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Black hole horizon sections, modeled as marginally outer trapped surfaces (MOTS), possess a notion
of stability admitting a spectral characterization. Specifically, the “principal eigenvalue” λo of the MOTS-
stability operator (an elliptic operator on horizon sections) must be nonnegative. We discuss the expression
of λo for axisymmetric stationary black hole horizons and show that, remarkably, it presents the form of the
Young-Laplace law for soap bubbles in equilibrium, if λo is identified with a formal pressure difference
between the inner and outer sides of the “bubble.” In this view, which endorses the existing fluid analogies
for black hole horizons, MOTS-stability is interpreted as a consequence of a pressure increase in the black
hole trapped region.
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I. INTRODUCTION

Mechanical fluid analogies have played an important
role in building our intuition of black hole (BH) horizon
dynamics. The comparison with a rotating liquid drop was
early discussed [1], providing an interpretation of the BH
surface gravity as the corresponding liquid surface tension.
More systematically, the analogy of the BH horizon with a
2-dimensional viscous fluid was developed in [2–4] (and
references therein) building the so-called “membrane para-
digm,” of particular interest in astrophysical BH dynamics.
Remarkably, aspects of the latter “membrane perspective”
have been recently revisited in higher dimensional settings in
the context of the CFT/AdS duality, namely the correspon-
dence between the (bulk) gravitational description of an
asymptotically Anti-de Sitter spacetime and the dynamics of
an appropriate conformal field theory at its boundary (e.g.
[5]). Related analogies of BH horizons as “soap bubbles”
can be found in [6,7] and, particularly interesting in our
present context, have led to the discussion of the Gregory-
Laflamme instability of black strings in terms of the classical
fluid Rayleigh-Plateau instability [8].
Here we further support these analogies by interpreting

the stability of stationary BHs in terms of the Young-
Laplace law for “soap bubbles.” This relates the pressure
difference at the interface between fluids in equilibrium to
the interface shape

Δp ¼ pinn − pout ¼ γð1=R1 þ 1=R2Þ; (1)

where at any interface point Δp is the difference between
the inner and outer pressures (pinn and pout), γ is the surface
tension and Ri¼1;2 are the principal curvature radii (with
normal vector pointing outwards). Specifically, we show
that MOTS-stability [9] of stationary BH horizons, char-
acterized by the nonnegativity of the so-called principal
eigenvalue λo of the MOTS-stability operator LS (see
below), can be discussed in terms of the Young-Laplace
law in Eq. (1) if λo is identified with a formal pressure

difference Δp. This provides a first step in the systematic
spectral analysis of the MOTS-stability operator, as well as
a suggestive interpretation shift that casts this geometric
stability problem on fluid physical grounds.

II. MOTS, STABILITY AND
QUASILOCAL HORIZONS

Let us introduce the specific notion of stability discussed
here. Let us consider a d–dimensional spacetime ðM; gabÞ
with Levi-Civita connection ∇a and a closed spacelike
ðd − 2Þ-surface S (we make G ¼ c ¼ 1). Let qab denote
the induced metric on S, and Da and R its associated
Levi-Civita connection and Ricci scalar. We span the
normal plane T⊥S by (future) outgoing la and ingoing
ka null vectors, normalized as laka ¼ −1. Expansions in
the outgoing and ingoing directions are θðlÞ ¼ qab∇alb
and θðkÞ ¼ qab∇akb.
The surface S is called (strictly) outer trapped iff

θðlÞ < 0 and a marginally outer trapped surface (MOTS)
iff θðlÞ ¼ 0. MOTSs possess a natural notion of stability
[9]: a MOTS surface S is said to be (strictly) stable if it
admits a deformation along ka that is outer trapped or,
equivalently, a deformation along −ka that is fully non-
trapped. In other words, the MOTS S is stable if there exists
a positive function ψ on S such that δψð−kÞθðlÞ > 0, where δ
denotes the deformation operator of the surface S discussed
in [9,10]. This notion of stability admits a spectral
characterization in terms of the MOTS-stability operator
LS defined on S as

LSψ ≡ δψð−kÞθðlÞ ¼
h
−DaDa þ 2ΩðlÞ

a Da

−
�
ΩðlÞ

a ΩðlÞa −DaΩðlÞ
a − 1

2
RþGablakb

�i
ψ ; (2)

where ΩðlÞ
a ¼ −kcqba∇blc is the connection in T⊥S [10]

and Gab is the Einstein tensor. The eigenvalues are
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generically complex numbers (LS is not self-adjoint).
However the principal eigenvalue λo, namely the eigen-
value with smallest real part, can be shown to be real [9].
MOTS-stability of S is then characterized by the non-
negativity of λo [9]

λo ≥ 0; (3)

with positive principal eigenfunction ϕo (i.e. LSϕo ¼
λoϕo). We also define an operator L�

S obtained from LS
by imposing Einstein equations, Gab þ Λgab ¼ 8πTab,
but dropping the (explicit) presence of the cosmological
constant Λ:

L�
Sψ≡

h
−DaDaþ2ΩðlÞ

a Da

−
�
ΩðlÞ

a ΩðlÞa−DaΩðlÞ
a −1

2
Rþ8πTablakb

�i
ψ : (4)

Quasilocal models for BHs [11,12] can be constructed
by considering marginally trapped tubes (MTT), namely
hypersurfaces H admitting a foliation fStg by closed
MOTS, i.e. H ¼ ∪t∈RSt. Under the null energy condition
and assuming MOTS stability (the outer condition in
[11]), MTTs are either null or spacelike hypersurfaces
[10,11]. The former corresponds to nonexpanding hori-
zons whereas the latter, under the future condition
θðkÞ ≤ 0, are dynamical expanding ones. We focus here
on the equilibrium case, where the null horizon H is
generated by the null vector la and the intrinsic geometry
remains invariant under la: Llqab ¼ 0. Crucially for
our discussion, any foliation of H defines a foliation by
MOTS. This freedom will be exploited in Theorem 1
below. We introduce the surface gravity κðlÞ as the
nonaffinity coefficient of la, i.e. lb∇bla ¼ κðlÞla, with
κðlÞ ¼ −kalb∇bla.
We will consider a stronger notion of stationarity than

that of nonexpanding horizons by requiring also the
extrinsic geometry of the null H to be invariant under a
certain la fixed up to a constant rescaling. This defines an
isolated horizon (IH) [12,13]. More specifically, we require
the invariance of the unique connection ∇̂a induced on
the nonexpanding horizon H by the ambient one ∇a:
½Ll; ∇̂a� ¼ 0. This implies the invariance of ΩðlÞ

a and κðlÞ,
i.e. LlΩ

ðlÞ
a ¼ Llκ

ðlÞ ¼ 0, and the angular constancy of
κðlÞ: Daκ

ðlÞ ¼ 0. IHs constitute the model for stationary
BH horizons discussed here. This includes in particular
Killing horizons, in which la can be extended to a
symmetry in the spacetime neighborhood of H.

III. λo EIGENVALUE FOR AXISYMMETRIC IHS

The sign of the principal eigenvalue λo controls MOTS-
stability, as expressed in (3). It is therefore of interest to
have an explicit expression of λo in terms of the geometry
of S. Although this is a challenging problem when

considered in full generality, the very important case of
stationary and axisymmetric BH horizons is addressed by
the following result [14]:
Theorem 1: (Reiris [15]). Given an axisymmetric IHH

with null generator la and nonaffinity coefficient κðlÞ:
(i) There exists an (axisymmetric) foliationH ¼ ∪tSo

t by
MOTSs So

t with constant ingoing expansion θðkÞ.
(ii) The principal eigenvalue λo evaluated on sections

So
t is

λo ¼ −κðlÞθðkÞ: (5)

(iii) The principal eigenfunction ϕo is given by ϕo ¼ e2χ,
with ΩðlÞ

a ¼ za þDaχ on So
t , where Daza ¼ 0.

The result holds in any dimensions, under the topological
condition in [16] of H being foliated by closed MOTSs.
Note that λo does not depend on the section of H [16],
though the particular form (5) holds in the preferred
foliation fSo

t g in Theorem 1.

IV. YOUNG-LAPLACE LAW FOR
STATIONARY HORIZONS

A. BH surface tension and mean curvature

Let us first rewrite expression (5) the following way

λo=ð8πÞ ¼ κðlÞ=ð8πÞð−θðkÞÞ: (6)

The right-hand side presents then a particularly suggestive
form when compared with the Young-Laplace law in (1).
First, from the first law of BH thermodynamics, namely
δM ¼ κðlÞ=ð8πÞδAþ ΩδJ, the factor κðlÞ=ð8πÞ is identi-
fied in [1] as an effective BH surface tension

γ
BH

¼ κðlÞ=ð8πÞ; (7)

using its standard equivalence with an energy surface
density. Such thermodynamical identification is consistent
with the purely mechanical view provided by the analogy
of BH horizons as 2–dimensional viscous fluids in the
membrane paradigm [2–4]. In the latter, the understanding
of the evolution equations for θðlÞ and ΩðlÞ

a as, respectively,
energy and momentum (Damour-Navier-Stokes) balance
equations requires the interpretation of κðlÞ=ð8πÞ as a
pressure of the 2–dimensional fluid, i.e. a mechanical
surface tension.
Second, regarding the second factor in (6), let us

consider the section So
t provided by point (i) in

Theorem 1, and let us extend it to a ðd − 1Þ-dimensional
spatial slice Σt in the bulk. Such Σt can be locally boosted
so that the IH null generator la and the ingoing null normal
to So

t are, respectively, written as la ¼ na þ sa and
ka ¼ ðna − saÞ=2, with na the timelike normal to Σt
and sa the outgoing spacelike normal to So

t tangent to
Σt. The mean curvature H of ðSo

t ; qabÞ into ðΣt; γabÞ, with
γab induced from the ambient gab, is written as
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H ¼ qab∇asb ¼ ~Dasa; (8)

with ~Da the connection compatible with γab. For a
2−surface embedded in an Euclidean 3-space, the form
H ¼ ð1=R1 þ 1=R2Þ in (1) is recovered. Combining θðlÞ
and θðkÞ, we write H ¼ −θðkÞ þ 1

2
θðlÞ, so that in our MOTS

θðlÞ ¼ 0 case

H ¼ −θðkÞ: (9)

From (7) and (9) we see that (6) matches the form (1) of
the Young-Laplace law, if λo=ð8πÞ is formally identified
with a pressure difference between the interior and the
exterior of the BH horizon. We justify now such a heuristic
identification.

B. The principal eigenvalue λo as a pressure

The principal eigenvalue λo admits the interpretation of
a pressure. First we note that λo shares physical nature with
the cosmological constant Λ. Indeed, the (explicit) effect of
switching on the cosmological constant, as compared with
the reference situation in the absence of Λ, is to produce a
shift in the eigenvalue λo characterisingMOTS-stability [17]

LSϕ ¼ λϕ; L�
Sϕ ¼ λ�ϕ⇒ λ�o ¼ λo þ Λ; (10)

that follows from (2) and (4) when imposing Gabþ
Λgab ¼ 8πTab. Therefore, physical dimensions of Λ are
shared by λo.
Second, the cosmological constant Λ admits the natural

interpretation of a pressure, pcosm ¼ −Λ=ð8πÞ, for a perfect
fluid stress-energy tensor. Based on these remarks, we
propose the interpretation of λo=ð8πÞ as a pressure,
specifically a pressure difference between the interior
and exterior of the BH horizon

Δp ¼ pinn − pout ≡ λo=ð8πÞ; (11)

with pinn and pout the formal inner and outer pressures.

C. The MOTS-stability operator LS as a
“pressure operator”

Beyond the interpretation of λo in (11), the whole
stability operator LS can be understood as a “pressure
operator.” To justify this claim, we consider the equation of
a MTT. The horizon evolution vector ha, tangent to
H ¼ ∪t∈RSt and normal to MOTS sections St, Lie-drags
the section St to Stþδt. It can be written as ha ¼ la − Cka,
where C is a (dimensionless) function on H such that the
MTT is null, spacelike or timelike for C ¼ 0, C > 0 or
C < 0, respectively. The MTT condition δhθðlÞ ¼ 0 is then
expressed in terms of the MOTS-stability operator LS.
By using δhθ

ðlÞ ¼ δlθ
ðlÞ − δCkθ

ðlÞ, the MTT condition is
rewritten as δCð−kÞθðlÞ ¼ −δlθðlÞ, so that

LSC ¼ σðlÞabσðlÞab þ 8πTablalb; (12)

where σðlÞab ¼ qcaqdb∇cld − 1=ðd − 2ÞθðlÞqab is the
shear associated with the outgoing null normal and
we have made use of the null Raychaudhuri equation.
The right-hand side of Eq. (12) fixes the physical
dimensions of the stability operator as ½LS=ð8πÞ� ¼
Energy · Time−1 · Area−1, (G ¼ c ¼ 1). Such an interpre-
tation is natural in dynamical scenarios, where the horizon
growth is controlled by the presence of matter or gravita-
tional energy fluxes. In purely stationary contexts, as in
the spectral problem of (10), physical dimensions of LS
can be recast in a better suited form by simply noting
Energy · Time−1 · Area−1 ≈ Force · Area−1, so that

½LS=ð8πÞ� ¼ Pressure: (13)

This provides additional support to the proposed physical
interpretation of (the real) λo=ð8πÞ as a pressure. But, in
addition, it also suggests a role of the whole spectrum of LS
(including complex eigenvalues) in horizon stability issues.

D. MOTS-STABILITY FROM A BH
YOUNG-LAPLACE LAW PERSPECTIVE

We can now revisit MOTS-stability for stationary axi-
symmetric BHs in the following soap-bubble analogy form:
BH Young-Laplace “law”: For axisymmetric IHs,

there exists a foliation in which the identifications

κðlÞ

8π
→ γ

BH
; −θðkÞ→H;

λo
8π

→Δp¼pinn−pout; (14)

permit one to recast the principal eigenvalue in the form
of a Young-Laplace law: Δp ¼ pinn − pout ¼ γ

BH
H. In this

view, MOTS-stability (λo ≥ 0) is interpreted as the result of
an increase in the pressure of the BH trapped region.

V. PERSPECTIVES FROM A
YOUNG-LAPLACE VIEW

Apart from the appeal of casting Theorem 1 in the
physical terms of equilibrium bubbles, the main outcome of
the Young-Laplace perspective is the identification of λo as
a pressure. This interpretation extends beyond stationarity
and axisymmetry, providing a new twist on MOTS-stability
that suggests new avenues and questions motivated by the
fluid analogy. The heuristic proposals in the rest of the
article illustrate this.

A. BH horizon dynamical time scale

The identification of κðlÞ=ð8πÞ as a surface tension,
together with the integrated expressions for the BH mass
M ¼ 2κðlÞ=ð8πÞAþ 2ΩJ, led Smarr [1] to consider BH
horizon instabilities in analogy with the case of rotating
liquid drops.
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Although MOTS-stability does not correspond to the
notion of dynamical stability, it provides a condition for
equilibrium that can be used to estimate the characteristic
time scale of dynamical perturbations. This is illustrated for
fluids in the Rayleigh-Plateau instability, where the time
scale τ

RP
of the zero-mode dominating at large times can be

determined solely from the equilibrium Young-Laplace
law: τ

RP
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πa3ρ=γ

p
, with a the radius of the fluid jet,

ρ its density and γ the surface tension. In this spirit, our
geometrical setting suggests the following proposal for a
BH horizon dynamical time scale

τdyn ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
1=Δp

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
8π=λo

p
: (15)

If this time scale corresponds to an instability, or rather to a
relaxation process, it must be determined by other methods
(e.g. [18]). The first case is illustrated by the Gregory-
Laflamme instability of d-dimensional black strings,
where λo ¼ RSd−3ðr

H
Þ=2 ¼ ðd − 3Þðd − 4Þ=ð2r2

H
Þ, with r

H

the horizon areal radius, and (15) produces τ
BS
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16π=½ðd − 3Þðd − 4Þ�p
r
H
. For d ¼ 5

τ
BS
¼

ffiffiffiffiffiffi
8π

p
rH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π · 4M2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=γ

BH

q
; (16)

where the last expression stresses the analogy with the
Rayleigh-Plateau instability shown in [8], when introduc-
ing the effective mass meff ¼ 4πa3ρ in τ

RP
above.

Regarding stable scenarios, Reissner-Nordström (d ¼ 4)
provides a nontrivial example in which (15) leads to a
dynamical time scale

τ
RN

¼
ffiffiffiffiffiffi
4π

p ðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
Þ −Q2

q : (17)

The shortest time scale occurs at Q=M ¼ ffiffiffi
3

p
=2.

Interestingly, this number coincides with the value for heat
capacity change of sign in Reissner-Nordström [19] (and
with Smarr’s proposal for the critical J=M2 for Kerr
“rotating instabilities”).

B. Full spectral analysis of LS and BH
horizon instabilities

Beyond the role of λo in setting a dominating time scale,
the full spectrum of LS may provide a more refined probe
into the stability/dynamical properties of the horizon. This
is suggested by the presentation of the whole stability
operator in (13) as a “pressure operator.” Such an approach
is particularly rich in the rotating case since higher
eigenvalues λn>o’s are then generically complex, due to
the 2ΩðlÞ

a Da term, with the imaginary part encoding rota-
tional information [20]. In particular, it is of interest to
study a possible imprint of superradiance in the imaginary

part of the spectrum. In brief, we propose here the
systematic study of the full spectrum of LS in a line of
research that, inspired by the inverse spectral problem for
the Laplacian [21,22], can be paraphrased as: “can one
hear the stability of a black hole horizon?”. Although the
exact resolution of the spectral problem is a formidable
task in the generic case, semiclassical tools (e.g. [23]) may
offer relevant insight into the statistical properties of the
spectrum.

C. Inner and outer pressures and the
cosmological constant

The Young-Laplace law says nothing about the absolute
values of pinn and pout [24]. One can, however, speculate
about the implications of the following two possibilities:
(i) “Bubble in a room”: fix pout to the pressure existing in
the absence of the BH, namely the cosmological pressure.
Then

pout ¼ pcosm ¼ −Λ=ð8πÞ;
pinn ¼ ðλo − ΛÞ=ð8πÞ: (18)

(ii) “Casimir-like effect”: Equations (10) and (11)
imply pinn − pout ¼ −Λ=ð8πÞ − ð−λ�oÞ=ð8πÞ, motivating
the identification

pinn ¼ pcosm ¼ −Λ=ð8πÞ; pout ¼ −λ�o=ð8πÞ: (19)

The outer pressure pout ¼ −λ�o=ð8πÞ ¼ −ðΛþ λoÞ=ð8πÞ
decreases in the formation of a stable BH horizon
(λo ≥ 0). Equivalently, an effective (bulk) cosmological
constant Λeff ≡ Λþ λo increases due to the presence of
an inner BH boundary. This provides an ingredient for a
physical mechanism correlating the increase of the (effec-
tive) cosmological constant to BH cosmological dynamics
(note the similarities of such Λeff -“enhancing” mechanism
with the “neutralization” of Λ through the quantum creation
of closed membranes [25]).

D. BH volume

A thermodynamic notion of BH volume has been
formulated [26,27] by considering the cosmological con-
stant as an independent intensive variable in the BH first
law, so that a volume V is introduced as its corresponding
conjugate extensive variable. The present Young-Laplace
fluid analogy suggests to “shift” −Λ=ð8πÞ to λo=ð8πÞ ¼
Δp [cf. Eq. (10)], as the appropriate intensive variable to be
employed. That is

δM ¼ TδSþΩiδJi þ ΦαδQα þ V
BH
δðλo=ð8πÞÞ; (20)

where M corresponds to a BH enthalpy and V
BH

is now a
volume explicitly associated with the BH. Interestingly, as
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in [27], such a thermodynamicvolumeprovides theEuclidean
V

BH
¼ 4π=3 · r3

H
in (3-dimensional) spherical symmetry.

E. BH rest frame

The BH Young-Laplace law holds for a preferred (local)
spacetime slicing fΣtg. This suggests the proposal:
(i) A “BH rest frame” is introduced as the one in which

H ¼ −θðkÞ is constant and the BHYoung-Laplace law holds.
(ii) Given a unit vector ξa tangent to the preferred

3-slice Σt, but transverse (i.e. admitting normal compo-
nents) to the horizon section St, a quasilocal linear
momentum along ξa is proposed as the dipolar part of
the mean curvature H

PðξÞ≡ 1

8π

Z
St

ðξasaÞHdA: (21)

A horizon slicing is fixed by setting the value of DaΩðlÞ
a .

In [13] a “natural” BH rest-frame was introduced by
choosing a vanishing divergence. From point (iii) in
Theorem 1, the present Young-Laplace proposal amounts
to a geometric choice in terms of the principal eigenfunc-
tion: DaΩðlÞ

a ¼ DaDa ln
ffiffiffiffiffiffi
ϕo

p
. Finally, note that PðξÞ,

devised for measuring a vanishing linear momentum in
the BH rest frame, is just the dipolar part of the Brown-York
quasilocal energy [28].
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