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We study the evolution of the gauge coupling and the anomalous dimension of the mass towards an
infrared fixed point for nonsupersymmetric gauge theories in the modified regularization invariant scheme.
This is done at the three-loop level where all the renormalization group functions have been calculated
explicitly. The purpose is to assess the scheme dependence of earlier and similar investigations performed
at three- and four-loop order in the modified minimal subtraction, MS, scheme. Our results are of the same
order when compared to the MS scheme.
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I. INTRODUCTION

Ever since its discovery strong dynamics has continued
to pose considerable challenges. Of specific interest is the
study of its behavior from high scales to low scales and the
type of dynamics that it exhibits in the deep infrared (IR). A
set of tools typically used to study such behavior is the
renormalization group equations and their associated pre-
diction of the evolution of the gauge coupling.
An early pioneering step in this direction was first taken

by Caswell [1] and subsequently by Banks and Zaks [2]
who noted the appearance of an IR fixed point in a certain
region of theory space. The fixed point appears just below
where asymptotic freedom is lost as one decreases the
number of flavors. Lowering the number of flavors even
further the quest is now to predict exactly at what critical
value the fixed point is lost and where one presumably will
enter a chirally broken phase. The region in theory space
where one develops an IR fixed point is known as the
conformal window.
Since then there has been a vast amount of work done

using truncated Dyson-Schwinger equations to predict the
value of the coupling constant that triggers the formation of
the chiral condensate [3–10] while the question of con-
formality has been studied using the beta function of the
theory [11,12].
Many of the difficulties encountered in the nonsuper-

symmetric case are not present within their N ¼ 1 super-
symmetric extensions where the conformal window was
predicted by Seiberg [13] and later generalized to the case
of higher dimensional representations in [14]. These results
rely heavily on the existence of the Novikov-Shifman-
Vainshtein-Zakharov beta function [15,16]. Inspired by this

a similar all-orders beta function was conjectured for
nonsupersymmetric theories and used to predict the con-
formal window [17,18].
For nonsupersymmetric theories the initial studies were

all done in the simplest setup utilizing the two-loop beta
function. Therefore a more recent approach has been to
extend the original analysis to higher orders in perturbation
theory. In the nonsupersymmetric case the beta function
and the anomalous dimension of the mass are known to
four-loop order in the MS scheme [19,20] enabling a
study of the stability of previous investigations [21,22].
Additional work in this direction can be found in
[23,24]. The same question has also been addressed to
three-loop order in the DR scheme for supersymmetric
theories where comparison to exact results can be made
[25]. It should be stressed that the higher-loop calcula-
tions tend to yield a smaller than expected value for the
anomalous dimension of the mass at the fixed point. This
seems to agree with the majority of the lattice simulations
performed in this direction. For a recent review of the latest
results, see [26].
It is clear that once the perturbative expansion of the beta

function is truncated the question of scheme dependence is
inevitable. Studies to address this issue were initiated in
[27–29] where artificial and well behaved scheme trans-
formations were constructed and used to analyze the
stability of the four-loop results. However no calculations
in a different and explicit scheme has been carried out such
that direct comparison with the four-loop results in the MS
scheme could be made.
It is the purpose of this paper to undertake such an in-

vestigation by studying the evolution of the gauge coupling
and the anomalous dimension towards an IR fixed point
in the scheme known as the modified regularization in-
variant, RI′, scheme [30]. Here all the renormalization*ryttov@cp3.dias.sdu.dk
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group functions have been calculated to three-loop
order [31].
In general the beta function and the other renormaliza-

tion group equations depend on the gauge parameter, so it
should be stressed that the ’t Hooft two-loop beta function
is universal only within a certain set of schemes [32,33].
Such schemes include the minimal subtraction, MS,
scheme [34] and the modified minimal subtraction, MS,
scheme [35]. Only the one-loop beta function is truly
universal preserving the property of asymptotic freedom.
In the RI′ scheme several of the renormalization group

functions depend on the gauge parameter. Hence in order to
study the evolution of the gauge coupling and the anoma-
lous dimension of the mass towards the fixed point we must
include and make sure that also the gauge parameter is
evolving towards the fixed point. For this we should (and
will) set up a general framework for tackling such
problems.
Much of the above work has been generalized to multiple

fermion representations [36,37] and exceptional gauge
groups and spinorial representations [38] while yet a
new strategy has been to bound the conformal window
using the a-theorem [39]. We also mention that the quest
for near-conformal dynamics has its roots in technicolor
model building and beyond Standard Model physics (for a
recent review see [40]).
In Sec. II we introduce our notation and the various

renormalization group functions that is needed, while in
Sec. III we discuss specific schemes, including the RI′
scheme, and scheme transformations. We then set up our
general method for analyzing the IR fixed points in Sec. IV
and use it explicitly in the RI′ scheme in Sec. V. Finally we
conclude in Sec. VI. Appendices A and B provide all
necessary information needed to do the analysis.

II. NOTATION

We consider a gauge theory with gauge groupG together
with a set of fermions transforming according to an
arbitrary representation of the gauge group. We denote
the generators in the representation r of G by Ta

r,
a ¼ 1…dðGÞ. Here dðrÞ is the dimension of the repre-
sentation r and the adjoint representation is denoted by G.
The generators are normalized according to Tr½Ta

rTb
r � ¼

TðrÞδab while the quadratic Casimir C2ðrÞ is given by
Ta
rTa

r ¼ C2ðrÞI. The trace normalization factor TðrÞ and
the quadratic Casimir are connected via C2ðrÞdðrÞ ¼
TðrÞdðGÞ.
The Lagrangian of the theory in the linear covariant

gauge is simply written as

L¼−1

4
Ga

μνGaμνþ iψ̄fDψf − 1

2ξ
ð∂μAa

μÞ2− c̄a∂μDμca (1)

with

Ga
μν ¼ ∂μAa

ν − ∂νAa
μ − gfabcAb

μAc
ν; (2)

Dμψ ¼ ∂μψ þ igAa
μTa

rψ ; (3)

Dμca ¼ ∂μca − gfabcAb
μcc: (4)

Here Aa
μ is the gauge field, ψf is the fermion field, ca is the

ghost field and a; b; c ¼ 1;…; dðGÞ and f ¼ 1; :::::; Nf.
Also α ¼ g2

4π is the coupling constant and ξ is the gauge
parameter. The above Lagrangian is general and describes
the dynamics of an arbitrary gauge theory with Nf sets of
Dirac fermions transforming according to an arbitrary
representation of the gauge group. In the following when
discussing renormalization of the theory we shall stick to
this general approach.
Let us consider the fields and parameters of the above

Lagrangian as bare quantities and introduce the renormal-
ized ones according to

ðAa
μÞbare ¼

ffiffiffiffiffiffi
ZA

p
Aa
μ (5)

ψbare ¼
ffiffiffiffiffiffi
Zψ

p
ψ (6)

cabare ¼
ffiffiffiffiffi
Zc

p
ca (7)

gbare ¼ μϵZgg (8)

ξbare ¼ Z−1
ξ ZAξ (9)

The scale μ is introduced to keep the coupling constant g
dimensionless in d ¼ 4 − 2ϵ dimensions. Also ϵ is the
regularizing parameter appearing in dimensional regulari-
zation which is to be understood as our method of
isolating the various divergencies. Note that in general
there are five renormalization constants ZA; Zψ ; Zc; Zg;
Zξ. Let us therefore define the following renormalization
group functions

γAðα; ξÞ ¼
∂ ln ZA

∂ ln μ
; γψðα; ξÞ ¼

∂ ln Zψ

∂ ln μ
;

γcðα; ξÞ ¼
∂ ln Zc

∂ ln μ
(10)

βαðα; ξÞ ¼
∂α

∂ ln μ
; γξðα; ξÞ ¼

∂ ln ξ

∂ ln μ
(11)

where γA;ψ ;c is the anomalous dimension of the gauge
field, fermion field and ghost field, respectively. Also βα
is the beta function of the gauge coupling and γξ is the
anomalous dimension of the gauge parameter. One should
note that we have made it explicit that in general all of
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these renormalization group functions depend on both the
gauge coupling and the covariant gauge parameter.
Finally it is simple to check that the anomalous dimen-

sion of the gauge field and gauge parameter can be written
as functions of the various renormalization group functions
according to

γA ¼ βα
∂ ln ZA

∂α þ ξγξ
∂ ln ZA

∂ξ (12)

γξ ¼
βα

∂ ln Zξ

∂α − γA

1 − ξ
∂ ln Zξ

∂ξ
(13)

Below we shall be interested in yet another renormal-
ization group function. It is the anomalous dimension of
the bilinear operator ψ̄ψ. To this end let us define the
renormalization constant of the bilinear operator via

ðψ̄ψÞbare ¼ Zψ̄ψ ψ̄ψ (14)

The associated anomalous dimension of the composite ψ̄ψ
operator is then

γðα; ξÞ ¼ −∂ ln Zψ̄ψ

∂ ln μ
(15)

III. CHOICE OF SCHEME

It is clear that the various renormalization group func-
tions depend on the choice of scheme. First we choose
dimensional regularization in d ¼ 4 − 2ϵ dimensions such
that the divergences in the various greens functions appear
as poles in ϵ. Second we choose a subtraction procedure.
The simplest of such subtraction procedures is the one

that occurs in the minimal subtraction, MS, scheme [34] for
which only the infinity with respect to the regularization is
removed. Another more convenient scheme is the modified
minimal subtraction, MS, scheme [35] where not only the
infinite part is subtracted but also a finite constant that
includes the Euler-Mascheroni constant. One of the well
known and elegant features of the MS scheme is the fact
that the beta function of the coupling constant and the
anomalous dimension of the mass are both independent of
the gauge parameter. Finally it should also be noted that the
different types of MS schemes can be unified by using the
Rδ schemes which generalize the above subtraction pro-
cedures by subtracting an arbitrary constant δ together with
the ϵ-pole [41,42].
A third subtraction procedure is a modified version of the

regularization invariant, RI, scheme called the RI′ scheme
[30]. Within this scheme the anomalous dimensions and
beta functions have been computed to various orders and
for various theories [43,44] with the complete three-loop
results for any fermionic gauge theory in an arbitrary gauge
appearing in [31].

A few words regarding the RI′ scheme are in order.
Following [31] we let ΣψðpÞ and ΣcðpÞ denote the bare
two-point functions of the fermion and ghost field, respec-
tively, while

ΠμνðpÞ ¼
ΠTðpÞ
p2

�
ημν − pμpν

p2

�
þ ΠLðpÞ

pμpν

ðp2Þ2 (16)

denotes the gluon polarization with ΠT and ΠL being its
transverse and longitudinal parts. The renormalization
constants of the fermion, ghost and gluon fields together
with the gauge parameter are then defined by the following
conditions

lim
ϵ→0

½ZψΣψ ðpÞ�jp2¼μ2 ¼ p (17)

lim
ϵ→0

�
Zc

ΣcðpÞ
p2

�����
p2¼μ2

¼ 1 (18)

lim
ϵ→0

½ZAΠTðpÞ�jp2¼μ2 ¼ 1 (19)

lim
ϵ→0

½ZξΠLðpÞ�jp2¼μ2 ¼ 1 (20)

For the fermion wave function renormalization in the RI′
scheme the complete finite term is removed and absorbed
into the renormalization constant. This is in contrast with
the MS scheme where only a specific constant term
together with the pole in ϵ is removed.
Transversality of the gluon propagator corresponds to the

gauge renormalization constant being unity Zξ ¼ 1. This
was also demonstrated explicitly at three loops in [31]. One
should note that using Eq. (13) then leads to

γA ¼ −γξ (21)

In principle one can proceed and renormalize the fermion-
gluon and ghost-gluon vertices and check that they yield
the same coupling constant definition. However as noted in
[31] this actually leads to MOM or MOM class of schemes
with a different definition of the coupling constant for every
vertex. Therefore the coupling constant in the RI′ scheme is
renormalized in anMS fashion such that only the pole and a
single constant term containing the Euler-Mascheroni
constant is removed. This yields a beta function of the
gauge coupling which is equal to the one in the MS scheme.
A final word concerns the renormalization of the

composite fermion bilinear operator ψ̄ψ. Here the renorm-
alization constant is defined via the condition

lim
ϵ→0

½Zψ̄ψZψhψðpÞðψ̄ψÞð0Þψ̄ð−pÞ�jp2¼μ2 ¼ 1 (22)

This concludes our discussion of the RI′ scheme. The
complete three-loop results for all the above renormalization
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group functions can be found in [31]. Also in Appendix A
we have provided the specific results that will be used below.

IV. FIXED POINTS

One of the most outstanding problems of strongly
interacting theories is to elucidate the possible phases they
exhibit in the deep IR. Of specific interest is the conformal
window, i.e. the region in the number of colors and number
of flavors for which the theory flows to an IR fixed point
and becomes conformal. To undertake such an analysis the
renormalization group equations are an excellent tool. If the
theory is to exhibit conformal invariance all the couplings
of the theory must run to a fixed point. From the
renormalization group point of view we have two dimen-
sionless parameters—the gauge coupling and the gauge
parameter. The running of these two parameters are
determined by the associated beta functions

∂α
∂ ln μ

¼βαðα;ξÞ and
∂ξ

∂ ln μ
¼βξðα;ξÞ¼ ξγξðα;ξÞ (23)

The fixed points of the theory are then found by solving the
(generally) two coupled equations

βαðα0; ξ0Þ ¼ 0; βξðα0; ξ0Þ ¼ 0 (24)

where α0 and ξ0 denote the values of the gauge coupling
and the gauge parameter at the fixed point. It is clear that
the values of the coupling constant and the gauge parameter
at the fixed point are scheme dependent. It is therefore
natural to ask whether there exists a scheme independent
and therefore physical quantity at the fixed point.
Consider now two different schemes S and S0. They each

have their definitions of the coupling constant and the gauge
parameter ðα; ξÞ and ðα0; ξ0Þ, respectively. Let us assume that
the transformation between the two schemes is well behaved
and invertible [27,28]. This implies that the coupling
constant and the gauge parameter in one scheme will be a
smooth function of the coupling constant and the gauge
parameter in the other scheme. If we denote the renormal-
ization constant of the bilinear operator ψ̄ψ as Zψ̄ψ and Z0̄

ψψ
in the schemes S and S0, respectively, then it follows that

γ0ðα0;ξ0Þ ¼ γðα; ξÞ þ βαðα; ξÞ
∂ ln Fψ̄ψ

∂α þ βξðα; ξÞ
∂ ln Fψ̄ψ

∂ξ
(25)

where

Fψ̄ψ ¼ Zψ̄ψ

Z0̄
ψψ

(26)

It is then clear that the anomalous dimension of the operator
ψ̄ψ evaluated at a fixed point is a scheme independent
quantity.

In general there will be multiple solutions to the coupled
fixed point equations for which we are specifically inter-
ested in the IR stable fixed points. To classify the fixed
points we linearize the respective renormalization group
equations around each of the zeros,

∂
∂ ln μ

�
α− α0

ξ− ξ0

�
¼M

�
α− α0

ξ− ξ0

�
þOððα− α0Þ2; ðξ− ξ0Þ2Þ;

(27)

where

M ¼
 ∂βα∂α

∂βα∂ξ
∂βξ
∂α

∂βξ
∂ξ

!�����
α¼α0;ξ¼ξ0

: (28)

The sign of each eigenvalue and whether it is real or
complex then classify the fixed point ðα0; ξ0Þ.

V. FIXED POINTS IN THE RI′ SCHEME

In this section we will investigate the fixed points of
gauge theories with fermionic matter within the RI′ scheme
and compute the scheme independent anomalous dimen-
sion of the mass γ. The beta function and the anomalous
dimension of ψ̄ψ were computed at the four-loop level in
the M̄S scheme in [19,20]. The same high-loop accuracy
has not quite been reached in the RI′ scheme. However, all
anomalous dimensions and beta functions have been
computed directly to three-loop order in [31].
As mentioned above in the RI′ scheme the beta function

of the coupling constant coincides at this loop order with
the one in the M̄S scheme [31]. This also implies that it is
independent of the gauge parameter. On the other hand in
the RI′ scheme the anomalous dimension of the ψ̄ψ
operator is gauge dependent whereas in the M̄S this is
also gauge independent. It is therefore crucial that when
investigating the fixed points in the RI′ scheme one must
take full care that both the coupling constant and the gauge
parameter have reached the fixed point when evaluating the
anomalous dimension γψ̄ψ . This is the reason for our more
general treatment of fixed points above. Some of the
simplifications enjoyed in the M̄S scheme are not present
in the RI′ scheme.
Following [31] we write the beta functions and the

anomalous dimension as

βαðα;ξÞ¼−bα;1
�
α

4π

�
2−bα;2

�
α

4π

�
3−bα;3

�
α

4π

�
4

þOðα5Þ
(29)

βξðα;ξÞ¼ξ

�
−bξ;1

�
α

4π

�
−bξ;2

�
α

4π

�
2−bξ;3

�
α

4π

�
3

þOðα4Þ
�

(30)
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γðα; ξÞ ¼ c1

�
α

4π

�
þ c2

�
α

4π

�
2

þ c3

�
α

4π

�
3

þOðα4Þ:
(31)

All of the coefficients are reported in Appendix A. Here
we also report the group factors in Table I for the
representations used throughout this paper. They include
the fundamental, adjoint, two-indexed symmetric and
two-indexed antisymmetric representations.
The strategy should now be clear. We first find the fixed

points of the two coupled beta functions. In general there
are several fixed points where some will be discarded on
physical grounds. For the IR fixed points we will then
evaluate the anomalous dimension of the mass and compare
to previous multiloop results obtained in the MS scheme.
For a given representation the range in the number of

flavors we are considering is limited from above by the
condition that the theory should be asymptotically free,

Nf <
11

4

C2ðGÞ
TðrÞ : (32)

Also the range in the number of flavors is limited from
below by requiring the value of the coupling constant to be
less than order unity in order for our perturbative calcu-
lation to make sense. In any event when the coupling
constant reaches the critical value [3–7],

α ∼
π

3C2ðrÞ
; (33)

the dynamics is expected to trigger the formation of the
chiral condensate and break chiral symmetry. Also both
perturbative and nonperturbative corrections to this one-
gluon exchange approximation have been discussed [8–10].
In the analysis of fixed points we are of course limited by

perturbation theory. It is clear that when we truncate the
expansion of the beta functions at finite order many
possible solutions appear due to the higher powers of
the gauge coupling and gauge parameter. On physical
grounds we shall only consider positive zeros of the gauge
coupling beta function but will allow both positive and
negative zeros of the gauge parameter beta function. In fact
we shall not limit the range at all in which the gauge

parameter at the fixed point can take values. In the
following we discuss our results.
At two loops the gauge coupling beta function has a

double zero at the origin and one zero, α2l, away from the
origin while the gauge parameter beta function has one zero
at the origin, ξ2l;1 ¼ 0, and three zeros, ξ2l;n, n ¼ 2; 3; 4,
away from the origin. In the range of flavors we are
considering α2l is positive. The fixed points then are
(i) The first fixed point ðα2l; ξ2l;1Þ is a saddle point since

the matrix M has one positive and one negative
eigenvalue. It is stable in the α direction. This fixed
point is therefore only reached along the trajectory
ξðμÞ ¼ 0 for all scales μ.

(ii) The second fixed point ðα2l; ξ2l;2Þ is stable from all
directions since the eigenvalues of M are positive.
The value of ξ2l;2 stays just below −3 as we decrease
the number of flavors from where asymptotic free-
dom is lost. However the fixed point only exists in a
limited range in the number of flavors (in the specific
case of the adjoint representation this zero does not
exist at all for an integer value of the number of
flavors).

(iii) The third fixed point ðα2l; ξ2l;3Þ is stable from all
directions since the eigenvalues ofM are positive. The
value of ξ2l;3 is positive in the entire range of flavors
we are considering and increases as the number of
flavors approaches the value where asymptotic free-
dom is lost.

(iv) The fourth fixed point ðα2l; ξ2l;4Þ is a saddle point
sinceM has one positive and one negative eigenvalue.
It also only exists for a number of flavors just below
the value where asymptotic freedom is lost. In this
range ξ2l;4 is negative and decreases as the number
of flavors approaches the value where asymptotic
freedom is lost.

At three loops the picture is almost identical to the two-loop
case. The gauge coupling beta function has an additional
zero which is negative and therefore discarded. The gauge
parameter beta function has two additional zeros which are
complex in the entire range of flavors we are considering
and therefore discarded. The remaining fixed points then
follow the same pattern as in the two-loop analysis. All of
the results are summarized in Tables II–IX in Appendix B.
One should note that even though the values of the gauge

parameter at the first and second fixed points are ξ2l;1 ¼ 0 and
ξ2l;2 ∼ −3 the values of the associated anomalous dimension
are almost identical due to the fact that γðα; 0Þ ¼ γðα;−3Þ at
two loops. This changes only slightly at three loops.
It should also be noted that both the third and fourth

zeros, ξ2l;3 and ξ2l;4, diverge to plus infinity and minus
infinity, respectively, as the number of flavors approaches
the critical value where asymptotic freedom is lost and
where perturbation theory is supposed to be accurate.
However the value of α2l tends to zero mush faster forcing
the value of the anomalous dimension to also approach zero

TABLE I. Relevant group factors for the representations used
throughout this paper.

r TðrÞ C2ðrÞ dðrÞ
□

1
2

N2−1
2N

N

G N N N2 − 1
Nþ2
2

ðN−1ÞðNþ2Þ
N

NðNþ1Þ
2

N−2
2

ðNþ1ÞðN−2Þ
N

NðN−1Þ
2
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not spoiling the consistency of perturbation theory. The
situation is identical at three loops.
Since there is nothing in our analysis that limits the range

in which the gauge parameter can take values at the fixed
point it is quite satisfactory that such a consistent picture
emerges: at the four different IR fixed points the values of the
associated anomalous dimension are in good agreement. On
the other hand, it should also be mentioned that it is unclear
whether all of the solutions will persist in the full theory or
they might just be an artifact of the truncation of the
perturbative expansion. However, all of the above consid-
erations give us confidence in the stability of our results.
Investigating the explicit results we see that a similar

type of pattern is observed in the RI′ scheme as compared to
the MS scheme. When going from two to three loops the
value of the anomalous dimension is lowered. This occurs
for all the different possible IR fixed points. When explicit
values of the anomalous dimension are compared between
the two schemes at same loop order we see good agree-
ment for quiet a large range of flavors just below where
asymptotic freedom is lost.

VI. CONCLUSION

We have studied the evolution of a number of gauge
theories from the UV to the IR in a region of theory space
where they are believed to develop an IR fixed point. This
was done utilizing higher order perturbation theory in the
RI′ scheme. First we had to address how to estimate the
anomalous dimension of the mass at the fixed point within
the set of schemes in which it depended on the gauge
parameter. We found several solutions with a consistent
picture emerging and trustable results were then derived.
These were of the same order as similar results obtained in
the M̄S scheme [21,22].
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APPENDIX A: RENORMALIZATION GROUP
FUNCTIONS IN THE RI′ SCHEME

The coefficients of the beta function of the gauge
coupling are

bα;1 ¼
11

3
C2ðGÞ − 4

3
TðrÞNf (A1)

bα;2 ¼
34

3
C2ðGÞ2 − 4C2ðrÞTðrÞNf − 20

3
C2ðGÞTðrÞNf

(A2)

bα;3 ¼
1

54
ð2830C2ðGÞ2TðrÞNf − 2857C2ðGÞ3

þ 1230C2ðGÞC2ðrÞTðrÞNf − 316C2ðrÞTðrÞ2N2
f

−108C2ðrÞ2TðrÞNf − 264C2ðrÞTðrÞ2N2
fÞ: (A3)

Following [31] we note that transversality of the gluon
propagator corresponds to Zξ ¼ 1 and therefore γξ ¼ −γA.
This was checked explicitly at the three-loop level in the RI′
scheme. Therefore we can write the beta function
of the gauge parameter as βξ ¼ ξγξ ¼ −ξγA. The coeffi-
cients of the beta function of the gauge parameter then are,
following [31],

bξ;1 ¼
1

6
ð8TðrÞNf − ð13 − 3ξÞC2ðGÞÞ (A4)

bξ;2¼−
1

216
½ð27ξ3−90ξ2−426ξþ3727ÞC2ðGÞ2þð72ξ2þ240ξ−3616ÞC2ðGÞTðrÞNf−864C2ðrÞTðrÞNfþ640TðrÞ2N 2

f �
(A5)

bξ;3 ¼
1

7776
½51200TðrÞ3N3

f − 15552C2ðrÞ2TðrÞNf þ ð331776ζð3Þ− 487296ÞC2ðrÞTðrÞ2N2
f

− ð486ξ5 þ 3078ξ4 þ 10260ξ3 − 1458ζð3Þξ2 − 25965ξ2 þ 86184ζð3Þξ− 173406ξ− 175446ζð3Þ þ 2127823ÞC2ðGÞ3
− ð648ξ4 þ 216ξ3 þ 47808ξ2 þ 10368ζð3Þξþ 126480ξ− 254016ζð3Þ− 2501184ÞC2ðGÞ2TðrÞNf

− ð7776ξ2 − 62208ζð3Þξþ 71280ξþ 725760ζð3Þ− 1131408ÞC2ðGÞC2ðrÞTðrÞNf

þ ð11520ξ2 þ 19200ξ− 165888ζð3Þ−751680ÞC2ðGÞTðrÞ2N2
f�: (A6)

The coefficients of the anomalous dimension of the mass are

c1 ¼ 6C2ðrÞ (A7)

c2 ¼
1

3
½ð185þ 9ξþ 3ξ2ÞC2ðGÞ þ 9C2ðrÞ − 52TðrÞNf�C2ðrÞ (A8)
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c3 ¼ −
1

108
½ð108ξ3 þ 324ξ2 − 1944 − 19008ζð3ÞÞC2ðGÞC2ðrÞ − ð117428þ 5634ξþ 1905ξ2 þ 405ξ3

þ 54ξ4 − 28512ζð3ÞÞC2ðGÞ2 þ ð480ξ2 þ 2088ξþ 62960ÞC2ðGÞTðrÞNf − 13932C2ðrÞ2
þ ð16632 − 3456ζð3ÞÞC2ðrÞTðrÞNf − 6848TðrÞ2N2

f�C2ðrÞ: (A9)

APPENDIX B: TABLES

TABLE II. Values of the infrared zeros in α and ξ of the SUðNÞ beta functions with Nf fermions in the fundamental representation, for
N ¼ 2; 3; 4. They are calculated at n-loop order, and denoted as αnl and ξnl.

N Nf α2l ξ2l;1 ξ2l;2 ξ2l;3 ξ2l;4 α3l ξ3l;1 ξ3l;2 ξ3l;3 ξ3l;4

2 7 2.83 0 � � � 3.97 � � � 1.05 0 � � � 2.63 � � �
2 8 1.26 0 � � � 4.92 � � � 0.688 0 � � � 3.23 � � �
2 9 0.595 0 � � � 6.50 � � � 0.418 0 −3.81 4.32 −6.50
2 10 0.231 0 −3.24 10.1 −10.2 0.196 0 −3.15 6.80 −9.42
3 10 2.21 0 � � � 3.92 � � � 0.764 0 � � � 2.57 � � �
3 11 1.23 0 � � � 4.46 � � � 0.579 0 � � � 2.90 � � �
3 12 0.754 0 � � � 5.15 � � � 0.435 0 � � � 3.35 � � �
3 13 0.468 0 � � � 6.12 � � � 0.317 0 −4.22 4.02 −5.86
3 14 0.278 0 −3.67 7.64 −6.86 0.215 0 −3.42 5.08 −7.51
3 15 0.143 0 −3.22 10.4 −10.6 0.123 0 −3.14 7.05 −9.66
3 16 0.0416 0 −3.04 19.6 −20.3 0.0397 0 −3.03 13.29 −15.9
4 13 1.85 0 � � � 3.87 � � � 0.604 0 � � � 2.53 � � �
4 14 1.16 0 � � � 4.25 � � � 0.489 0 � � � 2.75 � � �
4 15 0.783 0 � � � 4.69 � � � 0.397 0 � � � 3.02 � � �
4 16 0.546 0 � � � 5.23 � � � 0.320 0 � � � 3.39 � � �
4 17 0.384 0 � � � 5.93 � � � 0.254 0 −4.69 3.87 −5.30
4 18 0.266 0 −4.38 6.88 −5.17 0.194 0 −3.68 4.54 −6.80
4 19 0.175 0 −3.49 8.28 −7.80 0.140 0 −3.31 5.51 −8.02
4 20 0.105 0 −3.21 10.6 −10.7 0.0907 0 −3.13 7.13 −9.74
4 21 0.0472 0 −3.07 15.8 −16.4 0.0441 0 −3.05 10.7 −13.4

TABLE III. Values of the anomalous dimension of the ψ̄ψ operator with Nf fermions in the fundamental representation, for
N ¼ 2; 3; 4. They are calculated at n-loop order, and denoted as γnl. We also include the values in the MS scheme.

RI′ RI′ MS
N Nf γ2l;1 γ2l;2 γ2l;3 γ3l;4 γ3l;1 γ3l;2 γ3l;3 γ3l;4 γ2l γ3l γ4l

2 7 3.49 � � � 5.60 � � � 0.671 � � � 1.17 � � � 2.67 0.457 0.0325
2 8 0.872 � � � 1.46 � � � 0.312 � � � 0.546 � � � 0.752 0.272 0.204
2 9 0.293 � � � 0.501 � � � 0.166 0.169 0.285 0.224 0.275 0.161 0.157
2 10 0.0924 0.0928 0.159 0.129 0.0740 0.0741 0.126 0.114 0.0910 0.0738 0.0748
3 10 5.62 � � � 8.97 � � � 1.04 � � � 1.76 � � � 4.19 0.647 0.156
3 11 1.99 � � � 3.27 � � � 0.571 � � � 0.989 � � � 1.61 0.439 0.250
3 12 0.888 � � � 1.49 � � � 0.354 � � � 0.613 � � � 0.773 0.312 0.253
3 13 0.439 � � � 0.749 � � � 0.232 0.242 0.398 0.292 0.404 0.220 0.210
3 14 0.221 0.226 0.380 0.273 0.148 0.149 0.253 0.217 0.212 0.146 0.147
3 15 0.101 0.101 0.174 0.143 0.0828 0.0828 0.140 0.128 0.0.0997 0.0826 0.0836
3 16 0.0272 0.0272 0.0466 0.0426 0.0258 0.0258 0.0436 0.0417 0.0272 0.0258 0.0259
4 13 7.33 � � � 11.7 � � � 1.27 � � � 2.12 � � � 5.38 0.755 0.192
4 14 3.13 � � � 5.09 � � � 0.784 � � � 1.34 � � � 2.45 0.552 0.259
4 15 1.59 � � � 2.64 � � � 0.523 � � � 0.900 � � � 1.32 0.420 0.281
4 16 0.892 � � � 1.50 � � � 0.368 � � � 0.634 � � � 0.778 0.325 0.269
4 17 0.528 � � � 0.898 � � � 0.267 0.292 0.459 0.314 0.481 0.251 0.234
4 18 0.318 0.339 0.546 0.356 0.194 0.196 0.331 0.270 0.301 0.189 0.187
4 19 0.189 0.192 0.326 0.244 0.136 0.136 0.230 0.202 0.183 0.134 0.136
4 20 0.104 0.104 0.179 0.147 0.0856 0.0856 0.145 0.133 0.102 0.0854 0.0865
4 21 0.0441 0.0442 0.0757 0.0675 0.0407 0.0407 0.0688 0.0651 0.0440 0.0407 0.0409
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TABLE IV. Values of the infrared zeros in α and ξ of the SU(N) beta functions withNf ¼ 2 fermions in the adjoint
representation, for N ¼ 2; 3; 4. They are calculated at n-loop order, and denoted as αnl and ξnl.

N Nf α2l ξ2l;1 ξ2l;2 ξ2l;3 ξ2l;4 α3l ξ3l;1 ξ3l;2 ξ3l;3 ξ3l;4

2 2 0.628 0 � � � 6.72 � � � 0.459 0 −4.14 4.20 −5.99
3 2 0.419 0 � � � 6.72 � � � 0.306 0 −4.14 4.20 −5.99
4 2 0.314 0 � � � 6.72 � � � 0.229 0 −4.14 4.20 −5.99

TABLE IV. Values of the anomalous dimension of the ψ̄ψ operator with Nf ¼ 2 fermions in the adjoint representation, for
N ¼ 2; 3; 4. They are calculated at n-loop order, and denoted as γnl. We also include the values in the MS scheme.

RI’ RI’ MS
N Nf γ2l;1 γ2l;2 γ2l;3 γ2l;4 γ3l;1 γ3l;2 γ3l;3 γ3l;4 γ2l γ3l γ4l

2 2 0.900 � � � 1.55 � � � 0.593 0.616 0.956 0.758 0.820 0.543 0.500
3 2 0.900 � � � 1.55 � � � 0.593 0.616 0.956 0.758 0.820 0.543 0.523
4 2 0.900 � � � 1.55 � � � 0.593 0.616 0.956 0.758 0.820 0.543 0.532

TABLE VI. Values of the infrared zeros in α and ξ of the SUðNÞ beta functions with Nf fermions in the two-indexed symmetric
representation, for N ¼ 3; 4. They are calculated at n-loop order, and denoted as αnl and ξnl.

N Nf α2l ξ2l;1 ξ2l;2 ξ2l;3 ξ2l;4 α3l ξ3l;1 ξ3l;2 ξ3l;3 ξ3l;4

3 2 0.842 0 � � � 5.45 � � � 0.500 0 � � � 3.27 � � �
3 3 0.0849 0 −3.12 13.7 −13.9 0.0790 0 −3.07 9.11 −11.7
4 2 0.967 0 � � � 4.92 � � � 0.485 0 � � � 2.92 � � �
4 3 0.152 0 −3.46 9.11 −8.32 0.129 0 −3.29 5.86 −8.30

TABLE VII. Values of the anomalous dimension of the ψ̄ψ operator with Nf fermions in the two-indexed symmetric representation,
for N ¼ 3; 4. They are calculated at n-loop order, and denoted as γnl. We also include the values in the MS scheme.

RI′ RI′ M̄S
N Nf γ2l;1 γ2l;2 γ2l;3 γ2l;4 γ3l;1 γ3l;2 γ3l;3 γ3l;4 γ2l γ3l γ4l

3 2 2.96 � � � 5.03 � � � 1.70 � � � 2.57 � � � 2.44 1.28 1.12
3 3 0.145 0.145 0.250 0.245 0.133 0.133 0.219 0.215 0.144 0.133 0.133
4 2 6.24 � � � 10.4 � � � 3.19 � � � 4.62 � � � 4.82 2.08 1.79
4 3 0.395 0.399 0.685 0.511 0.319 0.320 0.520 0.488 0.381 0.313 0.315

TABLE VIII. Values of the infrared zeros in α and ξ of the SUðNÞ beta functions with Nf fermions in the two-indexed antisymmetric
representation, for N ¼ 4. They are calculated at n-loop order, and denoted as αnl and ξnl.

N Nf α2l ξ2l;1 ξ2l;2 ξ2l;3 ξ2l;4 α3l ξ3l;1 ξ3l;2 ξ3l;3 ξ3l;4

4 6 2.16 0 � � � 3.91 � � � 0.664 0 � � � 2.48 � � �
4 7 0.890 0 � � � 4.66 � � � 0.437 0 � � � 2.94 � � �
4 8 0.449 0 � � � 5.71 � � � 0.287 0 � � � 3.64 � � �
4 9 0.225 0 −3.86 7.47 −6.28 0.174 0 −3.53 4.88 −7.22
4 10 0.090 0 −3.17 11.5 −11.6-11.6 0.0804 0 −3.11 7.65 −10.3
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