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We compute the full cosmic microwave background temperature bispectrum generated by nonlinearities
after single-field inflation. By integrating the photon temperature at second order along a perturbed
geodesic in Newtonian gauge, we derive an expression for the observed temperature fluctuations that, for
the first time, clarifies the separation of the gravitational lensing and time-delay effects from the purely
second-order contributions. We then use the second-order Boltzmann code COSMOLIB2nd to calculate
these contributions and their bispectrum. Including the perturbations in the photon path, the numerically
computed bispectrum exactly matches the expected squeezed limit. Moreover, the analytic squeezed-limit
formula reproduces well the signal-to-noise ratio and shape of the full bispectrum, potentially facilitating
the subtraction of the bias induced by second-order effects. For a cosmic-variance limited experiment with
lmax ¼ 2000, the bias on a local signal is flocNL ¼ 0.73 negligible for equilateral and orthogonal signals. The
signal-to-noise ratio is unity at lmax ∼ 3000, suggesting that second-order effects may hopefully be
measured in the future.
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I. INTRODUCTION

One of the main results of the Planck satellite nominal
mission is that primordial non-Gaussianity is small [1]. It is
tempting to conclude that single-field models of inflation
are confirmed (although multifield inflation is still com-
patible with small non-Gaussianity [2]); however, the
current constraints still allow for many models predicting
flocNL ∼ few, which may become detectable once that all the
2.5 years temperature and polarization data will be included
in the analysis. Since so much is at stake, any little
improvement on these constraints may be very important.
To clean the data from any contamination of the

primordial signal, we must consistently account for
the nonlinear relation between the initial conditions and
the CMB anisotropies. An important nonlinear effect that
has been clearly detected [1] comes from the integrated
Sachs-Wolfe (ISW)–lensing correlation (see e.g., [3]).
Other late-time nonlinearities are expected to contribute, in

a minor part, to the bispectrum. Although small, their
subtraction should be taken into account. Due to the complex-
ity of their calculation, these effects require dedicated numeri-
cal studies. During the last few years there has been an intense
effort to derive the complete second-order equations [4–11],
which recently led to the development of COSMOLIB2nd [12],
a numerical Boltzmann code at second-order to compute the
CMB bispectrum from nonlinear effects. This code predicted
that the bias on local non-Gaussianity is small but non-
negligible, which has been qualitatively confirmed by other
two independent numerical studies [13,14].
A challenging aspect of second-order codes is the

integration of the photon temperature along the line of

sight. In particular, the photon Boltzmann equation con-
tains second-order couplings between the gravitational
potentials and all multipoles of the temperature generated
by free-streaming after recombination [12]. Since the
solution fails to converge by naively truncating at finite
l, incorrect treatment of these terms has led to overesti-
mating their effect on the bispectrum [10]. In [12] we have
shown that the solution to this problem is to rewrite the
infinite sum of multipoles as a boundary term and a term
that contributes only before recombination, where frequent
Thomson scatterings suppress high multipoles.
On the other hand, all previous calculations have been

performed along an unperturbed geodesic in Newtonian
conformal gauge. However, to ensure that the final result is
observable and gauge invariant, one needs to include
deviations from a straight geodesic and understand the
separation of lensing and time delay from the other second-
order effects. As pointed out in [14,15], a longstanding
obstacle hindering this inclusion is a convergence problem
similar to the one discussed above.
In this paper, we first remove this obstacle and—to our

knowledge, for the first time—clarify the separation
between lensing, time-delay and intrinsic second-order
effects that need a dedicated code to be computed.
Second, we calculate the full observable CMB temperature
bispectrum (in the absence of primordial non-Gaussianity)
and show that only once the above separation is clear can
one reach an exact agreement with the analytic formula in
the squeezed limit [3,16–19]. Finally, we compare the
signal-to-noise of the reduced bispectrum computed with
the code to the one from the squeezed-limit approximation
and recompute the values of the contamination up to
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lmax ∼ 3000 with higher accuracy than previous
computations.
We have improved COSMOLIB2nd with respect to the

version used in [12]. In particular, we now compute
fluctuations in the free-electron density by consistently
perturbing RECFAST [20] to first order, thus including
helium recombination; we have also increased the accuracy
of the three-dimensional integrator and consistently
included vector and tensor (i.e., m ¼ �1, �2) contribu-
tions. None of these improvements sensibly affects the
results of [12]. Reasonable convergence of the line-of-sight
integral can be obtained for l ≤ 3 in the second-order
source, but here we safely use l ≤ 7. We employ Planck
cosmological parameters [21] (without reionization) in all
calculations. We will give more details on the present
version of the code in a longer paper [22].

II. FULL BISPECTRUM

The Boltzmann equation for photons can be written in
terms of the fractional brightness Δ≡ δI=Ī, with
Iðη; x⃗; n̂Þ≡ R

dpp3fðη; x; pÞ; f is the photon distribution
and we have rewritten the momentum of photons in the
local inertial frame, pi, as pi ≡ pni, nini ¼ 1. Using a
perturbed metric at second order in the Poisson gauge,
ds2¼ a2ðηÞ½−e2Φdη2þ2ωidηdxiþðe−2ΨδijþχijÞdxidxj�,
with ωi;i ¼ 0 and χii ¼ 0 ¼ χij;j, the brightness equation
reads

d
dη

ðΔþ 4ΦÞ≡
� ∂
∂ηþ

dxi

dη
∂i þ

dni

dη
∂ni

�
ðΔþ 4ΦÞ

¼ 4ΔðΨ
: − Φ;iniÞ þ E − ðτ: þ δτ

: ÞF; (1)

where a dot denotes the derivative with respect to η; τ
: ≡

−neσTa is the unperturbed differential optical depth and
δτ
: ≡ τ

: ðδe þ ΦÞ its perturbation, where δe ≡ δne=ne is the
free-electron density contrast. We assume there is no
reionization; hence, both τ

:
and δτ

:
vanish today. In the

second line, E≡ 4ðΦ
:
þΨ

:
Þ − 4ω

:
ini − 2χ

:
ijninj is the red-

shift in photon energy due to integrated effects: the ISW
contribution (whose second-order part is the Rees-Sciama
(RS) effect), and the vector and tensor contributions,
respectively [9]. Finally, the collision term of the
Boltzmann equation, F, can be read off from the rhs of
Eq. (78) of [7], with the notation for Φ andΨ interchanged.
As explained in [12], the first term in the second line

of Eq. (1) couples the gravitational potentials to all
the multipole moments of Δ generated by photon free-
streaming along the line of sight. Hence, solving this
equation by naively truncating the multipole expansion
at finite order leads to a lack of convergence of its solution.
As shown in [12], this term can be traded by a total
derivative and terms proportional to τ

:
, which vanish after

recombination and whose multipole expansion can be thus
safely truncated at low l. Indeed, by replacing Φ;ini by

dΦ=dη − Φ
:
and dividing Eq. (1) by 1þ Δ, we can rewrite

it, up to second order, as

d
dη

½ðΔG þ 4ΦÞe−ðτþδτÞ� ¼ ðE − τ
:
RÞe−ðτþδτÞ; (2)

τ
:
R≡ ðτ: þ δτ

: ÞðFG þ ΔG þ 4ΦÞ; (3)

with ΔG ≡ Δ − 1
2
Δ2 and FG ≡ Fð1 − ΔÞ.

We want to integrate this equation along the perturbed
photon trajectory. While at linear order one usually relies
on the so called Born approximation and integrates the first-
order source along an unperturbed geodesic, here we need
to go at one order higher. To do that, we define the lensing
deviation δxi ≡ x⃗ðη; n̂Þ − x0ðηÞ, where x⃗0ðηÞ≡ n̂ðη − η0Þ
is the unperturbed geodesic, and the deviation angle δni,
with δniðη0Þ ¼ 0. The evolution of these quantities along
the line of sight can be computed using the photon geodesic
equation (see e.g., Eqs. (63) and (65) of [7]),

dδxi=dη ¼ δni þ niðΦþΨÞ; (4)

dδni=dη ¼ −∇i⊥ðΦþΨÞ; (5)

with ∇i⊥ ≡ ðδij − ninjÞ∂j. Plugging these equations into
the definition of the convective derivative in the first line of
Eq. (1), we can formally solve Eq. (2) as

Δobsðn̂Þ ¼
1

2
½Δobsðn̂Þ�2 þ

Z
η0

0

dηe−τfð1 − δτÞðE − τ
:
RÞ

− ½ðΦþΨÞni∂i − ∇i⊥ðΦþΨÞ∂ni �ðΔþ 4ΦÞg;
(6)

where now all the quantities in the integrand on the rhs are
evaluated along the unperturbed geodesic.
In Ref. [12], the last line of this equation was not

included in the source for the calculation of the bispectrum.
This line seems to involve the same difficulties encountered
in the calculation of the first term in the second line of
Eq. (1), i.e., couplings between Φ and Ψ with the full
hierarchy of multipoles of Δ. However, also in this case
we can rewrite it as a total derivative—yielding a
boundary term once integrated—and terms which can be
truncated at finite l. Indeed, after an integration by parts
−e−τðΦþΨÞni∂iðΔþ 4ΦÞ becomes

d
dη

½ϕD�ni∂iðΔþ 4ΦÞ� −D�ϕni∂iðE − τ
:
FÞ; (7)

where we have defined the gravitational time-delay poten-
tial at time η and the angular diameter distance to
recombination, respectively, as
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ϕðη; n̂Þ≡− 1

D�

Z
η

0

dη0e−τðΦþΨÞ; (8)

D� ≡ η0 − η�; η� ≡
Z

η0

0

dητ
:
e−τη: (9)

It is lengthier but straightforward to show that e−τ∇i⊥ðΦþ
ΨÞ∂niðΔþ 4ΦÞ can be rewritten as

d
dη

½∂niψ∂niðΔþ 4ΦÞ� − ∂niψ
d
dni

ðE − τ
:
FÞ

þ d∂niψ

dη
ðη − η0Þe−ττ:∂niR; (10)

where d
dni ≡ ∂ni þ ðη − η0Þ∂i and we have defined the

gravitational lensing potential at time η as

ψðη; n̂Þ≡
Z

η0

0

dη0gðminðη; η0ÞÞðΦþΨÞ; (11)

gðηÞ≡ 1

η − η0

Z
η

0

dη0τ
:
e−τ η − η0

η0 − η0
; (12)

which shows that the lensing angle ∂niψ describes the
difference between the deviation angle at time η and that at
the time of last scattering. The photon brightness appearing
in F and R in Eqs. (7) and (10) is always proportional to τ

:
;

hence, higher-order multipoles are suppressed and we can
safely truncate the multipole expansion of Δ at finite l. The
second line in Eq. (10) takes into account that sources at the
last scattering are generally anisotropic and gravitational
lensing changes the angle at which they are viewed. This
contribution only affects the very small multipoles [23] and
we neglect it here.
In conclusion, replacing the last line of Eq. (6) with the

expressions (7) and (10) and integrating the boundary
terms, the observed total CMB temperature anisotropy at
second order is given by the sum of four contributions
(which are not separately gauge invariant [17]),

Δð2Þ
obsðn̂Þ ¼

1

2
½Δobsðn̂Þ�2 þ Δð2Þ

S ðη0; n̂Þ
þ ϕðη0; n̂ÞD�ni∂iΔobsðn̂Þ
þ ∂niψðη0; n̂Þ∂niΔobsðn̂Þ; (13)

where ΔSðη0; n̂Þ is given, up to second order, by

ΔSðη0; n̂Þ ¼
Z

η0

0

dη

�
e−τð1 − δτÞðE − τ

:
RÞ

−D�ϕni∂iðE − τ
:
FÞ − ∂niψ

d
dni

ðE − τ
:
FÞ

�
:

(14)

The first term on the rhs of Eq. (13) comes from the local
relation between ΔG and Δ [12]. The third term is the
standard gravitational time delay and the fourth one is
lensing. In particular, the potentials ϕðη0; n̂Þ and ψðη0; n̂Þ
respectively correspond to dðn̂Þ and ϕðn̂Þ, defined in
Eqs. (6), (1), and (2) of Ref. [23]. The time delay is
suppressed by η�=D� and can be neglected [23]. Hence the
total bispectrum reads

bl1l2l3 ¼ ½ðCl1 þ Ll1l2l3C
Tψ
l1
ÞCl2 þ perms� þ bS;l1l2l3 ; (15)

where Ll1l2l3 ≡ ½l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ − l3ðl3 þ 1Þ�=2,
CTψ
l is the cross-correlation spectrum between the temper-

ature and the lensing potential (dominated by the ISW-
lensing correlation) and bS;l1l2l3 is the bispectrum computed
from Eq. (14). Since the terms in bracket on the rhs are due
to the modulation of the short-scale power spectrum by the
long modes, this formula is nonperturbative in the short
modes and involve the lensed small-scale power spectrum
rather than the unlensed one [3]. The last term, bS;l1l2l3 , is
the only one that requires a second-order Boltzmann
calculation. In the rest of this paper we concentrate our
study on this contribution.

III. SQUEEZED LIMIT

As argued in [12,16], an important check of any
Boltzmann code is to reproduce the bispectrum in the
squeezed limit, which can be computed analytically
because it is dominated by the angular modulation of
the small-scale power spectrum by super-horizon modes at
recombination [3,16–19]. Here we show that the last line of
Eq. (14) is crucial to correctly reproduce the squeezed-limit
formula.
The contribution to the bispectrum from ΔS in Eq. (14)

can be computed analytically in the squeezed limit, by
considering the effect of spatial coordinates redefinition at
recombination by a long wavelength of the primordial
curvature perturbation ζ, x⃗ → x⃗ð1þ ζÞ. This transforma-
tion (which leaves unaffected the lensing angle ∂niψ )
generates the following contributions to the integrand of
Eq. (14),

ζðη − η0Þni∂ið ~E − τ
:
RÞ −

�Z
η

0

dη0e−τζ
�
ni∂ið ~E − τ

:
FÞ;
(16)

where we have used ΦþΨ ¼ −ζ for the long wavelength
time-delay potential. Since the long mode only modulates
quantities at recombination, we use a tilde to denote that we
have removed the late-ISW contribution. Integrating both
terms in Eq. (16) by parts along the line of sight gives a
spatial redefinition of the temperature fluctuation,
Δð2Þ

S ðη0; n̂Þ ≈ ζD�ni∂i
~Δðη0; n̂Þ. In the squeezed limit
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l1≪ l2, l3 and for l1≪ lH, where lH≃ðHa=csÞ�D�≃110,
this corresponds to the reduced bispectrum

bS;l1l2l3 ≈ CTζ
l1

1

l2
dðl2 ~ClÞ
d ln l

; (17)

where l⃗≡ ðl⃗2 − l⃗3Þ=2 and CTζ
l1

is the cross-correlation
spectrum between the temperature and ζ. One can verify
that a long wavelength time-coordinate transformation η →
ηþ εðηÞ induced by the long mode leaves unchanged
Eq. (14) up to corrections of order η�=D�.
In Fig. 1 we compare the bispectrum numerically

computed using Eq. (14) with the approximate formula
Eq. (17). As expected, the agreement is of Oðl1=lÞ2. While
the last term in bracket in Eq. (14) can be neglected in the
squeezed limit, the third term, here called “time shift”,
becomes important—and crucial to perfectly match the
approximate formula—when the early-ISW effect is large.
(When Λ ¼ 0 the early-ISW effect is negligible and agree-
ment can be obtained also in the absence of the last line of
Eq. (14) [12].)

IV. BISPECTRUM AMPLITUDE AND SHAPE

We define the Fisher matrix between two bispectra X and
Y as [24]

FX;Y ≡ X
2≤l1≤l2≤l3≤lmax

BðXÞ
l1l2l3

BðYÞ
l1l2l3

Cl1Cl2Cl3Δl1l2l3

; (18)

with Δl1l2l3 ¼ 1, 2, 6 for triangles with no, two or three
equal sides. The indices X and Y run from “sec, app, loc,
eq, ort”, respectively denoting the contributions from
second-order effects, i.e., Cl1Cl2 þ Cl1Cl3 þ Cl2Cl3þ
bS;l1l2l3 , their analytic approximation in the squeezed limit,
i.e., 2Cl1Cl plus Eq. (17), the local, equilateral and
orthogonal shapes. A complete list of the elements of
FX;Y (including the separation with late-time and m ¼ 0,
�1, �2 contributions) as a function of lmax can be found
in [25].
In Fig. 2 we plot the signal-to-noise ratio of second-order

effects, ðS=NÞsec ≡ F1=2
sec;sec, the squeezed-limit approxima-

tion, ðS=NÞapp ≡ F1=2
app;app, and their overlap defined as

αsec;app ≡ Fsec;app=ðFsec;secFapp;appÞ1=2. The signal-to-noise
agrees with Ref. [14] (and qualitatively with [13] at
lmax ¼ 2000) and is well approximated, up to ∼10%
differences both in the amplitude and in the shape, by
its analytic approximation in the squeezed limit. We have
also checked that late-time second-order effects, the most
relevant of which are the RS and the late-time part of the
time shift, only contribute by ∼10% to ðS=NÞsec, roughly
independently of lmax for lmax ≳ 700 [25]. Hence, most of
ðS=NÞsec originates at recombination. Figure 2 also shows
the bias of second-order sources (fðXÞNL ≡ FX;sec=FX;X) on
local, equilateral and orthogonal primordial signals. The
bias on a local signal is small but non-negligible and should
be subtracted from the current constraints. Biases on
equilateral and orthogonal signals are always smaller than
an order of magnitude of their variance and can thus be
totally neglected. We disagree by 10% with the value of
flocNL reported in [12]; this is mainly due to a suboptimal
binning scheme, here corrected [25]. Comparison with
[13,14] on the values of the contamination is not straight-
forward, because these references integrate different terms
along the line of sight.

FIG. 1 (color online). Reduced bispectrum from Eq. (14),
bS;l1l2l3 , for l1 ¼ 6 as a function of l2 ¼ l3, decomposed in its
different contributions and compared to the squeezed-limit
formula. The “time shift” denotes the contribution from the
second term on the rhs of Eq. (14) while the one from the last
term is not shown here due to its smallness in the squeezed
limit. The horizontal axis uses logarithmic (linear) scale for
l ≤ 100 (l > 100).

FIG. 2 (color online). Signal-to-noise ratio of second-order
effects, i.e., Cl1Cl2 þ Cl1Cl3 þ Cl2Cl3 þ bS;l1l2l3 , compared to the
one from the squeezed-limit approximation, i.e., 2Cl1Cl plus
Eq. (17), and bias to local, equilateral and orthogonal signals.
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V. CONCLUSION

Second-order effects in the CMB temperature are
finally completely under control. We have clearly sep-
arated second-order sources at recombination from the
better-known ISW-lensing correlation. Even though
the former is smaller than the latter, we propose that
both should be included in future Planck analysis of
non-Gaussianity. This task could be simplified by
directly using Eq. (15) with bS;l1l2l3 given by the
analytic formula in the squeezed limit, Eq. (17)
[3,16,19], which we showed to approximate well the
second-order effects.

As the signal-to-noise ratio of these effects becomes
unity at lmax ∼ 3000, they may eventually be measured by
combining present and future CMB temperature and
polarization data and become an important cross-check
of standard cosmology beyond linear theory.

ACKNOWLEDGMENTS

We thank the authors of [13,14], P.Creminelli,A. Lewis, C.
Pitrou, and B. van Tent for very stimulating discussions and
useful correspondence and the SNS of Pisa for kind hospital-
ity. We also acknowledge support by the ANR Chaire
d’excellence Junior CMBsecond ANR-09-CEXC-004-01.

[1] P. A. R. Ade et al. (Planck Collaboration), arXiv:1303.5084.
[2] F. Vernizzi and D. Wands, J. Cosmol. Astropart. Phys. 05

(2006) 019.
[3] A. Lewis, J. Cosmol. Astropart. Phys. 06 (2012) 023.
[4] N. Bartolo, S. Matarrese, and A. Riotto, Phys. Rev. Lett. 93,

231301 (2004); J. Cosmol. Astropart. Phys. 06 (2006) 024;
J. Cosmol. Astropart. Phys. 01 (2007) 019.

[5] C. Pitrou, Classical Quantum Gravity 26, 065006 (2009).
[6] R. Khatri and B. D. Wandelt, Phys. Rev. D 79, 023501

(2009); Phys. Rev. D 81, 103518 (2010).
[7] L. Senatore, S. Tassev, and M. Zaldarriaga, J. Cosmol.

Astropart. Phys. 08 (2009) 031; J. Cosmol. Astropart. Phys.
09 (2009) 038.

[8] D. Nitta, E. Komatsu, N. Bartolo, S. Matarrese, and A.
Riotto, J. Cosmol. Astropart. Phys. 05 (2009) 014.

[9] L. Boubekeur, P. Creminelli, G. D’Amico, J. Norena, and F.
Vernizzi, J. Cosmol. Astropart. Phys. 08 (2009) 029.

[10] C. Pitrou, J.-P. Uzan, and F. Bernardeau, J. Cosmol.
Astropart. Phys. 07 (2010) 003.

[11] M. Beneke and C. Fidler, Phys. Rev. D 82, 063509 (2010).
[12] Z. Huang and F. Vernizzi, Phys. Rev. Lett. 110, 101303

(2013).

[13] S.-C. Su, E. A. Lim, and E. P. S. Shellard, arXiv:1212.6968.
[14] G.W. Pettinari, C. Fidler, R. Crittenden, K. Koyama,

and D. Wands, J. Cosmol. Astropart. Phys. 04 (2013)
003.

[15] A. Naruko, C. Pitrou, K. Koyama, and M. Sasaki, Classical
Quantum Gravity 30, 165008 (2013).

[16] P. Creminelli, C. Pitrou, and F. Vernizzi, J. Cosmol.
Astropart. Phys. 11 (2011) 025.

[17] P. Creminelli and M. Zaldarriaga, Phys. Rev. D 70, 083532
(2004).

[18] N. Bartolo, S. Matarrese, and A. Riotto, J. Cosmol.
Astropart. Phys. 02 (2012) 017.

[19] E. Pajer, F. Schmidt, and M. Zaldarriaga, arXiv:1305.0824.
[20] S. Seager, D. D. Sasselov and D. Scott, Astrophys. J. 523,

L1 (1999).
[21] P. A. R. Ade et al. (Planck Collaboration), arXiv:1303.5076.
[22] Z. Huang and F. Vernizzi (to be published).
[23] W. Hu and A. Cooray, Phys. Rev. D 63, 023504

(2000).
[24] E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002

(2001).
[25] http://www.cita.utoronto.ca/~zqhuang/CosmoLib/fisher.dat.

FULL COSMIC MICROWAVE BACKGROUND TEMPERATURE … PHYSICAL REVIEW D 89, 021302(R) (2014)

021302-5

RAPID COMMUNICATIONS

http://arXiv.org/abs/1303.5084
http://dx.doi.org/10.1088/1475-7516/2006/05/019
http://dx.doi.org/10.1088/1475-7516/2006/05/019
http://dx.doi.org/10.1088/1475-7516/2012/06/023
http://dx.doi.org/10.1103/PhysRevLett.93.231301
http://dx.doi.org/10.1103/PhysRevLett.93.231301
http://dx.doi.org/10.1088/1475-7516/2006/06/024
http://dx.doi.org/10.1088/1475-7516/2007/01/019
http://dx.doi.org/10.1088/0264-9381/26/6/065006
http://dx.doi.org/10.1103/PhysRevD.79.023501
http://dx.doi.org/10.1103/PhysRevD.79.023501
http://dx.doi.org/10.1103/PhysRevD.81.103518
http://dx.doi.org/10.1088/1475-7516/2009/08/031
http://dx.doi.org/10.1088/1475-7516/2009/08/031
http://dx.doi.org/10.1088/1475-7516/2009/09/038
http://dx.doi.org/10.1088/1475-7516/2009/09/038
http://dx.doi.org/10.1088/1475-7516/2009/05/014
http://dx.doi.org/10.1088/1475-7516/2009/08/029
http://dx.doi.org/10.1088/1475-7516/2010/07/003
http://dx.doi.org/10.1088/1475-7516/2010/07/003
http://dx.doi.org/10.1103/PhysRevD.82.063509
http://dx.doi.org/10.1103/PhysRevLett.110.101303
http://dx.doi.org/10.1103/PhysRevLett.110.101303
http://arXiv.org/abs/1212.6968
http://dx.doi.org/10.1088/1475-7516/2013/04/003
http://dx.doi.org/10.1088/1475-7516/2013/04/003
http://dx.doi.org/10.1088/0264-9381/30/16/165008
http://dx.doi.org/10.1088/0264-9381/30/16/165008
http://dx.doi.org/10.1088/1475-7516/2011/11/025
http://dx.doi.org/10.1088/1475-7516/2011/11/025
http://dx.doi.org/10.1103/PhysRevD.70.083532
http://dx.doi.org/10.1103/PhysRevD.70.083532
http://dx.doi.org/10.1088/1475-7516/2012/02/017
http://dx.doi.org/10.1088/1475-7516/2012/02/017
http://arXiv.org/abs/1305.0824
http://dx.doi.org/10.1086/312250
http://dx.doi.org/10.1086/312250
http://arXiv.org/abs/1303.5076
http://dx.doi.org/10.1103/PhysRevD.63.023504
http://dx.doi.org/10.1103/PhysRevD.63.023504
http://dx.doi.org/10.1103/PhysRevD.63.063002
http://dx.doi.org/10.1103/PhysRevD.63.063002
http://www.cita.utoronto.ca/zqhuang/CosmoLib/fisher.dat
http://www.cita.utoronto.ca/zqhuang/CosmoLib/fisher.dat
http://www.cita.utoronto.ca/zqhuang/CosmoLib/fisher.dat
http://www.cita.utoronto.ca/zqhuang/CosmoLib/fisher.dat
http://www.cita.utoronto.ca/zqhuang/CosmoLib/fisher.dat

