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The joint study of double-parton scattering (DPS) in high-energy proton-proton and proton-nucleus
collisions can provide a lot of information on multiparton correlations. The multiparton structure is in fact
probed in different ways by DPS in p-p and in p-A collisions. In p-A collisions, the interpretation of the
experimental results may be complicated, however, by the presence of interference terms, which are
missing in p-p collisions. A suitable reaction channel, where interference terms are absent, is WJJ
production. By studyingWJJ production in p-Pb collisions, we estimate that the fraction of events due to
DPS may be larger by a factor 3 or 4 as compared to p-p, while the amount of the increased fraction can
give information on the importance of different correlation terms.
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I. INTRODUCTION

Multiple-parton interactions (MPIs) have been intro-
duced in the dynamical description of hadronic collisions
as a natural solution of the unitarity problem, originated at
high energies by the rapid growth of the hard cross sections
at small x [1–3]. The inclusive cross section is in fact
proportional to the multiplicity of elementary partonic
interactions, and the increasingly large values of the cross
section are in this way understood as the result of an
increasingly large average number of elementary inter-
actions in an inelastic event. Each elementary partonic
interaction is localized in transverse space, inside the much
larger overlap region of the matter distribution of the
colliding hadrons. A given final state can, of course, be
produced by different MPI processes, which contribute to
the cross section with different weights. At small x, the
leading contribution is provided by the term that maximizes
the number of interacting partons, which corresponds to the
processes where the hard component of the interaction is
maximally disconnected. In the simplest case, namely in
double-parton scattering (DPS), the dominant contribution
to the cross section at small x is thus given by the term
where two different pairs of partons interact independently
in two different points in transverse space.
As recently pointed out [4,5], the typical back-to-back

configuration of four large-pt partons, produced in a DPS
by the leading contribution at small x and utilized as a

distinctive signature for the experimental search of DPS
events, can be generated also by a hard interaction
involving three partons in the initial state, all localized
in the same point in transverse space. The initial partonic
flux in 3 → 4 processes is very different as compared to the
initial partonic flux of ð2 → 2Þ2 processes and, as discussed
in Ref. [4], the typical unbalance of the final-state parton
pairs is rather different in the two cases. The initial-state
partonic flux is a measurable quantity, and a careful study
of the dependence of the cross section on the initial-state
fractional momenta and on the momentum unbalance
should be able to separate experimentally the contributions
to the observed DPS cross section, due to 3 → 4 processes
from the leading ones at small x. In the present paper, we
will focus on the disconnected component of DPS in p-p
and in p-A collisions, while the problem of the exper-
imental identification and subtraction of a possible 3 → 4
background to the observed DPS cross section lies outside
our scope and will not be discussed in the present paper.
With DPS, we will thus refer specifically to the contribution
to the inclusive cross section due to disconnected hard
interactions.
When dealing with disconnected hard interactions, the

simplest assumption, which leads to very compact results,
is that the different partons with small x in the proton are
uncorrelated with each other. On the other hand, several
different types of correlations can be expected, and the
topic of correlations has addressed a lot of attention [6–17].
In addition to the dependence on the kinematical variables,
DPS amplitudes are in fact expected to depend on spin and
color, which induce interference terms in the cross section.
Color correlations are Sudakov suppressed, and thus small
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for double-parton scattering at high energies [6,13].
Probably more important are spin correlations, which are
expected to affect the rate of double-parton scattering and
the angular distribution of the final state in particular
reaction channels, even if partons are not polarized [16].
The study of correlations in DPS is therefore a rather rich

topic, and a proper approach to the problem requires the
introduction of flavor- and spin-dependent double-parton
distribution functions. The issue is still under theoretical
investigation while present experimental results cannot yet
provide indications on the relative importance of different
spin and flavor contributions to the double-parton distri-
butions. A complete description of DPS in p-A collisions,
even without considering possible 3 → 4 contributions,
including, however, all terms required to account for the
dependence on flavor and spin, is therefore still premature.
On the other hand, there are reasons to expect that, in p-A
collisions, the basic features of DPS will change substan-
tially as compared with the case of DPS in p-p [18–23]. It
may therefore be instructive to work out explicitly the
expectations of DPS in p-A collisions when assuming the
simplest possible scenario still not in contradiction with
present experimental evidence of DPS in p-p collisions.
The simplest possibility is to neglect the effects of spin

and color in the disconnected component of the DPS cross
section. The DPS cross section is thus factorized into
functions which depend on the fractional momenta of the
interacting partons, on the resolution of the hard processes,
and on the relative transverse distance β between the two
interaction points. The expression of the cross section for
two parton processes A and B in a p-p collision is thus
given by

σppðA;BÞD ¼ m
2

X
i;j;k;l

Z
Γi;jðx1; x2; βÞσ̂Ai;kðx1; x01Þ

× σ̂Bj;lðx2; x02ÞΓk;lðx01; x02; βÞdx1dx01dx2dx02d2β;
(1)

where Γi;jðx1; x2; βÞ are the double-parton distribution
functions, and the dependence on the fractional momenta
of the interacting partons x1;2 and on their relative trans-
verse distance β is explicitly indicated, while the depend-
ence on the scales of the two hard processes A and B is
understood. The indices i and j label parton flavors. For
identical interactions m ¼ 1, and m ¼ 2 otherwise. σ̂A, σ̂B

are the two elementary cross sections.
Equation (1) may lead to a very simple expression, where

the cross section is given by the product of the two single-
scattering inclusive cross sections of the hard processes A
and B:

σppðA;BÞD

dxidx0idpti
¼ m

2

1

σeff

dσA

dx1dx01dpt1

dσB

dx2dx02dpt2
; (2)

which is the “pocket formula” utilized in all experimental
analyses of DPS [24–28]. All unknowns in the process
converge in this way in the value of a single quantity with
the dimensions of a cross section, σeff , which is therefore
expected to depend on fractional momenta, resolution,
parton flavors, and on the two-body correlation parameters,
which characterize the double-parton distributions.
Equation (2) has a transparent physical meaning. When

hard interactions are rare, the probability of also having the
process B in an inelastic interaction is given by the ratio
σB=σinel. Once the process A takes place, the probability of
having the process B in the same inelastic interaction is
different. It can, anyway, always be written as σB=σeff ,
where σeff plays effectively the role which was that of the
inelastic cross section in the unbiased case.
Notice that, although σeff is related to the transverse

distance between the two hard interactions, it cannot be
understood as the effective transverse interaction area, since
σeff depends also on the multiparton distributions in
multiplicity. While initial fractional momenta and resolu-
tion are measured in the final state and the dependence of
σeff on parton flavors can be obtained, at least to a certain
extent, by selecting different reaction channels, the effects
of the dependence on the partonic distributions in multi-
plicity and on the correlation in the relative transverse
distance cannot be disentangled by looking only at p-p
collisions.
Even in the simplest scenario, σeff is thus expected to

depend on flavor and on all kinematical variables. In spite
of that, Eq. (2) has been shown to be able to describe the
experimental results of the direct search of double-parton
collisions in rather different reaction channels and kin-
ematical regimes [24–28] with a value of σeff not incom-
patible with a universal constant, while the study of CDF
[25], of the dependence of σeff on the fractional momenta of
the incoming partons, is again not inconsistent with a value
of σeff independent of x. When the DPS cross section is
generalized by introducing parton distributions depending
on transverse momenta and off-shell T-matrix elements,
the same value of σeff allows describing DPS also in the
regime of very small x, where the back-to-back kinematical
configuration, typical of the large-pt partons originated by
DPS, is lost. The observed production rates of ðJ=ψ ; J=ψÞ
are thus understood [29], while the production of different
combinations of charmed mesons, the differential distri-
butions in the D0D0 invariant mass, and the azimuthal
correlation between two D0 mesons, as worked out in
Ref. [30], are not incompatible with the recent measure-
ments of the LHCb Collaboration [31].
One should underline that the experimental indication of

a value of σeff consistent with a universal constant repre-
sents a nontrivial test of the simple interaction mechanism
leading to Eq. (2). The expression of σD in Eq. (2) depends,
in fact, rather strongly on the kinematical conditions of the
observed process. In particular, the dependence on the
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incoming parton flux is much stronger as compared with
the case of a single hard scattering process.
As already noticed, although σeff is directly related to

parton correlations, even in the simplest scenario, by
measuring DPS only in p-p collisions, one does not have
enough information to decide how much the observed value
of σeff is originated by the typical separation in transverse
space between the two pairs of interacting partons and how
much it is rather due to the actual distribution in the
multiplicity of parton pairs in the hadronic structure.
Additional information to discriminate between the two
cases can nevertheless be obtained by studying DPS in p-A
collisions. MPIs in p-A collisions introduce, in fact, novel
features in the process. A relevant novel feature is that one
may have an MPI where two or more target nucleons are
active participants in the hard process [18–21,23]. A relevant
consequence of having two or more active target nucleons is
that, while in the simplest picture of the interaction consid-
ered here, in p-p collisions MPIs are described by the
incoherent superposition of sets of elementary partonic
interactions [1–3,32], in p-A collisions interference terms
may, on the contrary, play an important role [20].
To have some quantitative indication on the impact of the

different features of DPS in p-A collisions, we will study the
simplest option, where in p-p collisions σeff is a universal
constant, and it is completely determined by the typical
transverse distance between the two pairs of interacting
partons, and by the multiplicity of parton pairs in the
hadronic structure. We will further simplify the problem
by selecting a suitable reaction channel, where there are no
contributions of interference terms in p-A collisions. One
can then show that the multiplicity of pairs of partons and
their typical transverse separation have rather different
effects on the DPS cross section in p-p and in p-A
collisions. The amount of increase in the cross section when
going top-A can be in fact linked in a rather direct way to the
multiplicity of parton pairs in the projectile, while the effects
of the typical separation of the parton pairs in transverse
space are only of minor importance.
The paper is organized as follows: In Sec. II, we recall

some of the main features of DPS in p-p and in p-A
collisions. In Sec. III, we discuss the case of WJJ
production. Section IV is devoted to illustrating, with some
numerical estimates, the different effects on the p-A cross
section of varying either the multiplicity of pairs of partons
or their relative transverse distance. The last section is
dedicated to summarizing remarks.

II. DPS IN p-p AND IN p-A COLLISIONS

It has been pointed out that, for sufficiently small values
of β, the distributions Γðx1; x2; βÞ can be expressed in terms
of known quantities [12]. For small β, Γðx1; x2; βÞ may be
obtained from a single-parton distribution times a pertur-
bative dynamics, which yields the splitting function for the
longitudinal variables and a 1=β2 singularity in the

transverse relative distance. The divergent behavior of
the DPS cross section at small β needs, therefore, to be
properly subtracted, and the subtraction terms included in
the single scattering contribution. The issue of the sub-
traction of the divergent contribution and of the correlation
in fractional momenta, induced by perturbative splitting,
has been discussed by several authors and is still a matter of
debate, in particular for what concerns the QCD evolution
of the double-parton distribution functions [4,5,12,33–35].
The common origin of the initial-state partons leaves

anyway track in the DPS cross section. A main qualitative
feature is the presence of additional contributions, which,
however, cannot be considered anymore as disconnected in
transverse space and cannot be expressed by Eq. (1). The
importance of these contributions grows with the fractional
momenta of the incoming partons and would thus induce a
measurable dependence of σeff on the initial-state fractional
momenta. Although there was no systematic study of the x
dependence, the available experimental evidence does not
seem to imply a sizable dependence of σeff on the initial-state
fractional momenta. As stated in the Introduction, we will
therefore take the simplified attitude of assuming that
possible additional contributions to the measured DPS cross
section can be identified and subtracted experimentally, and
we will focus on the disconnected DPS interaction
mechanism.
Disregarding for simplicity the dependence on flavor and

on the resolution, one may introduce

Gðx1; x2Þ≡
Z

Γðx1; x2; βÞd2β;

Gðx1; x2Þ≡ Kx1x2Gðx1ÞGðx2Þ;
(3)

where GðxÞ are the usual one-body distribution functions.
Without any loss of generality, one may thus write

Γðx1; x2; βÞ ¼ Kx1x2Gðx1ÞGðx2Þfx1x2ðβÞ; (4)

with
R
fx1x2ðβÞd2β ¼ 1. One has

σppðA;BÞD ðx1;x01;x2;x02Þ
¼m

2
Kx1x2Kx0

1
x0
2
Gðx1Þσ̂Aðx1;x01ÞGðx01Þ

×Gðx2Þσ̂Bðx2;x02ÞGðx02Þ

×
Z

fx1x2ðβÞfx01x02ðβÞd2β

¼m
2

Kx1x2Kx0
1
x0
2

πΛ2ðx1;x01;x2;x02Þ
σAðx1;x01ÞσBðx2;x02Þ;

where

Z
fx1x2ðβÞfx01x02ðβÞd2β ¼ 1

πΛ2ðx1; x01; x2; x02Þ
: (5)
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The effective cross section is therefore given by

σeffðx1; x01; x2; x02Þ ¼
πΛ2ðx1; x01; x2; x02Þ

Kx1x2Kx0
1
x0
2

; (6)

and Λðx1; x01; x2; x02Þ measures the typical transverse
distance between the pairs of interacting partons for given
values of fractional momenta, while Kx1x2 gives the second
moment of the multiparton exclusive multiplicity distribu-
tion. More precisely, Kx1x2 ¼ hnðn − 1Þix1x2=ðhnix1hnix2Þ
[19] in such a way that, in the simplest case of a Poissonian
distribution in multiplicity, one would have Kx1x2 ¼ 1.
Present experimental indication is that the effective cross
section depends only weakly on fractional momenta.
As apparent in Eq. (6), in nucleon-nucleon collisions all

effects due to parton correlations are summarized in the
value of a single quantity (the effective cross section), and
nucleon-nucleon collisions alone do not allow one to
measure Λ and K separately. To obtain additional infor-
mation on multiparton correlations, one needs to study DPS
p-A collisions.
Obviously, double- (and, more in general, multiple-)

parton scatterings are more abundant in reactions with
nuclei. DPS is thus more interesting in p-A collisions.
When nonadditive corrections to the nuclear parton distri-
butions are only a minor effect, in p-A collisions DPS
originate either from interactions with a single active target
nucleon or from interactions with two different active target
nucleons. While the first contribution does not add much to
the information already available from DPS on an isolated
nucleon, the second contribution has the peculiar property of
enhancing the effects of longitudinal correlations in the
proton. In the latter case, the relative transverse distance
between the interacting pairs does not play, in fact, any
relevant role when compared to the much larger nuclear
radius [18–23]. By selecting the contribution to DPS,
with two active target nucleons, one will hence have
direct access to the longitudinal correlations of the
hadron structure. The cross section thus splits into two terms:

σpAD ¼ σpAD j1 þ σpAD j2; (7)

which correspond to the two different contributions, where
the double hard interaction takes place with one or with two
different target nucleons. In a simplest probabilistic picture
of the interaction, one would write

σpAD j1 ¼
1

2

σ2S
σeff

Z
d2BTðBÞ ∝ A;

σpAD j2 ¼
1

2
σ2S

Z
d2BT2ðBÞ ∝ A4=3; (8)

where the case of two identical partonic interactions has been
considered. Here σS is the inclusive single-scattering cross
section, and TðBÞ is the nuclear thickness as a function of the

impact parameter of the collisions B. The two terms have a
transparent geometrical meaning and are distinguished by
their different dependence on the atomic mass number A.
A closer look at the kinematics of the process [20,21]

shows, however, that one needs to take into account an
additional contribution to the cross section. The diagonal
term σpAD j2 in Eq. (8) does not exhaust in fact all possibilities
of interaction and, in the case of two different active target
nucleons, one needs to add an interference term. The two
terms are conveniently expressed as contributions to the
discontinuity of the forward elastic amplitude. The two
corresponding unitarity diagrams are shown in Fig. 1,
representing the diagonal [Fig. 1(a)] and the off-diagonal
[Fig. 1(b)] contributions. Notice that having focused on the
disconnected component of the hard interaction, the descrip-
tion of the process is greatly simplified, with respect to the
sizably more complex situation discussed in [21].
Following the lines described in full detail in

Refs. [19,20], the contribution of the diagonal term to
the cross section, with two active target nucleons, is
given by

σpAD j2;diag
¼ 1

2ð2πÞ3
Z

Γðx1; x2; β1 − β2Þ
dσ̂ðx1; x01Þ

dΩ1

dσ̂ðx2; x02Þ
dΩ2

× Γðx01=Z1; b1ÞΓðx02=Z2; b2Þj ~ΨAðZi;BiÞj2
× db1db2dðβ1 − β2ÞδðB1 − B2 þ b1 − b2 þ β1 − β2Þ

× δ
�X

Zi − A
�
dx1dx2dx01dx

0
2dΩ1dΩ2

Y
i

dBi
dZi

Zi
;

(9)

where σ̂ðxi; xi0Þ are the partonic cross sections, and the
nuclear wave function ΨAðZi;BiÞ is in a mixed representa-
tion, with Zi being the nucleons’ fractional momenta
and Bi the nucleons’ transverse coordinates. The nuclear
wave function is peaked at Zi ¼ 1, while MPIs are most
important at x≃ 10−2 ÷ 10−3. Keeping into account that the

(a) (b)

FIG. 1 (color online). Double-parton scattering contributions to
the discontinuity of the forward p-A interaction amplitude:
(a) diagonal term, (b) interference term.
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scale of the nucleon’s Fermi momentum is small as
compared to the nucleon mass, a meaningful approximation
is to integrate on Zi while keeping Z1 ¼ Z2 ¼ 1 in
the partonic distributions Γ. The nuclear dependence is
thus expressed through the two-body nuclear density
ρðB1; z1;B2; z2Þ, where the quantities z1 and z2 are the
longitudinal coordinates of the two interacting nucleons:

Z
Γðx01=Z1; b1ÞΓðx02=Z2; b2Þj ~ΨAðZi;BiÞj2

Y
i

dZi

Zi

≃ Γðx01; b1ÞΓðx02; b2Þ

×
Z

ρðB1; z1;B2; z2Þdz1dz2: (10)

With the help of Eq. (4), in the case of two identical
interactions, one thus obtains

dσpAD j2;diag
dxidx01dΩi

¼ Kx1x2

1

2

dσSðx1; x01Þ
dΩ1

dσSðx2; x02Þ
dΩ2

×
Z

fx1x2ðβ1 − β2Þfx0
1
ðb1Þfx0

2
ðb2Þ

× ρðB1; z1;B2; z2Þdz1dz2
× δðB1 − B2 þ b1 − b2 þ β1 − β2Þ
× db1db2dðβ1 − β2ÞdB1dB2; (11)

where σS is the usual single-scattering inclusive cross section
on a nucleon, and we made the positions Γðx; bÞ≡
GðxÞfxðbÞ,

R
fxðbÞd2b ¼ 1. The configuration in trans-

verse space corresponding to the DPS cross section in
Eq. (11) is illustrated in Fig. 2.
The contribution of the interference term to the cross

section is obtained in a similar way [20]. The expression is

σpAD j2;int
dxidxi0dΩi

¼ 1

ð2πÞ3
Z

Γðx1; x2; β1 − β2Þ
dσ̂ðx1; x01Þ

dΩ1

dσ̂ðx2; x02Þ
dΩ2

WðZ1; Z2;Z0
1; Z

0
2; x

0
1; x

0
2; b1; b2;B1; B2Þ

× ~ΨAðZi;BiÞ ~Ψ�
AðZ0

i;BiÞδðB1 − B2 − b1 þ b2 − β1 þ β2ÞδðZ1 − Z0
1 − x01 þ x02Þ

× δðZ2 − Z0
2 þ x01 − x02Þδ

�X
Zi − A

�
δ
�X

Z0
i − A

�
db1db2dðβ1 − β2Þ

Y
dBi

dZi

Zi

dZ0
i

Z0
i
; (12)

where the off-diagonal parton amplitudes in the process
are all included in the function W. Some details on the
construction of the functionW are presented in Appendix A.
The main features of the off-diagonal contribution

originate from kinematics and are summarized in Fig. 3.
As far as the longitudinal variables are concerned, the

interference term requires the nuclear wave function to be

FIG. 2 (color online). Configuration in transverse space corre-
sponding to the DPS cross section in Eq. (11).

FIG. 3 (color online). Upper part of the figure: Configurations in
transverse space of the left-hand (A) and right-hand (A*) site
amplitudes in the off-diagonal contribution to the cross section in
Eq. (12). Lower part of the figure: Nucleons’ fractional momentum
flow in the off-diagonal contribution to the cross section in Eq. (12).
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taken at different values of Z. As is apparent in the lower
part of Fig. 3, one must have, in fact, Z1 − Z0

1 ¼
x01 − x02 ¼ Z0

2 − Z2. When the differences Zi − Z0
i are not

too small, the interference term is therefore depressed with
respect to the diagonal term by the nuclear form factor.
One should, however, keep in mind that at large energies
the values of x can be rather small, still maintaining the
process within the limits of perturbative dynamics, so the
depression factor may not be strong.
When looking at transverse momenta, there are two

different scales in the initial state: The typical transverse
momentum of the order of a few GeV of the initial state
partons, originated by QCD evolution, and the typical
transverse momentum of the order of a hundred MeV of
the bound nucleons, due to Fermi motion. One might
therefore expect the interference term to be further
depressed by the presence of the two different scales.
As discussed in Appendix A, a closer look at kinematics
shows, however, that this is not the case. The difference
between the overall transverse momenta of the large-pt
partons, generated in the two hard collisions, actually
Q1;t −Q2;t in Fig. 9 in Appendix A, is in fact originated
in the upper vertex φp in the figure and does not
propagate to the target nucleons’ momenta in the lower
part of the diagram, in such a way that there are not
transverse momenta of the GeV scale in the nucleons’
lines in the interference diagram. Going to the coordi-
nates space, one obtains a rather transparent picture of the
interaction, as shown in the upper part of Fig. 3, where
the configuration in transverse space of the amplitude in
the left-hand side of the cut of Fig. 1(b) is labeled with
A, and the configuration of the amplitude in the right-
hand side of the cut, is labeled with A*. By exchanging
Q1;t with Q2;t when moving from the left- to the right-
hand side of the cut in Fig. 1(b), one produces a change
in the sign of the difference between the transverse
coordinates of the two projectile partons, β1 and β2, in
the nonperturbative vertex φp. The argument of φp is
therefore ðβ1 − β2Þ in the amplitude A and ð−β1 þ β2Þ in
the amplitude A*, while one does not expect any
dependence of φ on the sign of its argument. For what
concerns the remaining transverse variables, as illustrated
in the upper part of Fig. 3, the nuclear configurations in
A and in A* are the same, the two hard interactions
remain localized in the same points, and the two
interacting partons exchange their parent hadrons.
When the two active partons are identical, the initial

partonic configuration of the DPS process can therefore
be produced in two independent ways, since each of the
two active nucleons can generate each of the two
interacting partons. The two nuclear configurations there-
fore have to be added coherently in the cross section. The
two active target nucleons have different longitudinal
fractional momenta in the two configurations, and the
difference is equal to the difference of the fractional

momenta of the two interacting partons, x01 − x02. The
interference term is thus characterized by the peculiar
dependence of the nuclear form factor as a function of
x01 − x02. Notice that the interference term is directly
proportional to the off-diagonal parton distributions,
while the value of x01 − x02 can be controlled in the
process by selecting the kinematical configuration of the
final state produced by the hard interaction. There is thus
the interesting possibility of obtaining additional infor-
mation on off-diagonal parton distribution functions by
using an inclusive process, actually DPS in p-A colli-
sions, which, comparing with exclusive processes, would
be able to provide larger rates of events and to access
different kinematical regimes.

III. WJJ PRODUCTION BY DPS IN p-A
COLLISIONS

The presence of an interference term in DPS in p-A
collisions may have an interesting potential in the study of
generalized parton distributions. On the other hand, our
present purpose is to identify and work out a simple case,
where the measured cross section has a straightforward
relation with partonic correlations. We will thus consider a
reaction channel where the interference term is strongly
suppressed. To our aim, a particularly interesting channel is
the inclusive production of WJJ. In WJJ production, the
two initial-state partons, both from the side of the projectile
and from the side of the target nucleus, are a quark and a
gluon, since, in the kinematical regime of interest for
DPS, JJ production is dominated by the gluonic channel.
The two active target partons cannot therefore be identical,
and the interference term is absent. A further reason of
interest in WJJ is that DPS production is presently studied
experimentally in p-p both by ATLAS and by CMS
[27,28], while, after the recent experimental results and
in view of the next runs planned at the LHC, there is
increasing activity in the study of p-A collision, both
experimental and theoretical [36]. The experimental study
of DPS in WJJ production in p-Pb collisions might
therefore represent a feasible option for the experimental
groups in a not-too-distant future.
In the inclusive cross section for WJJ production,

σpAðWJJÞ, one identifies three different contributions:

σpAðWJJÞ ¼ σpAS ðWJJÞ þ σpAD ðWJJÞ; where

σpAD ðWJJÞ ¼ σpAD ðWJJÞj1 þ σpAD ðWJJÞj2:

The first term, σpAS ðWJJÞ, represents the processes where
WJJ is produced by a single-parton collision, while
the contribution due to DPS, σpAD ðWJJÞ, is expressed,
according with Eq. (7), by the sum of two terms, which
distinguish whether the DPS takes place against a single
nucleon, σpAD ðWJJÞj1, or against two different target
nucleons, σpAD ðWJJÞj2.
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The contribution due to single-parton collisions,
σpAS ðWJJÞ, can be evaluated according to the standard
rules, again accounting for the different contributions due
to the interaction with a target proton or neutron and
making use of the parton distributions of the bound
nucleons [37,38]. This term does not provide much
additional information on hadron structure, and it can be
considered as a known quantity.
The explicit expression of the contribution due to a

double-parton scattering in a collision with a single target
nucleon, σpAD ðWJJÞj1, is

σpAD ðWJJÞj1 ¼
1

σeff
½Zσp½p�S ðWÞσp½p�S ðJJÞ

þ ðA − ZÞσp½n�S ðWÞσp½n�S ðJJÞ�; (13)

where σp½p�;p½n�S ðWÞ are the single-scattering cross sections
for inclusive production of a W in a collision of a proton
with a bound proton or with a bound neutron, while
σp½p�;p½n�S ðJJÞ is, analogously, the single-scattering cross
section to produce a pair of jets. The effective cross section,
σeff , has been assumed to be a universal constant. A is the
atomic mass number and Z the nuclear charge. Analogously
to the term due to single parton collisions, σpAS ðWJJÞ,
therefore σpAD ðWJJÞj1 is also expressed fully explicitly in
terms of known quantities and is evaluated with the standard
rules of the QCD-parton model, with the help of the parton
distributions of the bound nucleons. The contribution due to
a double-parton scattering, in hard collisions with a single
target nucleon, does not have much to add to the information
on the hadron structure already available from double-parton
interactions in proton-proton collisions, and this term can
thus be regarded as a known contribution to the cross
section.
All novel information on hadron structure provided by

DPS in p-A collisions is to be found in the last term,
σpAD ðWJJÞj2, where two different nucleons participate in
the double-parton interaction. According with the discus-
sion in the previous section, the corresponding contribution
to the cross section is

σpAD ðWJJÞj2 ¼ Kx1x2σSðWÞσSðJJÞ

×
Z

fx1x2ðβ1 − β2Þfx0
1
ðb1Þfx0

2
ðb2Þ

× ρðB1; z1;B2; z2Þdz1dz2
× δðB1 − B2 þ b1 − b2 þ β1 − β2Þ
× db1db2dðβ1 − β2ÞdB1dB2: (14)

The expression in Eq. (14) has been obtained by disregard-
ing the dependence of Γðx01=Zi; biÞ on Zi in Eq. (10).
The lower limit of the integration on Zi in Eq. (10) is x0i, and
one has therefore implicitly assumed that x0i ≪ Zi, which
limits the validity of Eq. (14) to the region of small x0i.

The produced spectrum is directly proportional to the
overlap integral in the transverse coordinates. The corre-
sponding configuration is shown in Fig. 2. The overlap
integral depends on the three different transverse scales,
which characterize fx0iðbiÞ, fx1x2ðβ1 − β2Þ, and

R
ρðB1; z1;

B2; z2Þdz1dz2. When comparing hadronic and nuclear
scales, a sensible approximation is to neglect the hadronic
scale when compared to the nuclear scale. On the other
hand, DPS forces the two target nucleons to be very close
in transverse space. The contribution of short-range
correlations in the two-body nuclear density may therefore
give non-negligible effects, considering that the value of
the scale of the-short range nuclear correlation is rc ≃
0.5 fm [39,40].
To the present purposes, a relevant property is that short-

range nuclear correlations are universal [41,42]. As dis-
cussed in Appendix B, by treating the correlation term as a
perturbation, one may write

ρðC;2Þðr1; r2Þ ≈ ρð2Þðr1; r2Þ½1 − Cðr1 − r2Þ�2
CðwÞ ¼ e−ðw2=2r2cÞ; (15)

where ρð2Þðr1; r2Þ is the two-body nuclear density in the
single-particle model, and for the correlation term CðwÞ we
used a Gaussian shape. For small relative distances, one can
approximate

ρðC;2Þðr1; r2Þjr1≃r2 ≈ ½ρð1Þðr1Þ�2½1 − CðwÞ�2;
w ¼ r1 − r2: (16)

Taking into account that the functions fx0iðbiÞ,
fx1x2ðβ1 − β2Þ are normalized to 1, and that ρð2Þðr1; r2Þ
is smooth as a function of r1 − r2, the contribution to the
overlap integral, in absence of short-range nuclear corre-
lations, is equal to

R
TðBÞ2d2B.

To evaluate the terms in the overlap integral with the
nuclear correlation CðwÞ, one needs to use explicit expres-
sions for fx0iðbiÞ and fx1x2ðβ1 − β2Þ. The overlap integral is
most conveniently evaluated in momentum space. The term
linear in C is

Z
fx1x2ðβÞfx01ðb1Þfx02ðb2Þ½ρð1ÞðB1; z1Þ�2

× ð−2ÞCðB1 − B2; z1 − z2ÞδðB1 − B2 þ b1 − b2 þ βÞ
× dz1dz2db1db2dβdB1dB2

¼ −2
Z

½ρð1ÞðB; zÞ�2dBdz

×
1

ð2πÞ2
Z

~fx1x2ðqÞ ~fx01ðqÞ ~fx02ðqÞ ~CðqÞd2q; (17)

where the functions with the tilde are the two-dimensional
Fourier transforms in the transverse momentum space.
The generalized parton distributions are known quantities.
Following Ref. [43], we use the expression
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~fx0 ðqÞ ¼
�
1þ q2

m2
g

�−2
; (18)

with m2
g ≃ 1.1 GeV2 for x0 ≈ .03 and small q2.

If the multiparton distribution in multiplicity were a
Poissonian (K ¼ 1) and in absence of transverse correla-
tions, one would have

1

σeff
¼

Z
½ ~fx1x2ðqÞ�2

d2q
ð2πÞ2 ;

~fx1x2ðqÞ ¼ ~fx1ðqÞ × ~fx2ðqÞ ¼
�
1þ q2

m2
g

�−4
: (19)

In such a case, one would obtain for the effective cross
section

σeff ¼
28π

m2
g
¼ 31.36 mb;

while ATLAS measures σeff ¼ 15 mb, which implies that
the uncorrelated option gives an effective cross section too
large by roughly a factor of 2. According with Eq. (6),
σeff ¼ πΛ2=K2. The uncorrelated case corresponds to the
values K ¼ 1 and Λ2 ¼ 28=m2

g. Correlations may thus be
introduced by allowing different values for K and Λ,
keeping fixed, however, their ratio in order to reproduce
the measured value of the effective cross section. To have
an indication on how different values of K and Λ can affect
the DPS cross section in p-A collisions, we have considered
two extreme options:
Option (a): Λ2 ¼ 28=m2

g and K2 ¼ 31.36=15 ≈ 2,
which corresponds to the case where the actual value of
σeff is solely due to the multiplicity of parton pairs in the
hadronic structure. In such a case the multiplicity of parton
pairs would be about a factor K ≈ 1.45 times larger than
expected if the distribution in multiplicity were a
Poissonian, while transverse correlation between parton
pairs would be completely absent, in such a way that the
distribution of pairs in transverse space would be obtained
by the convolution of two one-body distributions.
Option (b): K2 ¼ 1 and πΛ2 ¼ 15 mb, which corre-

sponds to assuming a Poissonian for the multiparton
distribution in multiplicity and introducing a smaller
typical transverse distance between partons, in compari-
son with the uncorrelated case. The functional form of
the correlated distribution of parton pairs in transverse
space is unknown. One would, however, expect that the
main features will be determined by the value of the
actual scale characterizing the typical transverse distance.
To proceed, we will thus consider the simplest option,
where the functional form of ~fx1x2ðqÞ is the same as in
the uncorrelated case, and the only modification is in the
value of the scale mg, which we replace with the relevant
scale for the transverse separation between thepartonpairs,

which we denote with hc. When K2 ¼ 2, one thus has
hc ¼ mg, while to reproduce the observed value of σeff when
K2 ¼ 1, one has hc ≈ 1.52 GeV.
The two options correspond, therefore, to the following

values:
(a) h2c ¼ 1.1 GeV2, K2 ¼ 2.
(b) h2c ¼ 2.3 GeV2, K2 ¼ 1.
By evaluating the overlap integral, one obtains

1

ð2πÞ2
Z

~fx1x2ðqÞ ~fx01ðqÞ ~fx02ðqÞ ~CðqÞd2q ¼ CKrc (20)

with

CK ¼ 0.82; in case ðaÞ:
CK ¼ 0.99; in case ðbÞ:

The cross section is given by

σpAD ðWJJÞj2 ¼ K

�
Z
A
σppS ðWÞ þ A − Z

A
σpnS ðWÞ

�
σppS ðJJÞ

×

�Z
TðBÞ2d2B

− 2

Z
ρðB; zÞ2d2Bdz × rcCK

�
; (21)

where we made the approximation σppS ðJJÞ ≈ σpnS ðJJÞ.
The ratio

R ¼ σpAD ðWJJÞ
σpAD ðWJJÞj1

(22)

is thus independent on the final-state phase space:

R ¼ 1þ K
σeff
A

�Z
TðBÞ2d2B

− 2

Z
ρðB; zÞ2d2Bdz × rcCK

�
: (23)

For lead, using the Woods-Saxon nuclear density in the
two cases (a) and (b), one obtains

ðaÞ K2 ¼ 2; πΛ2 ¼ 31.36 mb∶ R ¼ 1þ 2.94 ≈ 4;

ðbÞ K2 ¼ 1; πΛ2 ¼ 15 mb∶ R ¼ 1þ 2.03 ≈ 3;

(24)

and the correction induced by short-range nuclear corre-
lations to the term

R
TðBÞ2d2B is about 8% in case (a) and

about 10% in case (b). The ratio R therefore depends
weakly on nuclear correlations and is rather sensitive to the
different options for the values of K and Λ. Notice also the
strong dependence of σpAD ðWJJÞj2 [Eq. (21)] on K and its
weak dependence on Λ (only through CK).
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IV. NUMERICAL ESTIMATES

To obtain a rough estimate of the different effects of the
DPS in p-Pb and in p-p collisions, one may compare the
production rates in the same kinematical region where DPS
has been measured by ATLAS in p-p collisions. According
with ATLAS, the fraction of events with DPS is about 7%,
and one would not expect that, in interactions with a
nucleus, the ratio σpAD ðWJJÞj1=σpAS ðWJJÞ will be much
different. Taking the ratio

σpAðWJJÞ
σpAS ðWJJÞ ¼ 1þ σpAD ðWJJÞj1

σpAS ðWJJÞ ×R; (25)

one thus obtains that the fraction of events with DPI will
grow to about 27.3%, if there are no transverse correlations
[case (a)], and to about 22.5%, if the distribution in
multiplicity is Poissonian [case (b)].
Nuclear effects and the different roles of parton corre-

lations are, of course, made more transparent by looking at
differential distributions.
To have some indication of the differential distributions,

we have evaluated the DPS differential cross section in p-p
and p-Pb collisions, in accordance with the different options
discussed above. The elementary cross section is evaluated at
the leading order in perturbation theory. For the numerical
integration, we used two different sets of PDF, provided
by the LHAPDF interface [44]: the LO MSTW
(MSTW2008lo68cl) and the CTEQ6 LO. The leading-order
matrix elements are generated by means of the MadGraph 5
package [45], in the framework of the Standard Model with
the CKM matrix. We chose its C++ output and introduced a
namespace characterizing every subprocess.
For the multidimensional integration we used VEGAS [46].

More specifically, we used Suave (SUbregion-Adaptive
VEGAS), an algorithm implemented in the CUBA library
[47], which combines the advantages of VEGAS and sub-
region sampling. The division into subregions allows us to
overcome the VEGAS problem to adapt its weight function to
structures not aligned with the coordinate axes.

For a more direct comparisonwith available results inp-p,
weworkedout thedifferential distributions, both inp-p and in
p-Pb collisions, in the same kinematical conditions as the
ATLASDPSmeasurements [27]. Namely, the beam energy isffiffiffi
s

p ¼ 7 TeV, jηlþj < 2.47, ptlþ > 20 GeV, Et > 25 GeV,
mtW > 40 GeV. We did not implement any fragmentation
and, to reproduce the observed cross section, we slightly
increased (by 10%–15%) the lower cutoff in the transverse
momentumof the large-pt partons [48]. Jets are thus identified
with large-pt final-state partons and, considering that in p-A
collisions the transverse spectra are notmodified substantially
bythepresenceofthenucleus[49,50], theeffectsofthenuclear
modificationfactorsarenot taken intoaccount.Tosimulate the
process, during the integration we took traces of the final
particle configurations and of the value of the integrand and
plottedthemwithananalysisprogramsuchasROOT[51]. Inthe
case of DPS, the transverse momentum of the bosonWþ was
obtained following the prescriptions of Refs. [52–54].
In Fig. 4, we plot the distribution in pt of the leading jet in

p-p collisions. In the DPS contribution (in green), we
used σeff ¼ 15 mb (left panel). The same distribution is
shown in p-Pb collisions in the right panel. The pink
histograms refer to the single-scattering contribution, the
green ones to the DPS contribution, and the black histograms
to the sum of the two contributions. The histograms in the
figures have been computed with the MSTW parton
distribution functions.
While in p-p collisions, DPS represents a barely

noticeable contribution to the pt spectrum of the leading
jet produced in the process, DPS has a much stronger effect
in the pt spectrum of the leading jet in p-Pb collisions,
where the shape of the distribution is very different for pt
smaller than 50 GeV.
The dependence of the transverse spectrum of the

leading jet, as a function of the values of the σeff and K,
is shown in Fig. 5. By looking at the green histograms,
one may see that, after subtracting the single-scattering
contribution, which can be be considered as a known
quantity, once DPS has been measured in p-p collisions in
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FIG. 4 (color online). Distribution in pt of the leading jet in p-p collisions (left panel) and in p-Pb collisions (right panel). The pink
histograms refer to the single scattering contribution, the green ones to the DPS contribution, and the black histograms to the sum of the
two contributions. We used σeff ¼ 15 mb and K2 ¼ 2.
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the same kinematical conditions, the shape in pt shows an
appreciable dependence on the value of K.
A more suitable observable to learn concerning the

distribution in multiplicity of the multiparton distribution
is probably the pt spectrum of the charged lepton,
produced by the decay of the Wþ. In a single scattering
collision, W bosons recoil against the produced jets and
are typically characterized by a transverse momentum of
the order of the lower cutoff in pt of the observed
accompanying jets. In the case of a DPS, the jets and
the W are produced in different partonic interactions. The
transverse momentum of the W is therefore typically
rather small, and the spectrum of the decay lepton is thus
rather different in single and double-parton scattering. In
the former case, when the lower cutoff for the produced
jets is 20 GeV, the transverse momentum of the produced
lepton can easily exceed 60–70 GeV. In the latter case, the
lepton is produced by a W boson with a rather small
transverse momentum, and its transverse spectrum is thus
limited to values close to 1=2 of the W mass. In Fig. 6, we
plot the distribution in pt of the charged lepton from the
Wþ decay. The left panel refers to the case of p-p
collisions; the right panel to the case of p-Pb collisions.
The enhancement of the spectrum at pt < 40 GeV, due to
the contribution of DPS, is not a big effect in p-p
collisions. It is, on the contrary, a rather strong effect

in p-Pb collisions, where the difference with respect to the
contribution to the spectrum due to single-parton scatter-
ing (pink histograms in Fig. 6) is quite noticeable.
In p-Pb collisions, the sensitivity of the spectrum to K is

shown in Fig. 7. In the left panel, we show the spectrum in
the case K2 ¼ 1 for σeff ¼ 15 mb and σeff ¼ 20.7 mb. In
the right panel, we show the case K2 ¼ 2. The enhance-
ment of the spectrum due to the DPS contribution at pt <
40 GeV is rather substantial, and the amount of the increase
is significantly different as a function of K.
By selecting events with a charged lepton in the 40 GeV

pt region, one will thus obtain a sample where the
contribution of DPS is about 50% of the total, and one
will thus be able to obtain rather direct information on the
second moment of the multiparton distribution in multi-
plicity in the proton structure.
A final observation is that, due to the different produc-

tion mechanism as compared to the case of p-p collisions,
nuclear spectra do not depend much on the value of
σeff measured in p-p collisions. A change from 20 to
15 mb implies an increase of the DPS cross section of more
than 30% in p-p collisions and of only 5%–6% in p-Pb
collisions, as apparent in the figures above by comparing
the dotted and continuous histograms. In the latter case,
the production rate is in fact proportional, to a large
extent, to the multiplicity of pairs of partons in the
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FIG. 5 (color online). Distribution in pt of the leading jet in p-Pb collisions in the cases σeff ¼ 15 mb (ATLAS) and σeff ¼ 20.7 mb
(CMS [28]) for K2 ¼ 1 (left panel) and K2 ¼ 2 (right panel).
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projectile, while the typical transverse distance between the
interacting parton pairs does not play a relevant role. Which
is precisely the reason why DPS in p-Pb collisions has the
potential to provide a lot of information on parton
correlations.

V. CONCLUDING SUMMARY

Double-parton scattering processes are directly related to
unknown nonperturbative properties of the hadron structure,
which in p-p collisions converge in the value of a single
quantity, the effective cross section. The interaction mecha-
nism is more complex in p-A collisions, where one may
have either one or two different target nucleons interacting
with large momentum transfer. In the case of two different
active target nucleons, in addition to the diagonal contribu-
tion, which has a direct probabilistic interpretation, one may
need to take into account also the contribution of an
interference term. When the two active partons in the initial
state are identical, the nucleus can in fact generate the initial
partonic configuration in two different ways. The description
of the interaction is simpler when the interference term is
absent, which is the case with reaction channels where the
pair of initial state active partons are a quark and a gluon, like
in WJJ, Wbb̄, and Wcc̄ production at relatively low
fractional momenta. The increased complexity of the inter-
action in p-A collisions can thus provide an additional
handle to obtain information on the nonperturbative hadron
structure not accessible by other means.
To gain some insight into the actual possibilities of

learning about parton correlations by studying DPS in p-p
and p-A collisions, we have considered a particularly
simple case, still not inconsistent with present experimental
evidence, where DPS is described by the dominant term at
small x, while in p-p collisions, the effective cross section
can be approximated with a universal constant. The
effective cross section is thus fully determined by the
typical transverse distance between the interacting partons
Λ [Eq. (5)] and by the multiplicity of parton pairs, which
here is characterized by the value of K [(Eq. (3)]. To keep

the interaction with the nucleus as simple as possible, we
have looked at a reaction channel where the interference
term is absent. Specifically, we have studied WJJ produc-
tion, which is of particular interest, since DPS in WJJ
production is presently studied experimentally in p-p
collisions both by ATLAS and by CMS.
In this simplified scheme, the DPS cross section in p-p

collisions depends only on the ratio between K and Λ. In
p-A collisions, the contribution to the DPS cross section with
two active target nucleons depends, on the contrary, (almost)
only on K. To have an indication on the possibility of
determining Λ and K by measuring DPS in p-p and p-Pb
collisions and to allow a direct comparison of the two cases,
we have evaluated theWþJJ production cross sections in the
kinematical conditions of the ATLAS experiment.
In p-A collisions, the contribution to the DPS cross

section, due to the processes where two different target
nucleons interact with large momentum transfer, is propor-
tional to the factor K and grows with A4=3. Depending on
the value of K, in p-Pb collisions this contribution may be
2 or 3 times as big as the contribution to DPS, where only a
single target nucleon interacts with large momentum trans-
fer, while short-range nuclear correlations can produce at
most a reduction of 10%. The effect of varying the value of
the typical distance in transverse space between the pairs of
interacting partons has in this case only a minor effect,
which we estimate to be of the order of 5\%–6\% of the
cross section. Considering also the contribution due to
single hard collisions, we expect that, while in p-p the
observed fraction of events with DPS was about 7%, with
the same cuts used by ATLAS, in p-Pb the fraction of
events with DPS will range between 22.5% (in the absence
of longitudinal correlations) and 27.3% (in the absence of
transverse correlations). CMS reports a smaller fraction of
events with DPS, about 5%. In such a case, and with the
same cuts, in p-Pb collisions the fraction of events with
DPS will range between 21.0% and 26.0%.
In summary, a main feature of DPS in p-A collisions is

that, for large atomic mass numbers, the most important
contribution to the DPS cross section is due to the
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FIG. 7 (color online). Rapidity distribution of the charged lepton from the Wþ decay, in p-Pb collisions in the case of σeff ¼ 15 mb
(ATLAS) and σeff ¼ 20.7 mb (CMS) for K2 ¼ 1 (left panel) and K2 ¼ 2 (right panel).
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interactions with two active target nucleons, rather than to
the interactions with a single target nucleon [18,55]. In
other terms, DPS in p-Pb collisions is characterized by a
very strong antishadowing, which may represent a 200%–
300% correction to the DPS cross section on a single
nucleon. The value of this antishadowing term is propor-
tional to the flux of incoming pairs of partons, and, by
measuring the amount of antishadowing, one has thus a
direct indication of the number of pairs of incoming partons
in the projectile. Different properties of the incoming pair
of partons, which may have important effects in DPS in p-p
collisions, are likely to be much less important in p-A. In the
actual case, we have discussed the effect of the distribution of
partons in transverse space, which in p-p may be even more
important than the multiplicity of parton pairs to determining
the observed value of the DPS cross section. In p-Pb, we
estimate that different values of the typical separationbetween
partons in transverse space can, on the contrary, affect theDPS
cross section only by about 5%–6%.
We think that, although there are still several open

problems to understanding DPS in p-p collisions, the
study of DPS in p-A collisions has a great potential for
a deeper insight into the problem. In fact, DPS in p-A
collisions allows us to single out an important feature in the
process, the value of the incoming flux of parton pairs,

which is directly proportional to the amount of antisha-
dowing observed in the DPS cross section. In the present
paper, we have worked out the amount of antishadowing to
be expected in the simplest conceivable scheme and the
corresponding value of the incoming flux of parton pairs. A
comparison with an experimental study of DPS in p-Pb at
the LHC would thus be very instructive, providing for the
first time a direct indication on a property of the correlated
parton structure of the hadron, not achievable to our
knowledge by other means, and allowing us at the same
time to make a quantitative test or even to disprove the
simplest conceivable description of DPS.

APPENDIX A: DIAGONAL AND
INTERFERENCE TERMS

The construction of the amplitudes and of the correspond-
ing cross sections, Eqs. (11) and (12) in the main text, is
performed by following strictly the procedure used in
Ref. [20], in particular in the discussion of the tritium case.
Wewill not reproduce all details of the procedure. Rather, we
will try to point out some of the main differences between the
two cases.
The diagonal term (Fig. 8) is given by

Disc Ad ¼
1

ð2πÞ21
Z

φ̂p

l12l22
φ̂�
p

l021 l
02
2

φ1

a21

φ�
1

a021

φ2

a22
φ�
2

a022
× T1ðl1; a1 → q1; q01ÞT�

1ðl01; a01 → q1; q01ÞT2ðl2; a2 → q2; q02ÞT�
2ðl02; a02 → q2; q02Þ

×
ΦAðN1;N2jNkÞ

½N2
1 −m2�½N2

2 −m2�
Φ�

AðN0
1;N

0
2jNkÞ

½N02
1 −m2�½N02

2 −m2�
× δðL − l1 − l2 − FpÞδðL − l01 − l02 − FpÞ
× δðN1 − a1 − F1ÞδðN0

1 − a02 − F1ÞδðN2 − a2 − F2ÞδðN0
2 − a01 − F2Þ

× δðl1 þ a1 −Q1Þδðl01 þ a01 −Q1Þδðl2 þ a2 −Q2Þδðl02 þ a02 −Q2Þ
×
Y
i;j

d4aid4a0id
4lid4l0id

4FjδðFj
2 −Mj

2ÞδðPA − N1 − N2 − PA−2ÞδðPA − N0
1 − N0

2 − PA−2Þ

× δ

�XA
k¼3

Nk − PA−2
�YA

k¼3

d4Nkd4PA−2d4N1d4N2d4N0
1d

4N0
2d

4QidðΩi=8ÞdMj
2: (A1)

The interference term (Fig. 9) is given by

Disc Ai ¼
1

ð2πÞ21
Z

φ̂p

l12l22
φ̂p

�

l021 l
02
2

φ1

a21

φ�
2

a021

φ2

a22
φ�
1

a022
T1ðl1; a1 → q1; q01Þ

× T�
1ðl01; a01 → q1; q01ÞT2ðl2; a2 → q2; q02ÞT�

2ðl02; a02 → q2; q02Þ

×
ΦAðN1;N2jNkÞ

½N2
1 −m2�½N2

2 −m2�
Φ�

AðN0
1;N

0
2jNkÞ

½N02
1 −m2�½N02

2 −m2� δðL − l1 − l2 − FpÞδðL − l01 − l02 − FpÞ
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× δðN1 − a1 − F1ÞδðN0
1 − a02 − F1ÞδðN2 − a2 − F2ÞδðN0

2 − a01 − F2Þ
× δðl1 þ a1 −Q1Þδðl01 þ a01 −Q1Þδðl2 þ a2 −Q2Þδðl02 þ a02 −Q2Þ
×
Y
i;j

d4aid4a0id
4lid4l0id

4FjδðFj
2 −Mj

2ÞδðPA − N1 − N2 − PA−2ÞδðPA − N0
1 − N0

2 − PA−2Þ

× δ

�XA
k¼3

Nk − PA−2
�YA

k¼3

d4Nkd4PA−2d4N1d4N2d4N0
1d

4N0
2d

4QidðΩi=8ÞdMj
2: (A2)

Here, PA is the four-momentum of the incoming
nucleus and L the four-momentum of the incoming
proton; φ and φ̂ are the effective vertices for emission
of one or two partons by a nucleon; the integration
variables Q and Ω come in through the transformation
d3q=2qod3q0=2q0o ¼ d4QdΩ=8, where q and q0 are the
momenta of the massless particles produced in the hard
scattering Ti, so Q2 > 0, Qo > 0, and Ω gives the
scattering angles in the center-of-momentum frame of
the pair. The sum is over every possible final state
compatible with the conservation laws, identified by the
four-vectors Nk, ðk ¼ 3; :::::AÞ. We recall [20] the ampli-
tude for finding one or two partons in the projectile when
the remnant of the parent nucleon has mass Mj, where the
possible values of the index are j ¼ 1, 2, p (cf. Figs. 8 and
9); setting λ− ¼ 1

2
ðl1 − l2Þ−, we get

ψMj¼1;2
¼φj

a2j
¼ φj

x̄j½m2
j−M2

j⊥=ð1−x̄jÞ�−a2j⊥;ψ̂Mp

¼ 1ffiffiffi
2

p
Z

φ̂p

l21l
2
2

dλ−
2πi

¼ 1ffiffiffi
2

p
L−

φ̂p

l12⊥x2þl22⊥x1−x1x2½m2−M2
p⊥=ð1−x1−x2Þ�:

(A3)

Here, the light-cone components that grow with the
total energy in the c.m. of the interacting nucleon pair
are the plus components in the projectile proton and
the minus components in the target nucleon. The
dependence on the transverse mass of the remnant,
M2

j⊥ ≡M2
j þ F2

j⊥, comes in through the conservation of
the plus components, when j ¼ 1 or 2, and of the minus
components, when j ¼ p. In the same way, one defines
the one-parton and the two-parton amplitudes in the bound
nucleon. (In this case, since N has also transverse
components, the initial state mass m2 has been replaced
by m2

j ≡m2 þ N2
j⊥.) Then the Fourier transformation on

the transverse variables is performed.
The same procedure is applied to the nucleus side: one

defines νþ ¼ 1
2
ðN1 − N2Þþ, and the covariant amplitude

for finding two nucleons in the nucleus has the formal
expression

ΨAðN1−; N2−Þ ¼
1ffiffiffi
2

p
Z

dνþ
2πi

ΦA

½N2
1 −m2� · ½N2

2 −m2� :
(A4)

This amplitude depends also on the configuration of the
residual ðA − 2Þ nucleons:

FIG. 8 (color online). Discontinuity of the forward amplitude in
Eq. (A1).

FIG. 9 (color online). Discontinuity of the forward amplitude in
Eq. (A2).
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ΨAðN1−; N2−Þ ¼
1ffiffiffi
2

p
PA−

ΦA

Z1Z2fðMA=AÞ2 − μ2⊥=½AðA − Z1 − Z2Þ�g − ðZ1m2
2 þ Z2m2

1Þ=A
: (A5)

μ⊥ is the overall transverse mass of the remnant nuclear
spectators, MA is the mass of the incoming nucleus, and
Ni− ¼ ZiPA−=A. In the dominant configurations, Zi is
close to 1.
We try now to point out the differences between the

diagonal term and the interference term. In the diagonal
term, the conservation of the large momentum components
implies the following relations for the initial-state partons
on the two sides of the diagram: liþ ¼ l0iþ, ai− ¼ a0i−,
Ni− ¼ N0

i−, while the corresponding transverse variables
become diagonal through Fourier transformation. The
whole expression of the cross section can thus be expressed
in terms of densities, i.e. the square of partonic wave
functions and of the wave function of the bound nucleons.
In the interference term, the conservation of the large

momentum components implies different relations for the
initial-state partons on the two sides of the diagram.
Actually, liþ ¼ l0iþ, a1− ¼ a02−, a2− ¼ a01−. For the nuclear
variables, one obtains: ðN1 − N0

1Þ− ¼ ðN0
2 − N2Þ− ¼

ða1 − a2Þ−. Concerning the transverse components, the
variables βi⊥ (conjugated to li⊥) become diagonal through
Fourier transformation, while, differently from the case of
the diagonal contribution to the cross section, the variables
bi⊥ (conjugated to ai⊥) are not diagonalized by the Fourier
transformation. When looking to the nuclear part, the
overall conservation of the fractional minus component
implies Z1 þ Z2 ¼ Z0

1 þ Z0
2 ¼ A − ZA−2, where ZA−2 is

the minus fractional momentum of the incoming nucleus.
Notice that the relation for the nuclear fractional momenta
can be written also as Z1 − Z0

1 ¼ Z0
2 − Z2 ¼ x̄2 − x̄1,

which shows that such differences can be actually mea-
sured. While Ad can be expressed through the diagonal
terms of the two-body nuclear density matrix, Ai requires
the off-diagonal two-body density matrix. In this latter
case, the nonperturbative partonic input of the projectile
proton is given again by the partonic densities
Γðx1; x2; β1; β2Þ; the nonperturbative input of the target
nucleons, however, depends explicitly on the nondiagonal
one-body parton densities, which, in the final expression of
the cross section, are gathered into the function W, whose
expression is shown below:

WðZ1; Z2; x̄1; x̄2; b1; b2Þ

¼ 1

4ð2πÞ6
Z

dM2
1dM

2
2

x̄1x̄2
ðZ1 − x̄1ÞðZ2 − x̄2Þ

× ψM1
ðx̄1=Z1; b1ÞψM2

ðx̄2=Z2; b2Þ
× ψ�

M2
ðx̄2=Z0

1; b1 − B1Þψ�
M1
ðx̄1=Z0

2; b2 − B2Þ: (A6)

APPENDIX B: TWO-BODY NUCLEAR DENSITY

In this appendix, we describe the approach used to derive
the two-body nuclear density in the main text. Nuclear
states are normalized to 1:

R
ψmðuÞ�ψnðuÞdu ¼ δmn, and

with u we mean all nucleon’s degrees of freedom, spin,
isospin, and space coordinates. The one-body nuclear
density ρð1ÞðuÞ ¼ P

njψnðu1Þj2 is normalized to the atomic
mass number,

R
ρð1ÞðuÞdu ¼ A. The antisymmetric two-

body wave function, neglecting interactions between the
two nucleons, is

1ffiffiffi
2

p ½ψmðu1Þψnðu2Þ − ψmðu2Þψnðu1Þ�:

Correspondingly, the two-body density for the states
m, n is

gmnðu1; u2Þ ¼
1

2
½jψmðu1Þψnðu2Þj2 þ jψmðu2Þψnðu1Þ�j2�

−ℜ½ψmðu1Þψnðu2Þψmðu2Þ�ψnðu1Þ��:

By integrating on u2, one obtainsZ
gmnðu1; u2Þdu2

¼ 1

2
½jψmðu1Þj2 þ jψnðu1Þj2� − δmnjψmðu1Þj2;

and by further integrating on u1, the result is 1 − δmn,
which implies that by summing the two-body density over
m, n ¼ 1…A, one obtains AðA − 1Þ. The two-body density
is thus given by

ρð2Þðu1; u2Þ ¼
X
n

jψnðu1Þj2
X
n

jψnðu2Þj2 − jΔðu1; u2Þj2;

where Δðu1; u2Þ ¼
P

nψnðu1Þ�ψnðu2Þ. Notice that,
once

P
n is done over a complete set of states in Hilbert

space, one obtains Δ → δ. As a direct consequence of its
definition, one has

R jΔðu1; u2Þj2du2 ¼ ρð1ÞðuÞ, and
thus

R
ρð2Þðu1; u2Þdu2 ¼ ðA − 1Þρð1Þðu1Þ.

We are interested in short-range nuclear correlations,
which exhibit a universal behavior [41]. We introduce,
therefore, an m- and n-independent correlation term in the
two-body wave function:

1ffiffiffi
2

p ½ψmðu1Þψnðu2Þ − ψmðu2Þψnðu1Þ� × ½1 − Cðu1; u2Þ�:
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The corresponding two-body density of the statesm, n is

fmnðu1; u2Þ ¼ gmnðu1; u2Þ × ½1 − Cðu1; u2Þ�2:

By summing over states, one obtains the correlated two-
body density:

ρðC;2Þðu1; u2Þ ¼ ρð2Þðu1; u2Þ½1 − Cðu1; u2Þ�2:

At first order in C, one hasZ
ρðC;2Þðu1; u2Þdu2

¼ ðA − 1Þρð1Þðu1Þ − 2

Z
ρð2Þðu1; u2ÞCðu1; u2Þdu2:

One should now recall that u also includes the spin
variables

R
du≡ R

d3r
P

s. When the two nucleons are in a
spin triplet state, their space wave function is antisym-
metric, and therefore it vanishes for r1 → r2 irrespectively
of the presence of the correlation term. When the two
nucleons are in a spin singlet state, their space wave
function is symmetric, and the effect of the short-range
correlation term in this case is particularly important. In the
spin singlet case and without interaction, the space wave
function is

Ψ ¼ 1ffiffiffi
2

p ½ψmðr1Þψnðr2Þ þ ψmðr2Þψnðr1Þ�:

For r1 → r2, which is the region where short-range
correlations are important, one may write r1 ¼ rþ w=2,
r2 ¼ r − w=2, and C ¼ CðwÞ; for small w, one has Ψ ¼
ψmðrÞψnðrÞ

ffiffiffi
2

p þOðw2Þ and, as a first approximation,Z
ρðC;2Þðr1; r2Þdr2

¼ ðA − 1Þρð1Þðr1Þ þ 2

Z
ρð2Þðr1; r2ÞCðr1; r2Þdr2

≈ ðA − 1Þρð1Þðr1Þ þ 2½ρð1Þðr1Þ�2
Z

CðwÞdw: (B1)

One can argue similarly for the three-body wave func-
tion. The space components are

ΨA ¼ 1ffiffiffi
6

p Det½ψmðr1Þψnðr2Þψ lðr3Þ�;

which is completely antisymmetric and corresponds to the
spin quadruplet (wholly symmetric), and

Ψ1 ¼ ψ lðr3Þ
1ffiffiffi
2

p ½ψmðr1Þψnðr2Þ − ψmðr2Þψnðr1Þ�;

Ψ2 ¼ ψ lðr1Þ
1ffiffiffi
2

p ½ψmðr2Þψnðr3Þ − ψmðr3Þψnðr2Þ�; (B2)

which have mixed symmetry and correspond to the two
possible spin doublets (the third possible option is a linear
combination of the two above). The correlation term is not
of great importance for the completely antisymmetric case,
which, as a first approximation, may not need to be
corrected. For Ψ1, Ψ2, one introduces the correlation terms
C in non-antisymmetric products. For example,

ΨC
1 ¼ ψ lðr3Þ

1ffiffiffi
2

p ½ψmðr1Þψnðr2Þ

− ψmðr2Þψnðr1Þ�½1 − Cðu1; u3Þ − Cðu3; u2Þ�:

Unless an explicit three-body correlation term is intro-
duced, the correlation is thus again of the same kind as the
two-body wave function case.
An interesting possibility is that of a totally symmetric

space wave function, where antisymmetry is due to the
spin-isospin variables. In such a case, the space wave
function is

1ffiffiffi
6

p
X
P

ψ lðr1Þψmðr2Þψnðr3Þ;

and correspondingly, the density is

ρð3Þðr1; r2; r3Þ

¼ 1

6

nX
l

jψ lðr1Þj2
X
m

jψmðr2Þj2
X
n

jψnðr3Þj2

þ
X
l

jψ lðr1Þj2jΔðr2; r3Þj2 þ
X
l

jψ lðr2Þj2jΔðr3; r1Þj2

þ
X
l

jψ lðr3Þj2jΔðr1; r2Þj2

þ 2ℜ½Δðr1; r2ÞΔðr2; r3ÞΔðr3; r1Þ�
o
: (B3)

After introducing correlations, at the first order, one has

ρðC;3Þðr1; r2; r3Þ ¼ ρð3Þðr1; r2; r3Þ½1 − 2Cðr1; r2Þ
− 2Cðr2; r3Þ − 2Cðr3; r1Þ�:

As in the previous case, one may introduce r1 þ r2 þ
r3 ¼ 3r and r1 ¼ rþ w, r2 ¼ rþ w0, r3 ¼ rþ w00, where
w ¼ w0 þ w00 ¼ 0. By expanding ψ near r, after summing
over all permutations one obtains

ψ ≈ ψðrÞ þ ðwþ w0 þ w00Þ · ∂ψ=∂rþOðw2Þ;

and for small w, one may thus write

Ψ ¼ ψ lðrÞψmðrÞψnðrÞ
ffiffiffi
6

p
þOðw2Þ;

which allows one to treat this case on the same footing as
the previous ones.
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