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Detecting a stochastic gravitational wave background requires that we first understand and model any
astrophysical foregrounds. In the millihertz frequency band, the predominate foreground signal will be
from unresolved white dwarf binaries in the galaxy. We build on our previous work to show that a
stochastic gravitational wave background can be detected in the presence of both instrument noise and a
galactic confusion foreground. The key to our approach is accurately modeling the spectra for each of the
various signal components. We simulate data for a gigameter Laser Interferometer Space Antenna
operating in the millihertz frequency band with both six and four links. We obtain posterior distribution
functions for the instrument noise parameters, the galaxy level and modulation parameters, and the
stochastic background energydensity.We find thatwe are able to detect a scale-invariant stochastic background
withenergydensityas lowasΩgw ¼ 2 × 10−13 forasix-linkinterferometerandΩgw ¼ 5 × 10−13 fora four-link
interferometer with one year of data.
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I. INTRODUCTION

Primordial gravitational waves from the early Universe
may be detectable by current and future gravitational wave
observatories. The Laser Interferometer Gravitational Wave
Observatory (LIGO) [1] and pulsar timing arrays (PTAs)
[2] have already set bounds on the energy density in a
stochastic gravitational wave background in their respec-
tive wave bands. In this paper we show that complementary
bounds can be set in the millihertz wave band with a
space-based interferometer. To do so, we must properly
account for instrument noise as well as any astrophysical
foregrounds.
Terrestrial detectors such as LIGO and PTAs have the

benefit of being able to use cross-correlation between
multiple detectors to separate stochastic signals from
stochastic instrument noise [3–5]. With prospects for only
one space-based detector in the foreseeable future, we will
not be able to employ the same technique. In Ref. [6],
hereafter paper I, we showed that it is possible to separate
instrument noise from a stochastic gravitational wave back-
ground by exploiting the differences in the transfer functions
and spectral shape of the signal and noise contributions.
LIGO and PTAs also contend with astrophysical

foreground signals. In the very low frequency pulsar band,
supermassive black hole binaries are expected to over-
whelm any primordial stochastic signal [2,7–10], and in the
LIGO band, neutron star binaries could be a limiting factor
[3,11,12]. The main astrophysical stochastic background in
the millihertz regime is expected to come from galactic
white dwarf binaries [13–15]. Many of these white dwarf
binaries will be individually resolvable [16]. The rest will
form a confusion foreground that could overwhelm any

extragalactic stochastic signals if not properly modeled.
In this paper, we show that our ability to detect an isotropic
stochastic gravitational wave background is not signifi-
cantly reduced when the galactic foreground is properly
modeled.
In paper I, we used simulated data for the NASA–

European Space Agency (ESA) Laser Interferometer
Space Antenna (LISA) mission concept. Simulated data
were provided as part of the Mock LISA Data Challenges
(MLDC) [17]. While the original LISA partnership has
dissolved, ESA has a similar mission, eLISA [18], under
consideration. The main difference between the two mis-
sions is that the LISA concept has three interferometer
arms, whereas the eLISA concept has only two. With three
functioning arms, there are six laser links that exchange
information between adjacent spacecraft. For eLISA, there
will only be four links. We demonstrated in paper I that,
while a six-link configuration performs better, a four-link
configuration is still capable of separating a stochastic
background from instrument noise.
Here we extend the analysis of paper I and show that

both six-link and four-link detectors can detect a stochastic
gravitational wave background in the presence of instru-
ment noise and a galactic white dwarf foreground. For
comparison, we again use the LISA mission to demonstrate
our technique. We can remove one LISA arm as we did in
paper I, and it operates very much like eLISA. The main
difference is that eLISAwill have shorter arm lengths than
LISA and a diminished peak sensitivity that is shifted to
slightly higher frequencies.
There are two key factors involved in modeling the

galactic foreground. The first is the same idea used in paper I.
The galactic foreground has a spectral shape that is distinct
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from the instrument noise and typical stochastic gravita-
tional wave background models [19–21] (it would take
an extremely finely tuned and bizarre primordial signal to
match the spectral shape of the unresolved galactic fore-
ground). The differences in spectral shapes provide the
main discriminating power among the three components.
In addition, most of the higher frequency white dwarf
binaries will be individually resolved and regressed, mean-
ing that the higher frequency data can be used to pin down
parameters for the noise and the stochastic background with
little or no galactic contamination. Second, the galactic
foreground signal is modulated with a one-year period due
to the motion of the LISA constellation around the Sun.
As LISA cartwheels around the Sun, the beam pattern will
sweep across the sky. The sweet spot of the beam pattern
will hit different parts of the galaxy at different times
throughout the year. The variation in the detector response
to the galaxy throughout the year creates the modulation in
the signal. Figure 1 shows the full galaxy signal for one
year of data. The sweet spot of the beam pattern hits near
the center of the galaxy twice throughout the year, giving
the two peaks. The figure also shows the confusion fore-
ground after the bright binaries have been removed and the
instrument noise level. At certain times throughout the year,
the galactic foreground will be much stronger than the
instrument noise and a stochastic background. It may seem
that the galaxy could overwhelm any underlying signals,
but, as we found in paper I, we can detect a background
well below the instrument noise. We will show in this paper
that after properly modeling the galactic foreground, we are
able to detect a background with energy density as small as
Ωgw ¼ 5 × 10−13 for a four-link interferometer, as shown
in Fig. 1.

The amount of modulation in the signal depends on the
shape of the galaxy and the distribution of white dwarf
binaries throughout the galaxy. Therefore, to accurately
model the galaxy modulation, we need accurate measure-
ments of the spatial distribution of white dwarf binaries in
the galaxy. One way to do this is to parametrize the galaxy
shape distribution and simultaneously fit those parameters
along with the noise and stochastic background parameters.
In principle this works, but we find that the confusion
foreground signal can only provide very weak constraints
on population model parameters. In Ref. [22], hereafter
paper II, we showed that individually resolvable bright
sources can be used to constrain the shape of the galaxy to
levels better than current electromagnetic constraints. We
use the results from paper II to constrain the galaxy
distribution for the confusion foreground. The amplitude
of the bright binaries should also heavily constrain the
amplitude of the confusion foreground. We do not use the
amplitude information here, but it is one potential way to
improve our results.
The remainder of our paper is organized as follows: In

Sec. II, we explain how we simulate the data for this project
and compare to the MLDC data. Before, we used low
frequency approximation expressions for the transfer
functions. Here we use the full numerical expressions. In
Sec. III, we explain how we model the noise, a stochastic
background, and the confusion foreground. We briefly
review our analysis technique in Sec. IV. Our results are
presented in Sec. V, and in Sec. VI we discuss possible
extensions to this work.

II. SIMULATED DATA

For this study, we simulated our own data and compared
to the results used in paper I where MLDC data were used.
We simulated our data for the galaxy using a code similar to
the one used in the MLDCs [16] and used our own codes
for the noise and stochastic background. We create a one-
year-long data set sampled every 10 sec. We chose the low
sampling rate for computational expediency. The galaxy
only extends to 3 mHz, and a stochastic gravitational wave
background falls well below the noise shortly thereafter.
With a faster sampling rate, we could extend to higher
frequencies. We would better constrain the position noise,
but our results would be otherwise unaffected.
In comparison, paper I used the data from the third round

of the MLDC. Challenge 3.5 provides an approximately
three-week-long data set of 221 samples with 1 sec sam-
pling. A scale invariant isotropic background was simulated
with a frequency spectrum of f−3. The background was
injected with a level that is ∼10 times the nominal noise
levels at 1 mHz, giving a range of Ωgw ¼ 8.95 × 10−12 −
1.66 × 10−11 [23] for the energy density in gravitational
waves relative to the closure density per logarithmic
frequency interval. The MLDC noise levels were randomly
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FIG. 1 (color online). The time domain noise, galaxy, and
stochastic background signal components for the X channel.
They have been bandpass filtered between 0.1 and 4 mHz. We
show that we are able to detect a scale invariant background with
Ωgw ¼ 5 × 10−13, which is well below the instrument noise and
galaxy levels.
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chosen for each component with power levels that range
within �20% of their nominal values.
We use the same noise model to create our noise

realizations. We simulate a stochastic background with
the same spectral shape as the MLDC and use LISA
simulator to generate a galaxy. As the LISA spacecraft
orbit, the distance between them fluctuates by approximately
3%. To simplify our analysis in paper I, we assumed an equal
arm rigid LISA constellation. This is not a bad approxima-
tion over short periods of time. The MLDC data was less
than a month long. Here, our observation time is one year,
but we break the year up into 50 segments. Each segment is
approximately one week in length. The arm lengths will not
change appreciably over that amount of time. Additionally,
the galactic foreground signal is also approximately constant
over a one week period. We generate the data in the
frequency domain for each of the 50 segments.

A. Instrument noise

We quoted expressions for the LISA noise spectral
densities in paper I. Here we quote the noise amplitudes
used to generated the noise spectra. The three interfero-
metric channels for LISA are generally referred to as X, Y,
and Z. The X channel frequency spectrum is given by

X ¼ 2i sin

�
f
f�

�
ef=f� ½ef=f� ðnp13 − np12Þ þ np31 − np21�

þ 4i sin

�
2f
f�

�
e2f=f�

�
ðna12 þ na13Þ

− ðna21 þ na31Þ cos
�
f
f�

��
; (1)

where npij is the position noise for the link between
spacecraft i and j and naij is the acceleration noise. The
noise amplitudes are randomly drawn from strain spectral
densities,

nBij ¼
ffiffiffiffiffiffi
Sij

p
2

δ; (2)

where δ is a unit standard deviate and B signifies either the
real or imaginary part. The strain spectral densities, Sij, are
randomly drawn to be within 20% of the nominal values,
which are

Sp ¼ 4 × 10−42 Hz−1 Sa ¼ 9 × 10−50 s−4 Hz−1 (3)

for the position and acceleration noise, respectively.

B. Detector response

The details for how to calculate the detector response are
given in paper I as well as Ref. [24]. We include here the
main results needed to simulate our data. The single arm
detector response is given by

Dðk̂; fÞ ¼ 1

2
ðr̂ij ⊗ r̂ijÞT ðr̂ij · k̂; fÞ; (4)

where r̂ij is an arm vector and T is the single arm transfer
function given by

T ¼ sinc

�
f
2f�

ð1 − k̂ · r̂ijðtiÞÞ
�

exp

�
i
f
2f�

ð1 − k̂ · r̂ijÞ
�
:

(5)

The signal is a convolution of the response with the
gravitational waveform

sðtÞ ¼ Dðk̂; fÞ∶hðf;xÞ; (6)

where x is the detector location. In general, the gravita-
tional waveform is given by a combination of the two
polarizations,

h ¼ hþϵþ þ h×ϵ×; (7)

where ϵþ;× are the basis tensors for the waves orientation
with respect to the detector. We can absorb the basis tensors
into the detector response function to get the beam pattern
functions,

FPðk̂; fÞ ¼ Dðk̂; fÞ∶ePðk̂Þ; (8)

where eþ;×ðk̂Þ are the polarization tensors. We then rewrite
the signal as

sðtÞ ¼ hþFþ þ h×F×: (9)

Now hþ and h× depend only on the source parameters, and
we can plug in different wave templates. We show below
how hþ and h× are generated for the galaxy and stochastic
background.

C. Galaxy

The white dwarf waveforms [16,25] to be used in Eq. (9)
are

hþðtÞ ¼ Aþ cosð2ψÞ cosðΦðtÞÞ
þ A× sinð2ψÞ sinðΦðtÞÞ

h×ðtÞ ¼ −Aþ sinð2ψÞ cosðΦðtÞÞ
þ A× cosð2ψÞ sinðΦðtÞÞ; (10)

where the amplitudes are given by

Aþ ¼ 2G2M1M2

c4r

� ðπfÞ2
GðM1 þM2Þ

�
1=3

ð1þ cos2ιÞA×

¼ −
4G2M1M2

c4r

� ðπfÞ2
GðM1 þM2Þ

�
1=3

cos2ι: (11)
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The phase is given by

ΦðtÞ ¼ 2πfoξþ πfo
:
ξ2 þ ϕo; (12)

where ξ ¼ t − k̂ · x. The instantaneous frequency is given
by 2πf ¼ ∂tΦ.
We use the catalog of white dwarf binaries developed by

Gijs Nelemans containing approximately 29 million bina-
ries [26–28]. We give each binary a sky location drawn
from the same spatial distribution used in paper II:

ρðx; y; zÞ ¼ Ae−r2=R2
b þ ð1 − AÞeu=Rdsech2ðz=ZdÞ: (13)

Here Rb is a scale bulge radius, Rd is a scale disk width, Zd

is a scale height, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, and u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

The coefficient A weights the number of stars in the bulge
vs the number in the disk. We chose A ¼ 0.25, Rb ¼ 500,
Rd ¼ 2500, and Zd ¼ 200 as done in Ref. [29]. We
calculate the signal-to-noise ratio (SNR) for each binary
and designate source with an SNR > 7 as bright [16].
The bright sources are used in our analysis in paper II, and
the remaining sources are used in the confusion foreground
in this paper.

D. Stochastic gravitational wave background

The stochastic gravitational wave background is generated
using Eq. (8). To simulate an isotropic background, we create
equal area sky pixels using the HEALpix routines [30]. We
generate N ¼ 192 sky pixels, the same number used in the
MLDC. In each sky pixel, we randomly draw plus and cross
polarization amplitudes for the stochastic background,

hBA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωgw=N

p
2

δ; (14)

where A signifies the polarization plus or cross, B is the
real or imaginary part, δ is a unit standard deviate, andΩgw is
the energy density in gravitational waves per logarithmic
frequency interval, scaled by the closure density.

III. COMPLETE MODEL

Our model is similar to the one used in paper I. We
calculate the power spectral density for the Michelson X
channel as well as the six time delay interferometry (TDI)
cross spectral densities for the confusion foreground, the
instrument noise, and a stochastic gravitational wave
background. We use an equal arm, stationary approxima-
tion for the LISA arm lengths. The model is the sum of the
three individual pieces:

hXX�i ¼ hXX�
noisei þ hXX�

sgwbi þ hXX�
galaxyi: (15)

A. Noise model

We use the same noise model here that was used in paper
I. Each spacecraft has two proof masses. There will be a

noise associated with travel between adjacent spacecraft in
both directions. For a four-link mission, this gives a total of
eight noise parameters, and for a six-link mission, there will
be 12 noise parameters. The X-channel position and
acceleration noise contributions are given by

hXX�
pi ¼ 4sin2

�
f
f�

�
ðSp12 þ Sp21 þ Sp13 þ Sp31Þ (16)

and

hXX�
ai ¼ 16sin2

�
f
f�

��
Sa12 þ Sa13

þ ðSa21 þ Sa31Þcos2
�
f
f�

��
: (17)

Here hXX�
pi is the noise associated with position measure-

ments of the proof masses, and hXX�
ai is the noise

associated with the measurement of their accelerations.

B. Stochastic gravitational wave background model

In paper I, we quoted a low frequency approximation to the
beampattern functions.However, that is notwhatwas actually
used in the analysis. As detailed in the paper, the injected
stochastic background did not have the intended spectrum.
In our analysis, we used the MLDC training data to fit the
spectrum of the background and used that approximate,
numerical spectrum in our analysis. Here we use the full
equal-arm expressions for the LISA transfer functions. Using
Eq. (8), we calculate the detector response for each channel:

RijðfÞ ¼
X
A

Z
dΩ
4π

FA
i ðk̂; fÞFA�

j ðk̂; fÞ: (18)

The signal cross-spectra are

hSiðfÞ; SjðfÞi ¼ ShðfÞRijðfÞ; (19)

with the gravitational wave spectral density given by

ShðfÞ ¼
3H2

0

4π2
ΩgwðfÞ
f3

: (20)

As done in paper I, we consider two cases, a flat
spectrum where Ωgw does not depend on the frequency
and a spectrum that allows for a power law dependence on
frequency. Since we will not know the slope of a stochastic
gravitational wave background a priori, we want the
flexibility in our model to fit for different slopes:

Ωslope
gw ðfÞ ¼ Ωgw

�
f

1 mHz

�
m
: (21)

In the latter case, Eq. (20) becomes

ShðfÞ ¼
3H2

0

4π2
Ωgw

f3

�
f

1 mHz

�
m
: (22)
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C. Galaxy model

There are two parts to our model for the galactic
foreground. We need a model for the spectral shape in
the frequency domain, which is determined by the white
dwarf binary population, and we need to model the
modulation throughout the year, which is determined by
the shape of the galaxy and LISA’s orbital path. We obtain
the spectral shape by generating many different galaxies
using the LISA Simulator. We then smooth the spectrum in
the frequency domain and average the spectra from each of
the different realizations. In practice, with a single galaxy
observation, we could use the residuals from the bright
source removal and the information they give about the
galactic model to better constrain the spectrum.
The modulation can be modeled by finding an average

strain spectral density for each segment of the year. For our
approximately week-long segments, the amplitude does
not change appreciably, and averaging the strain in each
segment gives a good approximation to the modulation
level for each week. Figure 2 is made by plotting the
average amplitude of each segment vs the central time for
each weekly segment. The two peaks correspond to the
peaks shown in the time domain plot, Fig. 1. We see that the
beam pattern slightly misses the center of the galaxy for
the first peak but hits it almost dead on for the second peak.
The amount of modulation, or difference between the peaks
and troughs, depends on the shape of the galaxy.
If the only information we had about the galaxy came

from the confusion foreground, we would need to include
the galaxy distribution parameters in our analysis. We can
do this, but as mentioned before, the modulation of the
confusion foreground does not sufficiently constrain the
galaxy distribution parameters. Instead, we fix the galaxy
parameters at the maximum a posteriori (MAP) values
found by the analysis technique described in paper II.

The bright sources constrain the shape of the galaxy so well
that including information from the confusion foreground
would not tighten the posterior distributions of the galaxy
shape parameters. A more complete analysis would com-
bine the bright source detection and characterization with
the stochastic background characterization in a simulta-
neous analyses of both components.
Even for the same galaxy parameters, different realiza-

tions of the galaxy will have significant variation due to the
placement of a finite number of stars, as shown in Fig. 2.
We need to account for the amount of variation that can
occur from one realization to the next. If we fixed the curve
at the average value for the curves shown in Fig. 2, the
galaxy could take some power away from a stochastic
background to try to fit the variation.
We could use the 50 amplitudes in the modulation curve as

parameters in our model, but that is a large increase in our
parameter space.We insteaduse theFourier coefficients asour
model parameters. The modulation curve in Fig. 2 can be
uniquely characterized by 17 Fourier coefficients [31,32].
Figure 3 shows the Fourier coefficients for several galaxy
realizations using the same shape parameters. To account for
thevariationfromonesimulationtothenext,wesimulatemany
galaxies with the same parameters. We average the Fourier
coefficients from thedifferent runsandset theprior range tobe
�3σ around the average. Figure 3 shows the average coef-
ficients, the prior range, and the coefficient from several
generated galaxies. Using the Fourier coefficients reduces
the number of galaxy parameters by more than a factor of
2. In practice, the savings are even better because only the first
five or six coefficients are constrained very well.
Figure 4 shows smoothed data and our model for the

various components. The galaxy is shown during the first
week of the year when the signal is at a minimum and at a
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later time of year when the signal is at one of the peaks
shown in Fig. 2. As mentioned earlier, we see the difference
in the spectral shapes and that the galaxy extends over a
shorter band.

IV. ANALYSIS

We use the same analysis techniques used in paper I to
calculate posterior distribution functions (PDFs) for our
model parameters and to do Bayesian model selection. The
likelihood of measuring cross-spectra hXiXji is given by

pðXjλÞ ¼
Y
n

1

ð2πÞN=2jCj exp ðXiC−1
ij XjÞ; (23)

where C is the noise correlation matrix, N is the number of
samples in each channel and the product runs of all samples
n, λ is the vector of model parameters, and Xi is the
Michelson X variable for the four-link case and Xi ¼
fA; E; Tg for the six-link case. The only difference here
arises from our treatment of the modulation. We divide the
year into 50 segments and calculate the likelihood for each
segment. We then take the product of the segments to get a
total posterior distribution for all the data:

pðXdjλÞ ¼
Y
n;d

1

ð2πÞN=2jCdj exp ðXd
i C

d
ij
−1Xd

j Þ: (24)

Here d labels the time segments.
AsinpaperI,weranouranalysisforbothafullsix-linkLISA

aswellasafour-linkversion.Forthesix-linkconfiguration,we
use the orthogonal A, E, and T channels, which are combi-
nations of the TDI variables X, Y, and Z [33]:

A ¼ 1

3
ð2X − Y − ZÞ

E ¼ 1ffiffiffi
3

p ðZ − YÞ

T ¼ 1

3
ðX þ Y þ ZÞ: (25)

We run over a frequency range of 0.8–10 mHz. The low
frequency cutoff is chosen to avoid some low frequency
contamination in the generation of our data and stochastic
backgroundmodel.At 10mHz, the accelerationnoise, galaxy,
and stochastic background have all fallen below the position
noise levels. Any higher frequency bins would only help in
further constraining the position noise.

V. RESULTS

Our analysis provides uncertainties for the instrument
noise levels, the galaxy shape Fourier coefficients, and the
stochastic background energy density and spectral slope.
Figures 5 and 6 show the posterior distributions for our
noise model parameters. As discussed in paper I, only the
total noise (i.e., Sp12 þ Sp21) in each interferometer arm is
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well constrained. The individual noise levels are not
individually constrained because only the distance between
two adjacent spacecraft affects the interferometer output,
not the individual movement of a single spacecraft.
For the four-link configuration, the sum of all four noise

levels is constrained. This can be seen from Eqs. (16) and
(17). The position noise extends over a larger frequency
band and is better constrained than the acceleration noise.
Figures 7 and 8 show the posterior distributions for Ωgw

for both the flat spectrum case and the frequency dependent
case. In Fig. 8, the injected background level is Ωgw ¼
2.5 × 10−13, and in Fig. 7 it is Ωgw ¼ 7 × 10−13. We show
later that these are approximately the lowest background
levels that could be confidently detected for the AET
channels and X channel, respectively.
When the proposed slope of the stochastic background

matches or nearly matches the slope for either the instru-
ment noise or the galactic foreground, there will be some

correlation between the model parameters. This leads to
greater spreads in the PDFs of the model parameters.
Figures 7 and 8 show that the PDFs from the model with
a spectral slope are indeed broader than the PDFs for the
model with m ¼ 0. The effect is more pronounced for the
X-channel case than for AET. At these low detection levels,
the slope would be uncertain over several integer values.
In Figs. 11–13, we see that this increase in uncertainty leads
to a higher upper bound on the stochastic background level.
Figures 9 and 10 show the PDFs for the galactic

foreground model parameters. We show the first three
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Fourier coefficients and the last three. The C0 coefficient
sets the direct current amplitude level for the galaxy. The
other Fourier coefficients determine the shape. While there
are 17 Fourier coefficients, the basic shape is determined by
the first five or six, and the higher coefficients only add fine
details that are not well resolved in our analysis.

A. Bayesian model selection

Inpaper I,we suggested that themodelwith a spectral slope
parameter should always perform worse than the model
without a slope. The extra degree of freedom will allow the
model to fit the data better; however, it also comes with a
penalty. In Bayesian model selection, higher-dimensional
models have a larger prior volume to explore. There is a
penalty built in for havingmore degrees of freedom. Since the
injected data had a spectral slope of m ¼ 0, we would not
expect the model that allows for spectral slope fitting to ever
outperform the model that assumes m ¼ 0.
However, our results in paper I showed that both models

performed comparably well. We postulated that this was do
to with our having to use a numerical model for the
stochastic background spectrum. With an imperfect model,
there was a benefit to having the extra slope parameter that
outweighed the penalty of having to explore a larger prior
volume. The two effects essentially canceled out. With the
analytic model used in this paper, we find that the extra
slope parameter does make a difference. In Figs. 11–13, the
model with spectral slope fitting always performed worse
than the model with m ¼ 0. The effect was not large and
did not significantly inflate the bounds that could be placed
on a stochastic background.

B. Comparison to MLDC

As a consistency check, we compare the analytic model
used in this paper to the numerical model used in paper I.
We ran our analytic model on data containing instrument
noise and a stochastic background, but no galaxy.
We find that our results are consistent with our work on

the MLDC data in paper I. We would expect that a one-year
data set should perform approximately

ffiffiffiffiffi
15

p
better than the

MLDC data, which are approximately three weeks long. In
Fig. 11, we see that the new results agree very well with the
MLDC results after taking into account the different
observation times. We would expect that having a third
interferometer arm would give a significant advantage in
detecting an extragalactic background [33,34]. As dis-
cussed in paper I, we do not see a large benefit with
Gaussian noise, but could expect more of an advantage with
more complicated noise models.

C. Analysis with a galactic foreground

We now compare our results for the data set with no
galaxy component vs a data set that includes instrument
noise, a stochastic background, and a galactic confusion

foreground. We find that our recovery of the stochastic
background is not significantly diminished when including
the galactic foreground. Figure 12 compares the Bayes
factors for the analysis without the confusion foreground to
those that contain the galaxy. The addition of the galaxy
adds a small amount of uncertainty into the posterior
distributions of each parameter, and we see that the
detection threshold is slightly raised. The effect is more
pronounced for the X channel where the correlations are
larger. However, the Bayes factors show that the correlation
between the various model components is not overwhelm-
ing and that the model is successfully distinguishing among
the three components.
We investigated the two effects that enable us to separate

the galactic foreground from the stochastic background,
namely, the shape of the spectrum and the time modulation
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of the signal throughout the year. Before, we relied solely
on the discriminating power of the different spectral shapes
for the noise and stochastic background. Figure 13 shows
how both the modulation and spectral shape help. To show
that our method does not depend solely on the galaxy
modulation, we ran our analysis on a single week of data.
We used the first week of the year when the foreground
signal is at a minimum and the 37th week when the
foreground is at a maximum. For one week of observation
time, the foreground signal was essentially constant, and
we did not get any information from the modulation.
With only one week of data, we had fewer data points
and expected it to perform more poorly by a factor of
approximately

ffiffiffiffiffi
50

p ≃ 7, which is what we saw. The
main discriminating power in our method came from the
different spectral shapes of the various components.
Next we showed what happens if we remove the spectral

information and rely on the time domain modulation alone.
We created a stochastic background that has the exact
spectrum of the galaxy. We did this by generating a separate
galaxy realization and used the spectral shape from the
second realization as the spectrum for the stochastic
background. The spectrum was set at different levels to
determine the detection limit. The galaxy and the back-
ground that uses the galaxy spectrum were correlated to a
much greater degree, and the X-channel stochastic back-
ground was not distinguishable without priors from the
bright sources. Additionally, the physical requirement that
the X-channel power spectrum be positive for both the
galaxy and stochastic background components constrained
the possible values for each. The stochastic background
spectrum matching the galaxy spectrum was a worst-case
scenario. In general, they had differences that helped to

better constrain the two levels. We might have expected that
the correlation between the galaxy and background would
lead to much higher recovery of the background level, but
we see in Fig. 13 that the background was detected at
almost the same level as before. By introducing the
correlation between the galaxy and background, we also
changed the correlation between the background and the
noise. In the same spectrum case, the stochastic back-
ground spectrum droped below the noise levels at lower
frequencies and did not correlate as much with the accel-
eration noise. The two competing effects canceled to some
degree, and the detection level was not severely impacted.
Last, we ran on the low frequency end of the spectrum

(up to 3 mHz). The acceleration noise, galaxy, and
stochastic background were significant out to ∼5 mHz,
after which the position noise began to dominate. Running
on the low frequency end of the spectrum gave all of the
various signal components approximately equal weighting
since they all extended over approximately the same
number of frequency bins. The background was recovered
at a higher level, showing that we did gain by using the high
frequency information to pin down the position noise
levels. With the low frequency bins only, the position
noise became correlated with the other components.

VI. FUTURE WORK

In this paper, we have outlined a very promising approach
for modeling the galactic foreground and instrument noise
for a space-based detector so that we can look for extra-
galactic signals. A stochastic background at the level of
Ωgw ∼ 10−13 is very optimistic. Standard inflation models
predict that the background would be at a level of approx-
imately Ωgw ∼ 10−17. However, a LISA-like detector would
set the best experimental bound in the millihertz frequency
regime and may potentially uncover phase transitions in the
early Universe [19–21,35–37] or astrophysical backgrounds
from extreme mass ratio inspirals [38] or extragalactic white
dwarfs. There may be a background of extragalactic white
dwarf binaries at a level of approximately Ωgw ∼ 10−12,
which would be easily detected using our method [39]. We
would expect this background to be fairly isotropic, but it
may be possible to see some hint of anisotropy due to the
stronger signal from nearby galaxies. Our study indicates
that most of our discriminating power comes from the
difference in spectral shapes. Therefore, if the extragalactic
white dwarf binary spectrum is unique, we can expect to be
able to detect the background and separate it from the other
stochastic signal components. Less certain, but still an
interesting possibility, is a stochastic background from
inspirals of massive black hole binaries [40].
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