation [7], multifield inflationary models and cur-
vaton models [8–12], in which two different fields drive
inflation and generate curvature perturbations, and in sim-
ple inflationary models if the dark matter is composed of
axions [8,13,14].

CMB temperature anisotropies limit the contribution of
baryon isocurvature perturbations (fluctuations in the
baryon-to-photon ratio) [15,16] and CDM isocurvature
perturbations (fluctuations in the dark-matter-to-photon
ratio) [14,17–19] to the total perturbation amplitude
[20–32]. The recent Planck CMB results limit the CDM

isocurvature fraction to be & 0:039 of the total perturba-
tion amplitude.
It is therefore surprising that perturbations in the baryon

density can be almost arbitrarily large, as long they are
compensated by dark-matter perturbations such that the
total nonrelativistic matter density remains unchanged
[33,34]. These compensated isocurvature perturbations
(CIPs) obey

�c�
CI
c þ �b�

CI
b ¼ 0; �CI

� ¼ 0; (1)

where �c, �b, and �� are fractional energy density pertur-

bations in the cold dark matter, baryons, and photons,
respectively, while �c and �b are the homogeneous dark
matter and baryon densities. CIPs induce no curvature
perturbation at early times, and they therefore leave the
photon density, and thus large-angle CMB fluctuations,
homogeneous at linear order.
Curvatonmodels for inflationmay generate CIPs [35–38],

with amplitudes approaching the regime detectable by the
proposed EPIC mission [33], and other inflationary models
[39] could generate even larger CIP amplitudes. Recent
theoretical ideas [40–45] connecting the baryon asymmetry
and dark-matter density could also have implications for*dgrin@ias.edu
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CIPs. In any case, our principal motivation in studying CIPs
is curiosity: canwedetermine empirically, rather than simply
assume, that the primordial baryon fraction is homogeneous
and traces the dark matter?

CIPs induce baryon motion through baryon-pressure
gradients, but these motions occur only at the baryon sound
speed. The resulting anisotropies would be imprinted on
the baryonic sound horizon, at l� 106 [33,37,46]. Existing
measurements at low redshift constrain the CIP perturba-
tion amplitude to be & 10% [33,34], while more sensitive
proposed measurements of 21-cm absorption during the
cosmic dark ages are a ways off in the future [33,46–48].

More recently, it has been shown that CIPs would modu-
late the CMB anisotropies produced by adiabatic perturba-
tions, both by inducing anisotropies in the optical depth to
reionization [34], and more dramatically, by changing the
Silk damping length of the CMB in regions of sky contain-
ing a CIP [49,50]. This modulation would induce a specific
pattern of higher order correlations in the temperature and
polarization anisotropies, analogous to those induced by
variations of other cosmological parameters [51] and by
weak gravitational lensing [52]. This signature can be ex-
ploited to construct estimators for theCIP perturbation [50].
CIPs with amplitudes comparable to those generated
in curvaton models for the primordial density fluctuation
[35–38], lower-energy inflationary models [39], and perhaps
other scenarios, are within the range of detectability for a
cosmic-variance-limited CMB polarization experiment.

Here, we use WMAP 9-year temperature maps to
search for CIPs. Our CIP estimator is based on the full
non-Gaussian trispectrum of the observed CMB multipole
moments, and can be used to perform either a model-
independent reconstruction of the CIP power spectrum
C��
L , or to measure the amplitude of a scale-invariant

spectrum of CIPs.
We impose a 95% confidence upper limit of 1:1� 10�2

to the amplitude of a scale-invariant spectrum of CIPs, as
well as model-independent constraints of �0:07–0:17 to
the root-mean-squared (RMS) amplitude of the CIP power
spectrum at angular scales in the range 1 � L < 20, where
L is the multipole index of the CIP. We show that second-
ary contractions of the trispectrum contribute negligibly to
the estimator, at least for WMAP experimental parameters.
We show that known sources of non-Gaussianity, such as
gravitational lensing and unresolved point sources, do not
provide a significant bias for our estimates of the CIP
power spectrum. The same methodology which we have
used here could be applied to the Planck data and has
the potential to significantly improve on the constraints
above.

We begin in Sec. II with a derivation of the temperature
anisotropies induced by CIPs, which lead to a coupling of
CIP modes of multipole index L with primordial CMB
fluctuation modes of index l, and off-diagonal correlations
between different multipole moments, absent under the

null hypothesis. In Sec. III, we use these correlations to
obtain an optimal CIP estimator, based on that of Ref. [50],
but generalized to be run on a partial-sky map with realistic
noise properties. We account for bias and estimator
normalization using analytic estimates and Monte Carlo
simulations. In Sec. IV we present our results (limits to the
amplitude of a scale-invariant spectrum of CIPs and to the
model-independent CIP amplitude on different scales) and
compare with the forecasted WMAP sensitivity, and we
conclude in Sec. V. Throughout this work we use a fixed,
flat �CDM cosmology consistent with the WMAP-9 [53]
power spectrum, given by �b ¼ 0:045, �c ¼ 0:222, h ¼
0:733, adiabatic spectral index ns ¼ 0:963, reionization
optical depth � ¼ 0:088, and adiabatic scalar power spec-
trum normalization As ¼ 2:4� 10�9.

II. CMB TEMPERATURE CORRELATIONS
IN THE PRESENCE OF A CIP

In Refs. [49,50], it was shown that a CIP would induce
off-diagonal correlations between CMB anisotropy multi-
pole moments. We rederive these results using a clearer
method here, applying the line-of-sight (LOS) formalism
of Ref. [54]. This approach is more readily generalized to
CIPs with wavelength smaller than the thickness of the
surface of last scattering and is useful in computing the CIP
bispectrum. Before launching into the formalism, we re-
view the physical origin of CIP-induced CMB correlations.
As noted in Refs. [33,37,46], CIPs have no initial poten-

tial perturbations (like other isocurvature modes), but they
also have no initial radiation pressure gradients. In linear
theory, flows then begin at the baryon sound speed, but are
only effective in transferring fluctuations to the photons on
very small scales (l� 106). Even when baryons do begin to
evacuate initial density fluctuations (which would yield a
net potential perturbation as the CIP evolved), these flows
will be diffusion damped, slowing down the growth of these
small-scale potential perturbations. This intuition is con-
firmed by running the Boltzmann code CAMB [55] with a
CIP initial condition, and noting that the induced CMB
temperature anisotropy is negligible.
The fluctuating baryon fraction in the presence of a CIP

would lead to an inhomogeneous redshift of reionization
(when the first sources turn on), leading to a fluctuating
optical depth and a distinct patchy reionization signal in
the CMB [34]. More dramatically, however, if CIPs are in
fact primordial, they will lead to a spatial modulation of
coefficients in the early-time (tight-coupling era) equations
of motion for fluid perturbations, altering observed CMB
anisotropies in a detectable way [49,50].

A. Physical origin of effect

Consider a compensated isocurvature perturbation (CIP)
along the line of sight �ðn̂Þ, which gives local changes in
the baryon and CDM energy densities given by
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�b ! �b½1þ�ðn̂Þ�; �c ! �c ��b�ðn̂Þ: (2)

A positive (negative) value of � corresponds to a more
(less) baryon-loaded plasma, which decreases (increases)
the sound speed and thus decreases (increases) the physical
acoustic horizon. The multipole index ls of the first CMB
acoustic peak thus increases (decreases) as � increases
(decreases), as shown in Fig. 1 (from Ref. [50]), generated
using expressions in Ref. [56]. The other acoustic peak
locations behave similarly.

CMB temperature anisotropies are suppressed on angu-
lar scales l > ld � 1000 due to diffusion damping. Using
the expressions in Ref. [57] and the CAMB [55] code, we
evaluate ldð�Þ and show the results in the top right panel of

Fig. 1. We see that, as photons diffuse over smaller
distances, as a result of higher local baryon density in the
presence of a CIP with positive �, the transition to ex-
ponential damping of CMB anisotropies occurs at higher l.
In the bottom panel of Fig. 1 (from Ref. [50]), we show

the visibility functions gðzÞ ¼ e��d�=dz for three different
values of �; � is the optical depth due to Thomson scat-
tering and z is the redshift. The peak of the visibility
function is the redshift zSLS, at which most CMB photons
last scatter. In the presence of a positive (negative) � CIP,
decoupling occurs later (earlier) due to higher (lower)
baryon density.
The effects described above all result in modifications to

the CMB power spectrum. One can therefore imagine

FIG. 1 (color online). Physical and Thomson scattering visibility function gðzÞ in the presence of a global CIP �. Top left panel
shows angular sound horizon ls as a function of a spatially uniform CIP �. Top right panel shows diffusion damping scale ld as a
function of �. Bottom panel shows gðzÞ evaluated for three different values of �. Later we will use these physical effects to probe the
CMB for spatially varying �ðn̂Þ.
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constructing an estimator for � by forming localized
power spectrum estimates and fitting for � relative to a
fiducial model based on the full-sky power spectrum. We
will apply this heuristic principle more precisely to build
estimators for the CIP realization � using off-diagonal
CMB correlations in Sec. III, but first we must quantify
the change induced by a CIP � in the presence of some
underlying adiabatic perturbation.

B. Standard line-of-sight solution for CMB
temperature anisotropy

The calculation of CMB anisotropies is greatly simpli-
fied using the line-of-sight (LOS) approach, introduced in
Ref. [54]. At spatial location ~y, conformal time �, and for
photon momentum direction vector p̂ (where jp̂j ¼ 1), the
photon temperature perturbation Tð ~y; p̂; �Þ obeys the equa-
tion (derived from the Boltzmann equation)

_Tð ~y; p̂; �Þ þ p̂ � rTð ~y; p̂; �Þ ¼ Dðp̂; �Þ½ ~uð ~y; �Þ�; (3)

where ~uð ~y; �Þ is a vector whose entries are the fluid
density/velocity perturbations (as well as higher-order
moments of the distribution function, for neutrinos) and
metric fluctuations characterizing the system, and D is a
linear differential operator which maps ~uð ~y; �Þ to a source
term for temperature perturbations. Defining the LHS of
this equation as the operatorB (for Boltzmann), and taking
a Fourier transform, we obtain

B ~k½T~kðp̂; �Þ� ¼ D ~kðp̂; �Þ½ ~u ~kð�Þ�; (4)

whereD ~k is a matrix operator in Fourier space (as opposed

to a differential operator). For the usual adiabatic mode,

~u ~kð�Þ ¼ ~f ~kð�Þ� ~k, where
~f ~kð�Þ is a time evolution opera-

tor mapping the initial potential perturbation � ~k to the

solution for the fluid variables at subsequent times.
The components of the matrix operatorD ~k (which maps

the fluid and metric variables to the observed temperature

perturbation) and vector-valued function ~f ~k are laid out in

detail in Refs. [54,58] and others, so we use the operator
notation to keep things simple and general. Equation (4)
may be formally integrated to obtain

T~kðp̂; �0Þ ¼
Z �0

0
d�eik�ð�0��Þ ~S½p̂; ~k; ��� ~k; (5)

where the source function is ~S½p̂; ~k; �� ¼ D ~kðp̂; �Þ ~f ~kð�Þ,
�0 is the conformal time today and � ¼ p̂ � ~k=j ~kj. It turns
out that the source function depends on ~k and p̂ only

through � (as a polynomial in �) and k ¼ j ~kj, and so
Eq. (5) may be integrated by parts to obtain

T~kðp̂; �0Þ ¼
Z �0

0
d�eik�ð�0��ÞS½k; ��� ~k; (6)

in terms of a different source function S½k; ��, whose terms
are specified in Refs. [54,56]. Going back to real space,

following suit with an inverse spherical harmonic trans-
form to derive multipole coefficients, and expanding the
exponential using a Fourier-Bessel series, we obtain

Tlm ¼ 4�il

ð2�Þ3
Z

d3kTlðkÞ� ~kY
�
lmðk̂Þ; (7)

TlðkÞ 	
Z �0

0
S½k; ��jl½kð�0 � �Þ�; (8)

where jlðxÞ is a spherical Bessel function of index l.
The familiar CMB angular power spectrum may then be

obtained:

hTlmT
�
l0m0 i ¼ �ll0�mm0Cl; (9)

Cl ¼ 2

�

Z
k2dkT2

l ðkÞP�ðkÞ; (10)

where the three-dimensional potential fluctuation power
spectrum P�ðkÞ is defined by

h� ~k�
�
~k0
i ¼ ð2�Þ3�3ð ~k� ~k0ÞP�ðkÞ: (11)

We now generalize the LOS solution to compute the
off-diagonal temperature correlations induced by a CIP.

C. Line-of-sight solution in the presence of a CIP

The operators D ~kð�Þ and ~f ~kð�Þ depend on the cosmo-

logical parameters and thus also on the amplitude�ðn̂Þ of a
CIP. In the presence of a CIP, the real-space evolution
equation will read

B ½�Tð ~y; p̂; �Þ� ¼ dDðp̂; �Þ½ ~uð ~y; �Þ�
d�

�ð ~yÞ; (12)

where �Tð ~y; p̂; �Þ is the modulation of the usual tempera-
ture anisotropy by the CIP.
As discussed in Sec. I, on the scales of interest, CIPs do

not drive matter flows at linear order in perturbation theory,
and are thus frozen in time at that level of approximation.
In principle, CIP amplitudes still have a dependence on the
conformal time along a photon trajectory (as a proxy
for LOS distance), if the mode wavelength is shorter than
the integration interval. For modes of large angular scale
l 
 lsilk, however, this radial dependence may be ne-
glected, and �ð ~yÞ ¼ �ðŷÞ. Fourier transforming Eq. (12),
performing a spherical harmonic expansion of �ðŷÞ ¼P

LM�LMYLMðn̂Þ, we see that the evolution equation for
�T~kðp̂; �Þ is of the same form as Eq. (4), but with a source

term that is a linear superposition of source terms like those
in Eq. (4). Since this is a linear system, solutions may be
superimposed. Fourier-Bessel expanding and performing
an inverse spherical harmonic transform of the solution,
we obtain the perturbation to the LOS solution induced by
a CIP,
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�Tlm ¼ X
LMl1m1

�LM4�i
l1�LM

lml1m1
KL

ll1

ð2�Þ3

�
Z

d3qY�
l1m1

ðq̂Þ� ~q

dTl2ðqÞ
d�

; (13)

�LM
lml1m1

	 ðKL
ll1
Þ�1

Z
dn̂Y�

lmðn̂ÞYLMðn̂ÞYl1m1
ðn̂Þ

¼ ð�1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þð2lþ 1Þð2l1 þ 1Þ

4�

s

� l L l1

�m M m1

 !
;

KL
ll1

	 l L l1

0 0 0

 !
; (14)

expressed in terms of the familiar Wigner-3J symbols [59].

D. CIP statistics

As discussed in the previous section, a compensated
isocurvature perturbation induces a small fluctuation in
the CMB temperature which is proportional to the primor-
dial potential � ~k. If we consider a fixed realization of

isocurvature perturbations �LM, the effect of CIPs is to
introduce ‘‘statistical anisotropy’’ into the CMB, which
manifests itself through off-diagonal elements in the co-
variance matrix of the CMB fluctuations, whose elements
are then given by

hT�
l0m0Tlmi ¼ �ll0�mm0CTT

l þX
LM

l l0 L
m m0 M

� �
W�

ll0L�LM:

(15)

Here CTT
l is the usual CIP-free temperature power spec-

trum. The quantity

W�
ll0L 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2Lþ 1Þ

4�

s
� ðCT;dT

l0 þ CT;dT
l Þ

� l l0 L

0 0 0

 !
(16)

is a weight function associated with the CIPs and

CT;dT
l 	 2

�

Z
k2dkP�ðkÞTlðkÞdTlðkÞ

d�
: (17)

The derivative power spectra of Eq. (17) are evaluated
using the CAMB code, using numerical methods described
in Ref. [55], including a spatial modulation in the optical
depth to reionization, �, as well as the much larger effect
from physics near recombination. Analogously to the vio-
lations of primordial isotropy considered in Refs. [60,61],
CIPs introduce a violation of statistical isotropy in the
CMB. As a result, it is no surprise that the off-diagonal
correlations described by Eqs. (15) and (16) are similar

to those obtained due a breaking of primordial isotropy
using the Bipolar Spherical Harmonic (BiPoSH)
formalism [60,61].
We see above that a fixed CIP realization breaks the

diagonality of the covariance matrix of the Tlm in a very
specific way, yielding a unique statistical signature which
can be used to reconstruct the �LM realization. A similar
derivation can reproduce the off-diagonal polarization
correlations obtained in Ref. [50].
If the Universe as a whole has no preferred orientation,

then the CIP perturbations �LM are themselves random
variables, with some statistically isotropic distribution. If
we assume that �LM are independent of the primordial
fluctuations and Gaussian, then they are completely
characterized by their power spectrum C��

L . In this more
realistic picture, the first distinctive statistical signature
of CIPs appears in the CMB ‘‘trispectrum,’’ or connected
four-point function. The connected part of the four-point
function is zero for purely Gaussian fluctuations, but in
the presence of CIPs it becomes non-zero. Following
Ref. [62], the connected four-point function must take
the form

hTl1m1
Tl2m2

Tl3m3
Tl4m4

iC ¼ X
LM

ð�1ÞMTl1l2
l3l4

ðLÞGl1m1l2m2L
l3m3l4m4M

;

(18)

where Tl1l2
l3l4

ðLÞ is known as the trispectrum, and we have

used the Glebsch-Morgan coefficient

G l1m1l2m2L
l3m3l4m4M

¼ l1 l2 L
m1 m2 �M

� �
l3 l4 L
m3 m4 M

� �
: (19)

Symmetry of the four multipoles further requires that the
trispectrum may be encoded as

Tl1l2
l3l4

ðLÞ ¼ Pl1l2
l3l4

ðLÞ þ ð2Lþ 1Þ

�X
L0

�
ð�1Þl2þl3

�
l1 l2 L

l4 l3 L0

�
Pl1l3
l2l4

ðL0Þ

þ ð�1ÞLþL0
�
l1 l2 L

l4 l3 L0

�
Pl1l4
l3l2

ðL0Þ
�
: (20)

The first term Pl1l2
l3l4

ðLÞ is referred to as the primary

contraction of the trispectrum, while the final two terms
are known as secondary contractions. The primary con-
traction introduced by CIPs is given simply by

Pl1l2
l3l4

ðLÞ ¼ C��
L W�

l1l2L
W�

l3l4L
: (21)

Observationally, we will see that the picture of statistical
anisotropy introduced initially above is still a useful
ansatz; as the Universe shows us only a single realization
of both � ~k and �LM, a fixed �LM model is experimentally

indistinguishable from one in which the �LM are Gaussian
random variables [63].
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III. CIP ESTIMATOR

We can construct an estimator for the CIP power spec-
trum utilizing the connected trispectrum which it induces.
If we are interested in a single mode of this power spectrum
C��
L , then following Ref. [64], for example, an Edgeworth

expansion of the CMB likelihood leads to the following
optimal (minimum-variance) trispectrum estimator

Ĉ��
L ¼ N L

2Lþ 1

X
M

X
limi

ð�1ÞMGl1m1l2m2L
l3m3l4m4M

W�
l1l2L

�W�
l3l4L

ð �Tl1m1
�Tl2m2

�Tl3m3
�Tl4m4

� ½2 �Tl1m1
�Tl2m2

� �CTT
l1m1;l2m2

� �CTT
l3m3;l4m4

� ½2 �Tl1m1
�Tl3m3

� �CTT
l1m1;l3m3

� �CTT
l2m2;l4m4

� ½2 �Tl1m1
�Tl4m4

� �CTT
l1m1;l4m4

� �CTT
l2m2;l3m3

Þ; (22)

where N L is a normalization, �Tlm are a set of so called
‘‘inverse-variance filtered’’ multipoles determined from
the data map (we will discuss how these are obtained in
more detail shortly in Sec. III A), and �Clm;l0m0 is their

covariance matrix.
For any modern CMB experiment, which measures

millions of modes, the covariance matrices �Clm;l0m0 have

trillions of elements and are impossible toworkwith directly.
It is, however, computationally tractable to evaluate the
expression above (which distills these covariance matrices
down to a single number) using Monte Carlo simulations.
We will rewrite Eq. (22) in a form that makes the details of
this evaluation clearer, and also makes connection to the
discussion of statistical anisotropy in the previous section.

We begin by introducing the ‘‘quadratic estimator’’
��LM, which is a function of two inverse-variance filtered
temperature multipoles as

�� LM½ �Tð1Þ
lm ;

�Tð2Þ
lm� ¼

X
lm;l0m0

l l0 L
m m0 M

� �
W�

ll0L
�Tð1Þ
lm

�Tð2Þ
l0m0 :

(23)

If we were considering the CIP realization to be fixed, this
quadratic estimator is precisely the quantity which is
required for optimal estimation of �LM, following the
formalism of quadratic maximum likelihood (QML) esti-
mators [49,50,65–72]. This estimator is related to the
actual CIP multipole moment �LM by an overall normal-
ization. We will often find it useful to work with such un-
normalized quantities, which we will denote with overbars.
The reason is that for these maximum-likelihood estima-
tors, the normalization is formed from the inverse of the
estimator Fisher matrix. This quantity is also the variance
of the estimator, and so these un-normalized estimates
are effectively inverse-noise weighted. For this reason,

we have denoted the ��LM with an overbar, in analogy to
the inverse variance filtered temperature multipoles. This
makes the un-normalized estimators useful for estimating

other parameters, such as the overall amplitude of a scale-
invariant spectrum of CIPs, as we shall see below. We note
that �LM may be evaluated rapidly (with computational
cost Oðl3max Þ using fast spherical harmonic transforms) in
position space as the product of two filtered maps,

�� LM½ �Tð1Þ
lm ;

�Tð2Þ
lm�¼

Z
dn̂Y�

LMðn̂Þ �Tð1Þðn̂ÞSð2Þðn̂Þþ½ð1Þ$ð2Þ�;
(24)

where the filtered maps themselves are given by

�T ðaÞðn̂Þ ¼ X
lm

Ylmðn̂Þ �TðaÞ
lm ; (25)

SðaÞðn̂Þ ¼ X
lm

Ylmðn̂ÞCT;dT
l

�TðaÞ
lm ; (26)

where a ¼ 1 or a ¼ 2 as appropriate.
Using this notation, we rewrite the C��

L estimator as

Ĉ��
L ¼ �C��

L N L, where

�C ��
L ¼ C

�� ��
L �D

�� ��
L : (27)

The naive un-normalized power spectrum estimate C
�� ��
L is

given by

C
�� ��
L ¼ X

limi

X
M

1

ð2Lþ 1Þ hð
��LM½ �Tlm; �Tlm�

� ��LM½ �TðgÞ
lm ;

�TðgÞ
lm �Þ�ð ��LM½ �Tlm; �Tlm�

� ��LM½ �TðfÞ
lm ;

�TðfÞ
lm �Þig;f; (28)

and the ‘‘disconnected noise bias’’ estimate is given by

D
�� ��
L ¼ X

limi

X
M

1

ð2Lþ 1Þ h�4 ��LM½ �Tlm; �T
ðgÞ
lm � ��LM½ �Tlm; �T

ðgÞ
lm �

þ 2 ��LM½ �TðgÞ
lm ;

�TðfÞ
lm � ��LM½ �TðgÞ

lm ;
�TðfÞ
lm �ig;f: (29)

For both spectra, the ensemble average is taken over two
sets of statistically independent Monte Carlo simulations
of �T, labeled g and f. This expression could equivalently
be written with just a single set of simulations, however
evaluating it as is done here reduces the susceptibility to
numerical noise in the evaluation procedure.
The disconnected noise bias arises because even a purely

Gaussian (CIP and lensing-free) CMB has a nonzero four-
point function (but a vanishing trispectrum). This four-
point function has some nonzero overlap with the first
term on the right-hand side of Eq. (27), which is equivalent

to a more naive CIP power spectrum estimator, ~C��
L ¼

½N L=ð2Lþ 1Þ�PM
���
LM

��LM. If this estimator were used,
a spurious CIP signal would arise, even from a CIP-free
map. We avoid such contamination through proper use of
the Edgeworth expansion of the CMB likelihood function,
which yields the noise-bias-subtracted estimators given by
Eq. (22) and equivalently Eq. (27).
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Rather than a single mode C��
L , we may be interested

in the amplitude A of a fiducial power spectrum

C��
L ¼ AC��;ðfidÞ

L , for which the corresponding optimal
estimator is

Â ¼ N
XLmax

L¼Lmin

ð2Lþ 1Þ �C��
L C��;ðfidÞ

L ; (30)

where N is an overall normalization, not to be confused
with N L. Note the use of the un-normalized �C��

L here

rather than Ĉ��
L .

A. Filtering

In the case of full-sky coverage with homogeneous noise
levels, the inverse-variance filter is given simply by

�T lm ¼ Fl

Bl

Xnpix
p¼0

4�

npix
Ylmðn̂pÞTobs

p ; (31)

where Bl is the beam- and pixel-transfer function, Tobs
p

is the observed map indexed by pixel p, and the filter
function Fl is given by

Fl ¼ 1

CTT
l þ CTT;noise

l

: (32)

For the more realistic case of a beam-convolved sky map
with inhomogeneous noise, the construction of �Tlm is more
involved. To obtain �Tlm from a set of WMAP sky maps, we
use an inverse-variance filter which properly accounts for
sky-cuts and the inhomogeneity of the map and its noise
levels by solving the equation

�T lm ¼ ðCTT
l Þ�1

X
l0m0

X
p;	

C�1
lm;l0m0Y

�p;	
l0m0 N�1

p;	T
obs
p;	; (33)

where the matrix Clm;l0m0 is given by

C lm;l0m0 	 X
p;	

½ðCTT
l Þ�1�ll0�mm0 þY�p	

lm N�1
p;	Y

p;	
l0m0 �: (34)

Here the p denotes a map pixel, 	 denotes a particular
channel map (usually a given frequency band), Tobs

p;	 is the

observed (beam convolved) sky map in pixel p at fre-
quency 	, the pointing matrix Yp;	

lm 	 B	
l Ylmðn̂pÞ gives

the value of the spherical harmonic at the center of pixel
p, convolved with the appropriate beamþ pixel transfer
function Bl. N is the noise covariance matrix. We use a
diagonal noise covariance in pixel space with

N�1
p;	 ¼ Nhits;p;	


2
	

Mp; (35)

where 
	 is a map-dependent noise level and Nhits;p is the

number of observations of pixel p for map 	. Mp is a map

which is zero for masked pixels and unity elsewhere.
Effectively, it sets the noise level to infinity for masked
pixels, ensuring that they are ignored in the rest of the

analysis. We have simulated the noise as white and
uncorrelated between pixels. There are noise correlations
in the WMAP maps [73] on large angular scales (l < 48),
which can enhance the noise power spectrum. The CMB
power spectrum is more than 2 orders of magnitude higher
than the noise power spectrum even where the noise power
spectrum is enhanced by correlations, and so we neglect
them in our simulations.
We evaluate the matrix inverse of Eq. (34) using con-

jugate descent with the fast multigrid preconditioner of
Ref. [74]. Generally, we will find it useful to work with
individual WMAP frequency maps (using only a single
entry for 	 in the equations above), though for our final
results we will combine all of the useable bands.
For analytical purposes, it is useful to have a diagonal

approximation to the full-blown inverse variance filter. For
this we use the Fl function at the top of this section,
estimating the average noise power spectrum of the
channel-combined, beam-deconvolved map as

CTT;noise
l � 4�

npixfsky

�X
	

ðB	
l Þ2

1Pnpix
p¼0 Np;	

��1
; (36)

where fsky ¼ Pnpix
p¼0 Mp=npix is the unmasked sky fraction.

B. Normalization and bias

We now analytically derive an approximate normaliza-
tion N of our estimator. We will eventually correct for
deviations from this normalization using Monte Carlo
simulations. The analytical treatment, however, is also
useful as a tool to explicitly compute the estimator bias
induced by other physical sources of non-Gaussianity at
the trispectrum level.
Consider full-sky coverage, with homogeneous noise, in

which case the filtered CMB covariance matrix �Clm;l0m0 is

diagonal. If we ensemble average over CMB and CIP
realizations in Eq. (22), we find that (by construction)

Ĉ��
L is directly proportional to the connected four-point

function of Tlm;

hĈ��
L iCIP;CMB ¼ N L

2Lþ 1

X
M

X
limi

ð�1ÞMGl1m1l2m2L
l3m3l4m4M

� Fl1Fl2Fl3Fl4W
�
l1l2L

W�
l3l4L

� h �Tl1m1
�Tl2m2

�Tl3m3
�Tl4m4

iC: (37)

Here Fl are the filter functions of the previous section.
For generality, so that we can estimate possible biases to

our estimator from known non-Gaussian sources such as
unresolved point sources and gravitational lensing by
large-scale structure, let us consider the response of this
estimator to a trispectrum with the primary form

xPl1l2
l3l4

ðLÞ ¼ Cxx
L Wx

l1l2L
Wx

l3l4L
: (38)

This covers both the CIP trispectrum of Eq. (21), as well as
the trispectra due to gravitational lensing of the CMB by
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large-scale structure, and unresolved point sources which
pollute the map. The trispectrum for CMB lensing is given
by [62]

�Pl1l2
l3l4

ðLÞ ¼ C��
L W�

l1l2L
W�

l3l4L
; (39)

where

W�
l1l2L

¼Cl2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1þ 1Þð2l2þ 1Þð2Lþ 1Þ

4�

s
l1 l2 L

0 0 0

 !

�½LðLþ 1Þþ l2ðl2þ 1Þ� l1ðl1þ 1Þ�þ fl1 $ l2g:
(40)

The trispectrum associated with point-source shot noise is
given by [75]

S4Pl1l2
l3l4

ðLÞ ¼ 1

3
hS4iWS2

l1l2L
WS2

l3l4L
; (41)

where hS4i is the kurtosis of the point sources and the
weight function is given by

WS2

l1l2L
¼ l1 l2 L

0 0 0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2Lþ 1Þ

4�

s
:

(42)

We discuss effective amplitudes for S4 using the WMAP
point source masks in Appendix A.

Both point sources and gravitational lensing represent

potential sources of bias in the reconstruction of C
�� ��
L and

the estimator Â. It is important to either verify that these
sources of bias are negligible, or to construct appropriately
debiased estimators (as done, for example, for estimators
of patchy reionization optical depth �, in Ref. [76], or for
CMB lensing estimators in [77]).

We propagate the trispectrum described by the primary
contraction through to Eq. (37), obtaining the ensemble-
averaged contribution of the physical effect x (which can
denote CIPs, weak gravitational lensing, or point sources)

to the CIP trispectrum estimator Â,

h �C��
L ijx ¼ P�x

L þ S�x
L : (43)

Here P�x
L and S�x

L capture the contributions from the
primary and secondary contractions of any trispectrum,
respectively.

The primary term is given by P��
L ¼ Cxx

L R�x
L , where

the response function R�x
L is given by

R �x
L ¼

�
1

2Lþ 1

X
ll0
W�

ll0LW
x
ll0LFlFl0

�
2
: (44)

The secondary term S is more complicated, involving
Wigner-6j symbols which are numerically intensive to
calculate. We estimate these contributions using flat-sky
expressions to evaluate the secondary contractions, given
by [78]

S�x
L ¼

Z d2l1
ð2�Þ2

Z d2l2
ð2�Þ2 Fjl1jFjl2jW

�ðl1; l2ÞW�ðl01; l02Þ
� fCjl1�l0

1
jWxð�l1; l

0
1ÞWxð�l2; l

0
2Þ

þ Cjl1�l0
2
jWxð�l1; l

0
2ÞWxð�l2; l

0
1Þg; (45)

where l1 and l2 are Fourier space angular multipole
vectors, l1 þ l2 ¼ L and the flat-sky weight function is
given by

W�ðl1; l2Þ ¼ CT;dT
jl1j þ CT;dT

jl2j : (46)

The flat-sky weight functions for CMB lensing and point-
source shot noise are [75,79]

W�ðl1; l2Þ ¼ CTT
l1
½ðl1 þ l2Þ � l1� þ ðl1 $ l2Þ;

WS2ðl1; l2Þ ¼ 1: (47)

A special case of the bias calculation is for x ¼ �, which
yields the response of �C��

L to CIP fluctuations themselves
and therefore the normalization of the estimator. We will
see that for CIPs, the primary term is dominant. We can
therefore use Eq. (44) as an approximate, analytical nor-

malization for Ĉ��
L , with

N approx

L ¼ ½fskyR��
L ��1: (48)

The corresponding approximate normalization for the fi-

ducial power spectrum amplitude estimator Â is given by

N approx ¼
�
fsky

XLmax

L¼Lmin

ð2Lþ 1ÞðC��;ðfidÞ
L Þ2R��

L

��1
:

(49)

We will ultimately correct this normalization for our Â
estimates using Monte Carlo simulations, which implicitly
include the contribution from the secondary contractions
above, as well as cut-sky effects beyond simple fsky scal-

ing. For a scale-invariant power spectrum, we find that the
approximation of Eq. (49) is accurate to better than 20%.
In Fig. 2 we show estimates of the contribution of

primary and secondary contractions of CIPs for a scale-
invariant power spectrum, as well as weak lensing of the
CMB and point sources. We see that the primary and
secondary contractions of the lensing trispectrum yield
negligible contributions to the CIP estimator, compared
with the estimator noise power spectrum.
The point-source (discussed at length in Appendix A)

shot-noise trispectrum also contributes negligibly to the
CIP estimator. We also see that secondary contractions of
the CIP trispectrum are negligible compared with primary
contractions. As the magnitude of these additional biases is
orders of magnitude below the maximum allowed signal
and the primary estimator noise level, we do not worry
about inaccuracies in the flat-sky approach, although they
could be quantified using simulations (as done for lensing
in Refs. [80,81], where these inaccuracies are shown to be
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negligible at levels of precision comparable to those of
the Planck satellite mission).

IV. WMAP ANALYSIS

A. Data and simulations

We analyze the ‘‘foreground-reduced’’ CMB tempera-
ture anisotropy maps, with associated beam and noise
characterization, from the final, 9-year WMAP data release
[82]. We use the Q-, V-, and W-band maps, with nominal
central frequencies of 40, 60, and 90 GHz, respectively.
To remove known Galactic and bright point source con-
tamination, we use the KQ85 temperature analysis mask
produced by the WMAP team.

To compute the mean-field and disconnected noise bias
of our estimator [Eqs. (29) and (28)], we use CMBþ noise
simulations of the data to compute the Monte Carlo aver-
ages (300 realizations per WMAP band). We simulate a
CMB temperature realization Tsim

lm with power spectrum

CTT
l given by a flat �CDM cosmology consistent with the

WMAP power spectrum [53], with parameters given in the
Introduction, computed using the CAMB [55] code. We
apply a beam and pixel transfer function to these tempera-
ture multipoles, and then project them onto an Nside ¼ 512

HEALPix map with a harmonic transform. To each pixel in
this map, we add a Gaussian noise contribution with vari-
ance given by Eq. (35). These simple simulations are then
filtered in the same way as the real data [that is, using

Eq. (31)] to produce the simulated quantities �TðgÞ and �TðfÞ
of Eqs. (29) and (28).
To test the normalization of our CIP estimator, we also

require non-Gaussian simulations with C��
L � 0. We form

these non-Gaussian CMB simulations with power spectrum
CTT
l and trispectrum given by Eq. (21) using three pieces

Tlm ¼ Alm þ �lm þ Clm. Alm is drawn from a Gaussian
distribution with power spectrum CAA

l (the choice of

CAA
l is somewhat arbitrary for our purposes, we will use

CAA
l ¼ CTT

l =2Þ. Then we add the term �lm which ensures

that our simulations have the desired trispectrum, with

�lm ¼
Z

dn̂Y�
lmðn̂Þ

�X
LM

YLMðn̂Þ�LM

�

�
�X
l0m0

Yl0m0 ðn̂ÞAl0m0
CT;dT
l0

CAA
l0

�
: (50)

Here �LM are Gaussians drawn for a fiducial power spec-

trum C��;ðfidÞ
L . We add a final Gaussian term Clm which sets

the overall power spectrum of our non-Gaussian simula-
tions to beCTT

l . TheClm are drawn from the power spectrum

CCC
l ¼ CTT

l � CAA
l � C��

l , with

C��
l ¼X

ll0

ð2lþ 1Þð2l0 þ 1Þ
4�

l l0 L
0 0 0

� �
2�C��

L ðCT;dT
l0 Þ2

CAA
l0

:

(51)

B. Results

In Fig. 3 we plot estimated CIP power spectra Ĉ��
L from

separate analyses of Q-, V-, and W-band maps, as well as
an inverse-variance weighted combination of the three
maps (denoted QVW). We use the approximate analytical
normalization of Eq. (48). This neglects the secondary CIP
trispectrum contractions, which we see in Fig. 2 are
negligible, as well as cut-sky effects beyond simple fsky
scaling. For the question we are asking in this figure
(‘‘Is the measured CIP power nonzero with statistical
significance?’’), the accuracy of the normalization is not
important, as corrections to Eq. (48) show up in both the
signal and noise, and thus leave the significance of any
signal or limit unaffected. We see no evidence for anoma-
lous C��

L power in the individual Q-, V-, orW-band maps.
We may now obtain limits on specific models for the CIP
power spectrum, as well as model-independent constraints
to the CIP power spectrum at different multipole numbers L.

1. Limits to a scale-invariant power spectrum of CIPs

We now place limits on the amplitude of a scale-
invariant power spectrum of CIP fluctuations, which in

FIG. 2 (color online). Contributions to our trispectrum estima-
tor of the normalized CIP power spectrum C��

L as a function of
scale, for WMAP V-band noise and beam. The estimator noise
power spectrumN approx

L D��
L is shown as a black solid curve. For

comparison, we plot a scale-invariant power spectrum (black
short-dashed) C��

L ¼ 0:003� ½LðLþ 1Þ��1 with an amplitude
comparable to our one standard-deviation constraint. We also
calculate the contribution from the secondary contractions for
this CIP power spectrum (N approx

L S��
L , black long-dashed). The

expected contribution from the primary and secondary contrac-
tions of the CMB lensing trispectrum are shown as blue (gray)
short-dashed and blue (gray) dotted curves, respectively. In addi-
tion, we plot a pessimistic (larger than the maximum in
Appendix A) estimate of the V-band contamination from unre-
solved point sources, with S4 ¼ 5� 10�7 �K4, shown as a red
(grey) dot-dashed curve. The primary and secondary contributions
from the shot-noise trispectrum have the same shape, and so we
only plot their sum. An analogous analysis in the Q and W bands
yields the same conclusion, and so we omit those curves here.
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multipole space projected onto a two-dimensional sky
is [50]

C��
L ¼ C��;ðfidÞ

L ’ A

LðLþ 1Þ ; (52)

for some amplitude A. For A ¼ 1, corresponding realiza-
tions of � would have fluctuations with amplitude of
approximately unity. For L * 870, the scaling in Eq. (52)
actually turns over to L�3 as the wavelength of the CIP
falls below the thickness of the last-scattering surface.
These modes have very low signal-to-noise ratio using
present data and thus contribute negligibly to our estimator
of A. It is thus adequate to use Eq. (52). The results of these
fits are shown in Fig. 4, and are also consistent with zero.
Note that a value of A < 0 is nonphysical, but allowed by
our measurement as we have not imposed a prior on the
positivity of A.

For our measurement, we use Eq. (30), Lmin ¼ 2, and
Lmax ¼ 1000. We use the normalization N ¼ N approx,
where N approx is given in Eq. (49). Although this normal-
ization is only approximate, it is adequate to answer the
question of whether or not the measured value of A de-
viates from zero with statistical significance. Later, when
limits on A are set, we account for corrections to this
normalization.

Our constraint on Â comes mainly from very low-L

modes of �C��
L . The noise variance of Ĉ��

L at L < 100
goes as 1=ð2Lþ 1Þ, which falls off more slowly than the
scale-invariant spectrum, and so most of our sensitivity to
A comes from a small number of low-L modes. Our
estimator probability density function (PDF) is thus
slightly non-Gaussian (as can be seen from the histograms
of Fig. 4), for the same reason that the distribution of
low-L power-spectrum estimates is non-Gaussian. This

also occurs for trispectrum-based estimators of the ampli-
tude of local-type non-Gaussianity jfNLj [83].
We find best-fit values for Q-, V-, and W-bands sepa-

rately, as well as for theQVW combination, of ÂQ ’ 1:4�
10�3, ÂV ’ �8:4� 10�4, ÂW ’ 2:7� 10�3, ÂQVW ’
3:9� 10�4. In Fig. 4, these values are compared with the

distribution of Â values for simulations in which the real
value A ¼ 0. We see that our best-fit values are consistent
with the null hypothesis at 95% confidence.
To establish upper limits on A, we need the function

PðAjÂÞ, the probability distribution of A values, given the

estimated value Â. Assuming flat priors for the ‘‘data’’

(estimator value Â) and theoretical parameter (A), we have

PðAjÂÞ / PðÂjAÞ. From our Monte Carlo simulation of the
A ¼ 0:01 case, we know that the width of the non-Gaussian

function PðÂjAÞ depends noticeably on the real value of A,

and so it is important to properly determine PðÂjAÞ.
To this end, we conduct a suite of Monte Carlo simula-

tions, estimating ÂQVW for multiple realizations (300 per

band and per real A value), at the series of true parameter
values A ¼ f0:000; 0:002; 0:005; 0:010; 0:020g. The results
for PðÂjAÞ are shown in Fig. 5. To compute an upper limit

to A, we use a model for PðAjÂÞ [and thus PðÂjAÞ].
The model for PðÂjAÞ is as follows: A 2 distribution

PðEL; kL; sLÞ is fit to the simulated random variable EL 	
N ð2Lþ 1Þ �C��

L C��;fid
L for 2 � L � 20. At each L and for

any givenA value, this distribution has two free parameters,
the number of degrees of freedom kL, and a scale parameter
sL such that hELi ¼ kLsL. The estimator used is given by

Â ¼ XL¼Lmax

L¼Lmin

EL: (53)

FIG. 3. Estimates of the CIP power spectrum C��
L using the WMAP Q-, V-, andW-band data. The QVW points give the result when

all three bands are combined with an inverse-variance filter. Gray lines give the measurements for individual multipoles.

GRIN et al. PHYSICAL REVIEW D 89, 023006 (2014)

023006-10



Amodel PDFP�ðÂjAÞ is thus obtained by convolution over
PðEL; kL; sLÞ. This model is shown as the dashed curve in

Fig. 5 and is clearly a reasonable fit to the data.
Alternatively, we may just fit PðEL; kL; sLÞ for the A¼0

case and then adjust the scale parameter sL ! sL � fð1þ
A=½LðLþ 1Þð2Lþ 1Þ�g. An analogous convolution then

yields the semianalytic function P�ðÂjAÞ, which is com-

parably accurate to P�ðÂjAÞ in fitting the estimator PDF
from the simulation, and readily interpolated to obtain
quantities of interest.

Our final upper limit is computed by starting with

P�ðÂjAÞ, obtaining PðAjÂÞ using Bayes’s theorem with a
flat prior on A in the simulated domain, computing the
cumulative probability function (CDF) associated with

PðAjÂÞ, and interpolating this function, incrementing A
upwards to define a 95% confidence interval. Like

the measurement of ÂQVW, these simulations use N ¼
N approx, and thus calibrate the relationship between A and

ÂQVW, accounting for errors induced in the approximation

N ¼ N APPROX. The resulting upper limits on A are thus
correctly normalized.

Given the observedmultiband value ÂQVW ¼ 3:9� 10�4,

we compute Pð3:9� 10�4jAÞ [and thus PðAj3:9� 10�4Þ]
and find that A � 1:1� 10�2 at 95% confidence.
Measurements of the baryon fraction in galaxy clusters
[34] impose the limit A � 5:4� 10�3 to the amplitude of a
scale-invariant spectrum of CIPs [49,50]. The larger value
quoted in Ref. [49] is obtained using a different definition

of A, which we have appropriately rescaled here. We may
also restate our result in terms of �cl, the rms fluctuation in
the baryon-darkmatter density ratio on galaxy cluster scales,
using our definition of A and Eq. (1) of Ref. [49] (with the
associated wave-number range kmin & k & kmax ) to obtain

�2
cl ’

A ln ð1000Þ
2�

: (54)

We obtain �cl & 0:11, to be compared with the result
directly obtained from the cluster baryon fraction, �cl &
0:077.
As predicted in the forecasts of Ref. [50], the CIP

sensitivity of WMAP is comparable to measurements of
the baryon fraction in galaxy clusters. The physics of this
CMB probe of CIPs is, however, completely different than
that used in the cluster probe, offering an important and
truly primordial constraint on the amplitude of CIPs.

2. Constraints to model-independent CIP amplitude
at different angular scales

Aside from placing limits to a scale-invariant CIP power
spectrum, we may also place limits on the CIP amplitude at
different angular multipole numbers L, without reference
to a fiducial model.

FIG. 4. Fits for the amplitude of a scale invariant power
spectrum [Eq. (52)], using the WMAP Q-, V-, and W-band
data. Dashed vertical lines give the fits themselves, while the
solid histograms give the distribution of Â measured on simula-
tions with Â ¼ 0.

FIG. 5. Arbitrarily normalized probability distribution for
ÂQVW in the presence of a scale-invariant spectrum of CIPs

C��
L ¼ A=½LðLþ 1Þ�. The estimated value is determined from

an appropriately inverse-variance weighted sum of the three
maps, simulated with an ensemble of Monte Carlo simulations.
Dashed vertical line shows input value of A. Dashed curves show
P�ðÂjAÞ, while solid curves show P�ðÂjAÞ. Both models are
described in Sec. IVB.
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The PDF for P�ðÂjAÞ used to obtain the above upper
limits is derived by fitting a 2 distribution to the PDF for

each Ĉ��
L , assuming no covariance between Ĉ��

L for differ-
ent L, convolving over different multipole moments, and
applying Bayes’s theorem. This ansatz fits the Monte Carlo
histograms well, and so we may use the same simulation to
impose limits on C��

L independently for each scale L,
without making any assumptions about the functional
form of the CIP power spectrum.

We thus model the histogram of Ĉ��
L values using

the function PðEL; kL; sLÞ, where sL ¼ sA¼0
L � f½1þ

C��
L =ð2Lþ 1Þ�g. Here sA¼0

L is the best-fit value of the 2

scale-parameter sL for the null hypothesis simulation. For
all multipoles in the range, 1 � L � 20, this PDF fits the
Monte Carlo results. Applying Bayes’s theorem on an
L-by-L basis with the resulting PDF, we obtain

PðC��
L jĈ��

L Þ. Using the estimated values Ĉ��
L from the

minimum-variance-weighted QVW combination, we ob-
tain 95% confidence upper limits on C��

L in the L-range of
interest. The results are shown in Table I and Fig. 6, where
the corresponding angular scale and rms CIP amplitude
upper limit is shown. We thus see that the relative mass
fractions of baryons and dark matter can vary by no
more than 7%–17% on angular scales of 5–100� at the

SLS. This limit is forced upon us by CMB data alone,
with no reliance on galactic abundance measurements, gal-
axy physics, or knowledge about the nature of cosmic
reionization.

V. CONCLUSIONS

Compensated isocurvature perturbations (CIPs) break
the usual assumption that the primordial cosmic baryon
fraction is spatially homogeneous. Here, building on past
work searching for CIPs using variations in the cluster
baryon fraction, we use WMAP 9-year maps of the CMB
temperature fluctuations to search for CIPs. We apply a
trispectrum-based estimator to show that the amplitude of a
scale-invariant spectrum of CIPs must obey the constraint
A & 1:1� 10�2, combining all three CMB-dominated
WMAP bands. Independent of the functional form of the
CIP power spectrum, the rms CIP amplitude must be no
greater than �10% on scales of 5–100�.
As we saw, the estimator for C��

L is an appropriately
filtered four-point function of the data, probing correlations
that are absent under the null hypothesis. Gaussian CIPs
uncorrelated with the underlying adiabatic fluctuation can
then be thought of as inducing a non-Gaussian signal in the
CMB, with vanishing three-point function and nonvanish-
ing four-point function.
It may be that CIPs are not an independent Gaussian

random field (as assumed here), but rather, as in some
curvaton models [33], correlated with the usual adiabatic
fluctuations. In this case, schematically, the induced tem-
perature fluctuation is �T ���, as before, but now, since
� ¼ A� for some correlation coefficient, �T ��2. The
resulting CMB three-point function is then hTTTi /
h�TTTi / h�4i. Curvaton-inspired CIPs will thus cause
an additional non-Gaussian signature, a three-point corre-
lation or bispectrum.

TABLE I. Upper limits (95% confidence level) C��;max
L to the

angular power spectrum of CIPs as a function of multipole
number L, as recovered from an inverse-variance weighted
sum of the three WMAP 9-year CMB maps, and the
Monte Carlo simulations described in Sec. IVB 1. Also shown
is the corresponding angular scale in degrees of �� ’ 100�=L
and the 95% confidence upper limit to the rms CIP amplitude on

that angular scale, �max
rms ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1ÞC��;max

L =ð2�Þ
q

.

L C��;max
L � (in �) �max

rms

1 2:7� 10�2 100 9:2� 10�2

2 2:1� 10�2 50 1:4� 10�1

3 4:3� 10�3 33 9:1� 10�2

4 1:7� 10�3 25 7:3� 10�2

5 1:6� 10�3 20 8:8� 10�2

6 1:0� 10�3 17 8:3� 10�2

7 2:0� 10�3 14 1:3� 10�1

8 1:0� 10�3 13 1:1� 10�1

9 9:0� 10�4 11 1:1� 10�1

10 7:8� 10�4 10 1:2� 10�1

11 1:2� 10�3 9.1 1:6� 10�1

12 4:6� 10�4 8.3 1:1� 10�1

13 9:7� 10�4 7.7 1:7� 10�1

14 7:8� 10�4 7.1 1:7� 10�1

15 4:5� 10�4 6.7 1:3� 10�1

16 6:9� 10�4 6.3 1:7� 10�1

17 4:9� 10�4 5.9 1:5� 10�1

18 5:3� 10�4 5.6 1:7� 10�1

19 3:9� 10�4 5.3 1:5� 10�1

20 4:0� 10�4 5.0 1:6� 10�1

FIG. 6. Upper limits (95% confidence level) to the RMS CIP
amplitude as a function of multipole number L, as recovered
from an inverse-variance weighted sum of the three WMAP
9-year CMB maps, and the Monte Carlo simulations described
in Sec. IVB 1.
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We note that the CIP estimator described here could also
be applied to the recently released nominal mission data of
the Planck satellite, for which we forecast a sensitivity
improvement factor of �3 in �cl or A [50]. Future ground-
based CMB polarization data (such as ACTPol [84] and
SPTpol [85]) also have the potential to significantly improve
the sensitivity of the CIP probe described here.

It is claimed in Ref. [33] that CIPs would lead to
negligible changes in the total matter power spectrum,
and would thus not be detectable using galaxy surveys. It
stands to reason, however, that star formation efficiency,
cooling, and other processes are strongly dependent on the
baryon density, and that the statistics of actual galaxies
would be drastically altered in the presence of CIPs. Using
semianalytic models of galaxy formation, this could be
tested. Large fluctuations in the Jeans/cooling masses in
the presence of a CIP could also change the dynamics
of reionization, leading to an additional probe. We will
explore these possibilities in future work.
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APPENDIX: POINT SOURCES

Point sources that are bright enough to be detected are
removed using theWMAP analysis mask used in this paper.
There is, however, a population of residual sources which
are too faint to be directly detected individually in themaps,
but which contribute non-negligibly to the CMB tempera-
ture power spectra, as well as higher-order statistics like the
trispectrum which we probe here. When modeling these
sources, it is useful to consider an effective limiting flux
threshold Sc, above which all sources are assumed to be
detected, and belowwhich none are. AtWMAP frequencies
and sensitivity, the dominant residual contribution is from a
small number of radio sources directly below the detection
threshold. The statistics of this population are dominanted
by the one-point (or ‘‘shot-noise’’) component. If the

differential number density of sourceswith flux S is denoted
dN=dS, the unresolved shot noise contribution to the
reduced trispectrum is given by [86–88]

hS4i 	 g4ðxÞ
Z Sc

0
dSS4

dN

dS
; (A1)

where x ¼ h	=ðkBTÞ ¼ 	=56:84 GHz for experimental
channel frequency 	 and gðxÞ is a conversion factor from
Jansky flux units to thermodynamic �K, given by

gðxÞ 	 2
ðhcÞ2
ðkBTÞ3

�
sinh 2ðx=2Þ

x4

�
’ ðex � 1Þ2

x4ex
�K

99:27 Jy sr�1
:

(A2)

The physical constants here are the Planck constant h,
speed of light c, Boltzmann constant kB, and CMB mean
temperature T.
We use two models for dN=dS, to be sure that our

conclusions about the contribution of shot noise to the
trispectrum are robust. The first (‘‘model 1’’ hereafter) is
given in Ref. [89], and is parametrized by dN=dS ¼
N0=S

�, where � ¼ 2:15, and N0 ¼ 12 Jy1:15 sr�1. The
second (‘‘model 2’’ hereafter) is obtained from tables of
source counts in Ref. [90]. We fit a power law of the form
used above to these tables, and obtain � ¼ 2:74 and N0 ¼
44:2 for WMAP Q-band source counts. For the V-band
source counts, we obtain � ¼ 2:59 and N0 ¼ 21:8.
W-band source counts are not given in these tables, but
we use the Q- and V-band fits (cases W� and W�) as a
model forW-band source counts. Flux cuts and conversion
functions gðxÞ appropriate for the W band, however, are
used for the W-band trispectrum estimates.
We now use Eq. (A1) to obtain estimates for the

unresolved point-source trispectra. We use a flux cut of
Sc ’ 1:00 Jy, as it was found in Ref. [91] that this value
reproduces observed WMAP point-source bispectra.
For the Q-band data with model 1, we obtain hS4i ¼

7:03� 10�7 �K4. For the Q-band data with model 2, we
obtain hS4i ¼ 3:29� 10�6 �K4. For V-band data with
model 1, we obtain hS4i ¼ 3:60� 10�8 �K4. For V-band
data with model 2, we obtain hS4i ¼ 7:71� 10�8 �K4.
For W-band data with model 1, we obtain hS4i ¼
1:89� 10�9 �K4. Formodel 2, caseW�, we obtain hS4i ¼
8:78� 10�9�K4. For model 2, case W�, we obtain
hS4i ¼ 4:05� 10�9�K4.
We plot a pessimistic estimate of the point-source con-

tamination in Fig. 2 for the WMAP V-band. As we know
from the preceding discussion, the W-band contribution is
negligible in comparison. The Q band has the most worri-
some amplitude of possible point source bias; however, it is
still more than an order of magnitude below the scale-
invariant power spectrum shape at the low (L < 10) multi-

poles and amplitudes (Â < 5� 10�3), which we probe most
sensitively. We do not see evidence for any departure from
zero in our model-independent C��

L measurement, which
would be characteristic of point-source contamination.

BARYONS DO TRACE DARK MATTER 380,000 YEARS . . . PHYSICAL REVIEW D 89, 023006 (2014)

023006-13



[1] A. H. Guth and S. Pi, Phys. Rev. Lett. 49, 1110 (1982).
[2] A. D. Linde, Phys. Lett. 116B, 335 (1982).
[3] J.M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys.

Rev. D 28, 679 (1983).
[4] S. Hawking, Phys. Lett. 115B, 295 (1982).
[5] V. F. Mukhanov and G. Chibisov, Sov. Phys. JETP 56, 258

(1982).
[6] A. A. Starobinsky, Phys. Lett. 117B, 175 (1982).
[7] R. H. Brandenberger, Int. J. Mod. Phys. A 09, 2117 (1994).
[8] A. D. Linde, JETP Lett. 40, 1333 (1984).
[9] A. D. Linde and V. F. Mukhanov, Phys. Rev. D 56, R535

(1997).
[10] V. F. Mukhanov, H. Feldman, and R.H. Brandenberger,

Phys. Rep. 215, 203 (1992).
[11] D. Langlois and A. Riazuelo, Phys. Rev. D 62, 043504

(2000).
[12] D. Langlois, Phys. Rev. D 59, 123512 (1999).
[13] M. Axenides, R. H. Brandenberger, and M. S. Turner,

Phys. Lett. 126B, 178 (1983).
[14] D. Seckel and M. S. Turner, Phys. Rev. D 32, 3178 (1985).
[15] P. J. E. Peebles, Astrophys. J. 510, 523 (1999).
[16] P. J. E. Peebles, Astrophys. J. 510, 531 (1999).
[17] S. D. Burns, arXiv:astro-ph/9711303.
[18] W. Hu, Phys. Rev. D 59, 021301(R) (1998).
[19] W. Hu, E. F. Bunn, and N. Sugiyama, Astrophys. J. 447,

L59 (1995).
[20] K. Enqvist, H. Kurki-Suonio, and J. Valiviita, Phys. Rev. D

62, 103003 (2000).
[21] K. Enqvist and H. Kurki-Suonio, Phys. Rev. D 61, 043002

(2000).
[22] D. Larson et al., Astrophys. J. Suppl. Ser. 192, 16 (2011).
[23] E. Komatsu et al. (WMAP Collaboration), Astrophys. J.

Suppl. Ser. 192, 18 (2011).
[24] P. Ade et al. (Planck Collaboration), arXiv:1303.5082.
[25] J. Valiviita and T. Giannantonio, Phys. Rev. D 80, 123516

(2009).
[26] C. Zunckel, P. Okouma, S. Muya Kasanda, K. Moodley,

and B.A. Bassett, Phys. Lett. B 696, 433 (2011).
[27] M. Bucher, J. Dunkley, P. Ferreira, K. Moodley, and C.

Skordis, Phys. Rev. Lett. 93, 081301 (2004).
[28] M. Kawasaki and T. Sekiguchi, Prog. Theor. Phys. 120,

995 (2008).
[29] M. Beltrán, J. Garcı́a-Bellido, J. Lesgourgues, and M.

Viel, Phys. Rev. D 72, 103515 (2005).
[30] U. Seljak, A. Slosar, and P. McDonald, J. Cosmol.

Astropart. Phys. 10 (2006) 014.
[31] M. Beltran, J. Garcia-Bellido, J. Lesgourgues, and A.

Riazuelo, Phys. Rev. D 70, 103530 (2004).
[32] T. Takahashi, M. Yamaguchi, and S. Yokoyama, Phys.

Rev. D 80, 063524 (2009).
[33] C. Gordon and J. R. Pritchard, Phys. Rev. D 80, 063535

(2009).
[34] G. P. Holder, K.M. Nollett, and A. van Engelen,

Astrophys. J. 716, 907 (2010).
[35] D. H. Lyth, C. Ungarelli, and D. Wands, Phys. Rev. D 67,

023503 (2003).
[36] S. Gupta, K.A. Malik, and D. Wands, Phys. Rev. D 69,

063513 (2004).
[37] C. Gordon and A. Lewis, Phys. Rev. D 67, 123513 (2003).
[38] K. Enqvist, S. Nurmi, G. Rigopoulos, O. Taanila, and T.

Takahashi, J. Cosmol. Astropart. Phys. 11 (2009) 003.

[39] D. Spolyar, arXiv:1111.3629.
[40] D. E. Kaplan, M.A. Luty, and K.M. Zurek, Phys. Rev. D

79, 115016 (2009).
[41] M. R. Buckley and L. Randall, J. High Energy Phys. 09

(2011) 009.
[42] R. Allahverdi, B. Dutta, and K. Sinha, Phys. Rev. D 83,

083502 (2011).
[43] P.-H. Gu, M. Lindner, U. Sarkar, and X. Zhang, Phys. Rev.

D 83, 055008 (2011).
[44] J. J. Heckman and S.-J. Rey, J. High Energy Phys. 06

(2011) 120.
[45] J. McDonald, Phys. Rev. D 83, 083509 (2011).
[46] A. Lewis and A. Challinor, Phys. Rev. D 76, 083005

(2007).
[47] R. Barkana and A. Loeb, Mon. Not. R. Astron. Soc. 363,

L36 (2005).
[48] M. Kawasaki, T. Sekiguchi, and T. Takahashi, J. Cosmol.

Astropart. Phys. 10 (2011) 028.
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