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The Bethe-Salpeter equation for a bound system, composed by two massive scalars exchanging a mas-
sive scalar, is quantitatively investigated in ladder approximation, within the Nakanishi integral represen-
tation approach. For the S-wave case, numerical solutions with a form inspired by the Nakanishi integral
representation are calculated. The needed Nakanishi weight functions are evaluated by solving two differ-
ent eigenequations, obtained directly from the Bethe-Salpeter equation applying the light-front projection
technique. A remarkable agreement, in particular, for the eigenvalues, is achieved, numerically confirming
that the Nakanishi uniqueness theorem for the weight functions demonstrated in the context of the per-
turbative analysis of the multileg transition amplitudes and playing a basic role in suggesting one of the two
adopted eigenequations can be extended to a nonperturbative realm. The detailed, quantitative studies are
completed by presenting both probabilities and light-front momentum distributions for the valence com-
ponent of the bound state.
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I. INTRODUCTION

Solving the Bethe-Salpeter equation (BSE)[1] in
Minkowski space, even for scalar theories, is still a chal-
lenging problem, and not too many numerical investiga-
tions able to address the issue can be found in the
literature. Seemingly, one of the most effective tools for
facing such a task with high numerical accuracy (see,
e.g., Refs. [2–8] for an illustration of actual calculations)
is represented by the so-called perturbation theory integral
representation (PTIR) of the multileg transition amplitudes
proposed byNakanishi in the 1960s (see, e.g., Refs. [9–12]).
Such an approach originates from the parametric formula
for Feynman integrals and leads to a spectral represen-
tation of any multileg transition amplitude expressed
through an infinite series of Feynman diagrams. Then, a
transition amplitude can be written as a suitable folding
of a nonsingular weight function, the so-called Nakanishi
weight function, divided by a denominator containing the
analytic structure of the amplitude. In particular, the
PTIR of the three-leg amplitude, i.e., the PTIR vertex func-
tion (related to the BS amplitude through the inverse of the
constituent propagators), plays a basic role in the quest of
physically motivated, actual solutions of the BSE in
Minkowski space. This is shown by the nice results in
Refs. [2–8], where a wide range of (i) systems (bosonic
and fermionic), (ii) approximated kernels (ladder and cross
ladder), and (iii) constituent propagators (free and dressed)
have been explored. Loosely speaking, applying PTIR in
order to solve the BSE can be seen as a generalization of
the approach proposed by Wick [13] and Cutkosky [14]

for obtaining explicit solutions of the scalar-scalar BSE
but with a massless-scalar exchange.
Among the attractive features of PTIR, one has (i) the

dependence of the nonsingular weight functions upon real
variables, whose number is related to the number of inde-
pendent invariants of the problem, and (ii) the explicit ana-
lytic structure of the transition amplitude that allows one to
perform analytic integrations when requested (indeed, this
will be the case). These properties have been exploited in
order to obtain equations for the Nakanishi weight function
starting from the BSE. In particular (cf. Refs. [2–8]), one
can single out two different equations for determining the
Nakanishi weight function, but both of them share the first
step: One assumes a form like the PTIR vertex for the BS
amplitude and puts such an expression in the BSE. Then,
one can proceed by invoking the Nakanishi uniqueness
theorem for the weight functions [12] and obtain the eige-
nequation for the Nakanishi weight function adopted in
Refs. [2–5], where the ladder approximation of the BS
kernel has been assumed and some elaborations, like either
free or dressed constituent propagators, have been pro-
posed. Indeed, the uniqueness theorem was demonstrated
within the perturbative analysis of the transition ampli-
tudes; therefore, one could ask if and to what extent this
can be applied in a nonperturbative framework: this is
the first question we have addressed in the present paper.
Moreover, in Refs. [2–5], the truncated kernel was elabo-
rated by performing the needed analytical integrations
using the standard Minkowski variables. Differently, in
Refs. [6–8], an explicitly covariant light-front (LF)
approach [15], with the set of LF variables k� ¼ k0 � k3
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and k⊥ ≡ fk1; k2g was adopted for determining another
integral equation for the Nakanishi weight function. In
particular, through an exact relation based on a suitable
analytic integration of the Nakanishi representation of
the BS amplitude, one can extract the so-called valence
component of the interacting-system state (see also
Refs. [16,17]), i.e., the first contribution to the Fock expan-
sion of the state. Applying the same integration on both
sides of the BSE, one gets an integral equation for the
weight function that has on the lhs the valence component
and on the rhs the Nakanishi function combined with a
proper kernel (obtained from the BS 4D kernel). It should
be pointed out that such an integral equation is a general-
ized eigenequation, and, therefore, substantially different
from the one of Refs. [2–5] that is a true eigenequation once
the ladder approximation is adopted.
A formal investigation for establishing a direct bridge

between the above-described approaches also extending
the analysis from the homogeneous (bound states)
to inhomogeneous (scattering states) ladder BSE was per-
formed in Ref. [18]. To accomplish this, a nonexplicitly
covariant LF framework was adopted together with a
LF projection technique (see Refs. [19–23] for details).
In particular, the integration over the LF variable k− was
exploited for obtaining the valence component from
the BS amplitude, arriving at the same generalized eigen-
equation of Ref. [6] for the Nakanishi weight function but
deduced within the explicitly covariant LF framework
(see Ref. [15]). Moreover, by a suitable elaboration of
the kernel present in the generalized eigenequation, one
becomes ready for applying the Nakanishi uniqueness
theorem [12]. It should be pointed out that all the formal
developments in Ref. [18] benefit from the well-known vir-
tue of the LF variables to make the analytical integrations
simpler (see Ref. [24] for an elementary introduction to
the issue).
The aim of the present work is the numerical investiga-

tion of the above-mentioned eigenequations (i.e., with
and without the application of the uniqueness theorem)
in order to evaluate the Nakanishi weight functions of
BS amplitudes, solutions of a ladder BSE for an S-wave
bound system composed by two massive scalars interacting
through the exchange of a massive scalar. In particular,
for both eigenequations, we have calculated (i) eigenvalues
and eigenfunctions corresponding to binding energies
and masses of the exchanged scalar of Refs. [3,6] and
(ii) valence probabilities and LF distributions in both the
longitudinal-momentum fraction ξ and the transverse
momentum jk⊥j that notably can be evaluated once the
Nakanishi weight functions are determined. The compari-
son between the numerical results obtained from the two
eigenequations allows us to check to which extent the
uniqueness theorem of the Nakanishi weight function is
valid and to assess the reliability of quantities like valence
probabilities and the LF distribution that are quite relevant

in the phenomenological studies of interacting relativistic
systems.
The paper is organized as follows. In Sec. II, the general

formalism of the BSE onto the null plane is introduced,
as well as the valence component of the BS amplitude.
In Sec. III, the kernel of the ladder BSE is recast in a form
suitable for applying the uniqueness theorem by Nakanishi.
In Sec. IV, the LF momentum distributions are defined.
In Sec. V, the numerical results are discussed. Finally, in
Sec. VI, the conclusions are drawn.

II. THE HOMOGENEOUS BETHE-SALPETER
EQUATION ONTO THE NULL PLANE

In this section, the general formalism adopted for
obtaining the eigenequations for the Nakanishi weight
functions within the LF framework of Ref. [18] is quickly
reviewed in order to have the full matter under control and
proceed in the following sections to the numerical analysis.
Moreover, it is illustrated (Appendix A contains the details)
a shorter way to deduce the eigenequation based on the
uniqueness theorem from the one based on the LF valence
wave. It should be pointed out that the BSE we have con-
sidered does not contain either self-energy or vertex correc-
tions, but it is worth mentioning that one could rely upon a
Dyson-Schwinger framework for dressing the constituent
propagators (see, e.g., Ref. [4]).
Let us start by recalling that the BS amplitude for a

bound state fulfills the following BSE:

Φbðk; pÞ ¼ Gð12Þ
0 ðk; pÞ

Z
d4k0

ð2πÞ4 iKðk; k0; pÞΦbðk0; pÞ; (1)

where p ¼ p1 þ p2 is the total momentum of the interact-
ing system with total mass p2 ¼ M2, k ¼ ðp1 − p2Þ=2 is
the relative momentum, and iK the interaction kernel that
contains all the irreducible diagrams. As mentioned above,
the self-energy is disregarded, and, therefore, one has to
consider the free propagator of the two constituents
Gð12Þ

0 given by

Gð12Þ
0 ðk; pÞ ¼ Gð1Þ

0 Gð2Þ
0

¼ i
ðp
2
þ kÞ2 −m2 þ iϵ

i
ðp
2
− kÞ2 −m2 þ iϵ

:

(2)

In what follows, we look for S-wave solutions of Eq. (1)
that can be written as the PTIR vertex function; i.e., a
proper folding of a nonsingular weight function that
depends upon real variables, and a factor that contains
the analytic structure (see, also, Refs. [2–4,6–8,18]),
namely,
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Φbðk;pÞ¼ i
Z

1

−1
dz0

Z
∞

0

dγ0
gbðγ0;z0;κ2Þ

½γ0 þ κ2−k2−p ·kz0− iϵ�2þn ;

(3)

where gbðγ0; z0; κ2Þ is the Nakanishi weight function, and κ2
is defined by

κ2 ¼ m2 −M2

4
; (4)

with m the constituent mass. Notice that by definition, one
has κ2 > 0 for bound states, while κ2 < 0 for scattering
states. The power n in the denominator of Eq. (3) can
be any value n ≥ 1. The minimal value n ¼ 1 ensures
the convergence of the 4D integral, and in what follows,
we adopt this choice, as in Refs. [3,6]. Increasing the value
of n should produce a solution for gbðγ0; z0; κ2Þ more and
more soft [3,25]. The factor of 2 in the exponent of the
denominator of Eq. (3) comes from the fact we are dealing
with the BS amplitude and not with the vertex function.
It is worth noting that the dependence upon z0 of

gbðγ0; z0; κ2Þ is even as expected by the symmetry property
of the BS amplitude for the two-scalar system. As a matter
of fact, when the exchange between the two particles is per-
formed, the scalar product k⋅p in the denominator in Eq. (3)
changes sign. In order to recover the expected symmetry
of the BS amplitude, the Nakanishi weight function must
be even in z0. Moreover, as pointed out in Refs. [3,9–11],
z-odd gbðγ0; z0; κ2Þ functions correspond to odd-parity BS
amplitudes with respect to the change k0 → −k0 (recall that
in the rest frame p⋅k ¼ Mk0). It turns out (see Refs. [9–11]
for more details) that such BS amplitudes have nega-
tive norm.
As is well known (see, e.g., Refs. [18,26] for the non-

explicitly covariant LF approach and Refs. [6,15] for the
explicitly covariant case), one can obtain the valence com-
ponent of the interacting state from the corresponding
BS amplitude through the suitable analytic integration,
namely, the integration over k−. Once the expansion of
the interacting state on a Fock basis is introduced, the

valence component corresponds to the contribution with
the minimal number of constituents, that in the present case
amounts to two scalars. For the sake of clarity, it is useful to
briefly recall the above-mentioned procedure within the LF
framework adopted in our previous work [18], since in the
following sections the valence probability and the LF dis-
tributions will be discussed and numerically evaluated.
In the Fock space, one can introduce the completeness

given by

X
n≥2

Z
½d3 ~qi�jn; ~qiih ~qi; nj ¼ I ; (5)

with I the identity in the Fock space, ~qi ≡ fqþi ;qi⊥g the
LF three-momenta, and

jn; ~qii¼ð2πÞ3n=2 1ffiffiffiffiffi
n!

p
ffiffiffiffiffiffiffiffi
2qþ1

q
……

ffiffiffiffiffiffiffiffi
2qþn

p
a†~q1……a†~qn j0i: (6)

The normalization for the single-particle free state is
h ~q0j ~qi ¼ 2qþð2πÞ3δ3ð ~q0 − ~qÞ that leads to the standard
LF phase space, viz.,

Z
½d3 ~qi� ¼

Yn
i¼1

Z
d3 ~qi

2qþi ð2πÞ3
: (7)

The free Fock states in Eq. (6) have the following ortho-
normalization:

h ~q0i;n0jn; ~qii¼
1

n!
δn;n0

X
½j1…jn�perm

Yn
i¼1

2qþi ð2πÞ3δ3ð ~q0i− ~qjiÞ; (8)

where the sum has to be performed over all the n! permu-
tations of 1::::::::::n, as shortly indicated by ½j1…jn�perm.
Then, the interacting state can be expanded as follows
(see, e.g., Ref. [26]):

j ~p;Ψinti¼2ð2πÞ3
X
n≥2

Z
½dξi�½d2ki⊥�ψn=pðξi;ki⊥Þjn;ξipþ;ki⊥þξip⊥i; (9)

where (i) jn; ξipþ;ki⊥ þ ξip⊥i is the Fock state with n par-
ticles, and the variables ~qi have been expressed in terms of
the intrinsic variables fξi;ki⊥g, as follows: qþi ¼ ξipþ and
qi⊥ ¼ ki⊥ þ ξip⊥; (ii) ψn=pðξi;ki⊥Þ are the so-called LF
wave functions that allow one to describe the intrinsic
dynamics and are related to the overlap hn; ξipþ;
ki⊥ þ ξip⊥j ~p;Ψinti, as discussed below. Notice that the
global motion and the intrinsic structure have been kept
separate in j ~p;Ψinti given the kinematical nature of the

LF boosts. Finally, let us remember that the interacting
system is on-mass-shell, i.e., p− ¼ ðM2 þ jp⊥j2Þ=pþ,
and the set of intrinsic variables fξi;ki⊥g satisfy the fol-
lowing relations:

Xn
i¼1

ξi ¼ 1;
Xn
i¼1

ki⊥ ¼ 0: (10)

The phase-space factors in Eq. (9) are given by
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Z
½dξi�≡

Yn
i¼1

Z
dξi

2ð2πÞξi
δ

�
1 −Xn

j¼1

ξj

�
¼ pþYn

i¼1

Z
dqþi

2qþi ð2πÞ
δ

�
pþ −Xn

j¼1

qþj

�
;

Z
½d2ki⊥�≡

Yn
i¼1

Z
d2ki⊥
ð2πÞ2 δ

2

�Xn
j¼1

kj⊥
�
:

(11)

Since the intrinsic motion is kinematically separated from the global one within the LF framework, the overlap
hn; ξipþ;ki⊥ þ ξip⊥j ~p; ;Ψinti can be trivially factorized into the product of a momentum-conserving delta function
and the intrinsic LF wave function as follows:

hn; ξipþ;ki⊥ þ ξip⊥j ~p;Ψinti ¼ 2pþð2πÞ3δ3
�
~p −Xn

i¼1

~qi

�
ψn=pðξi;ki⊥Þ

¼ 2ð2πÞ3δ
�
1 −Xn

i¼1

ξi

�
δð2Þ

�Xn
i¼1

ki⊥
�
ψn=pðξi;ki⊥Þ: (12)

From Eq. (9) and reminding that the CM plane waves have the standard normalization that can be factorized out, one can
obtain the normalization of the intrinsic state and in turn (i) the overall normalization of the LF wave functions and (ii) the
probability of each Fock component. As a matter of fact, one can write

h ~p0;Ψintj ~p;Ψinti ¼ 2pþð2πÞ3δ3ð ~p0 − ~pÞhΨintjΨinti

¼ ½2pþð2πÞ3�2
X
n≥2

Z
½d3 ~qi�δ3

�Xn
i¼1

~qi − ~p
�
ψn=pðξi;ki⊥Þδ3

�Xn
i¼1

~qi − ~p0
�
ψn=p0 ðξi;ki⊥Þ

¼ 2pþð2πÞ3δ3ð ~p0 − ~pÞ2ð2πÞ3
X
n≥2

Z
½dξi�½d2ki⊥�jψn=pðξi;ki⊥Þj2: (13)

Then, the LF wave functions ψn=pðξi;ki⊥Þ are normalized according to

hΨintjΨinti ¼ 2ð2πÞ3
X
n≥2

Z
½dξi�½d2ki⊥�jψn=pðξi;ki⊥Þj2 ¼ 1: (14)

This equation clearly shows the physical content associated to the LF wave functions: jψn=pðξi;ki⊥Þj2 yields the
probability distributions to find n constituents with intrinsic coordinates fξi;ki⊥g inside the interacting-system state.
In view of this, the basic role played by LF wave functions in extracting the probability content hidden inside the BS
amplitude should be pointed out. Notice that a factor 2ð2πÞ3 is missing in the corresponding equation [i.e., Eq. (15)]
of Ref. [18].
In particular, the probability to find the valence component in the bound state (see Sec. IV) is given by

N2 ¼ 2ð2πÞ3
Z

dξ1
2ð2πÞξ1

Z
dξ2

2ð2πÞξ2
δð1 − ξ1 − ξ2Þ ×

Z
d2k1⊥
ð2πÞ2

Z
d2k2⊥
ð2πÞ2 δ2ðk1⊥ þ k2⊥Þjψn¼2=pðξ1;k1⊥Þj2

¼ 1

ð2πÞ3
Z

dξ
2ξð1 − ξÞ

Z
d2k⊥jψn¼2=pðξ;k⊥Þj2; (15)

where the notation has been simplified, putting ξ ¼ ξ1 and k⊥ ¼ k1⊥. In general, the probability Nn of the nth Fock
component can be evaluated through the corresponding LF wave function.
In general, the valence wave function can be obtained by integrating the BS amplitudeΦbðk; pÞ over k− (see Ref. [18] for

details). Once we assume the expression for the BS amplitude suggested by the PTIR approach [12], we get (see, also,
Ref. [6])
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ψn¼2=pðξ; k⊥Þ ¼
pþffiffiffi
2

p ξð1 − ξÞ
Z

dk−
2π

Φbðk; pÞ ¼
1ffiffiffi
2

p ξð1 − ξÞ
Z

∞

0

dγ0
gbðγ0; 1 − 2ξ; κ2Þ

½γ0 þ k2⊥ þ κ2 þ ð2ξ − 1Þ2 M2

4
− iϵ�2 ; (16)

where the integration over k− leads to fix the value of the variable z0 in Eq. (3) to 1 − 2ξ. The factor 1=
ffiffiffi
2

p
comes from the

normalization of the Fock state with n ¼ 2, given the statistics property.
From Eq. (16) and the physically motivated request that the density in the transverse variable b⊥, conjugated to k⊥, be

finite for jb⊥j ¼ 0, one can deduce that gbðγ0; 1 − 2ξ; κ2Þ must vanish for γ0 → ∞. As a matter of fact, one has

~ψn¼2=pðξ; b⊥Þ ¼
Z

dk⊥
ð2πÞ2 e

ik⊥·b⊥ψn¼2=pðξ; k⊥Þ (17)

and

~ψn¼2=pðξ; b⊥ ¼ 0Þ ¼ π
1ffiffiffi
2

p ξð1 − ξÞ
Z

∞

0

dk2⊥
ð2πÞ2

Z
∞

0

dγ0
gbðγ0; 1 − 2ξ; κ2Þ

½γ0 þ k2⊥ þ κ2 þ ð2ξ − 1Þ2 M2

4
− iϵ�2

¼ 1

4π
ffiffiffi
2

p ξð1 − ξÞ
Z

∞

0

dγ0
gbðγ0; 1 − 2ξ; κ2Þ

½γ0 þ κ2 þ ð2ξ − 1Þ2 M2

4
− iϵ� : (18)

If the transverse density at the origin, i.e.,
j ~ψn¼2=pðξ; b⊥ ¼ 0Þj2, is finite, one can immediately realize
the needed falloff of gbðγ0; 1 − 2ξ; κ2Þ. Notice that the
denominator is always positive for a bound state. By intro-
ducing the variables ðγ; zÞ, as in Ref. [6],

γ ¼ k2⊥ 1 ≥ z ¼ 1 − 2ξ ≥ −1; (19)

one can rewrite the valence wave function as follows:

ψn¼2=pðz;γÞ ¼
ð1− z2Þ
4

ffiffiffi
2

p

×
Z

∞

0

dγ0
gbðγ0; z;κ2Þ

½γ0 þ γþ z2m2þð1− z2Þκ2− iϵ�2 :
(20)

The announced integral equation for the Nakanishi
weight function gbðγ; z; κ2Þ is obtained by inserting
Eq. (3) in both sides of the LF-projected BS equation
(see, also, Refs. [19–23]), viz.,Z

dk−
2π

Φbðk; pÞ ¼
Z

dk−
2π

Gð12Þ
0 ðk; pÞ

×
Z

d4k0

ð2πÞ4 iKðk; k0; pÞΦbðk0; pÞ: (21)

Then, one gets [18] (see Ref. [6] for the corresponding elab-
oration within the explicitly covariant LF framework)Z

∞

0

dγ0
gbðγ0; z; κ2Þ

½γ0 þ γ þ z2m2 þ ð1 − z2Þκ2 − iϵ�2

¼
Z

∞

0

dγ0
Z

1

−1
dz0VLF

b ðγ; z; γ0; z0Þgbðγ0; z0; κ2Þ; (22)

where the new kernel VLF
b , that we call the Nakanishi kernel

for the sake of brevity, is related to the BS kernel iK in
Eq. (1), as follows:

VLF
b ðγ;z;γ0;z0Þ ¼ ipþ

Z
∞

−∞
dk−
2π

Gð12Þ
0 ðk;pÞ

×
Z

d4k0

ð2πÞ4
iKðk;k0;pÞ

½k02þp ·k0z0− γ0− κ2þ iϵ�3 :
(23)

Still starting from the LF-projected BSE (21), a different
equation for gbðγ; z; κ2Þ can be obtained, if one takes into
account (i) the uniqueness of the Nakanishi weight func-
tion, as ensured by a theorem in Ref. [12] and (ii) the
PTIR expressions for both the BS amplitude and the BS
kernel, i.e., a four-leg transition amplitude (see, e.g.,
Refs. [3,18] for the actual PTIR of the off-shell T matrix).
Then, in place of Eq. (22), one could write the following
eigenequation (see Refs. [2–5,18,27,28] for the ladder
case):

gbðγ; z; κ2Þ ¼
Z

∞

0

dγ0
Z

1

−1
dz0Vbðγ; z; γ0; z0; κ2Þgbðγ0; z0; κ2Þ:

(24)

Within the PTIR framework, it is very important to notice
that both Eqs. (22) and (24) are equivalent to the initial BSE
(1) if the uniqueness theorem holds. Once the weight func-
tion gbðγ0; z; κ2Þ is known, then one can fully reconstruct
in Minkowski space [see Eq. (3)] the BS amplitude that
belongs to the class of physically acceptable solutions
(with positive norm and suitable for an investigation within
an S-matrix framework). Moreover, it is not surprising that
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through the information stored in the valence component,
one can map the full BS amplitude, since the whole and rich
content of the BS amplitude can be transferred to the LF
kernel, i.e., the kernel projected onto the null plane. This
result is quite general and holds both in perturbative and
nonperturbative regimes, and, even more, for both bound
and scattering states [19–23].

III. LF NAKANISHI KERNEL IN
LADDER APPROXIMATION

At the present stage, our numerical investigation is
restricted to the ladder approximation of the BSE, where
the BS kernel is given by

iKðLdÞðk; k0Þ ¼ ið−igÞ2
ðk − k0Þ2 − μ2 þ iϵ

; (25)

with μ the mass of the exchanged scalar. Explicit expres-
sions for both ladder and cross-ladder approximations of

VLF
b ðγ; z; γ0; z0Þ obtained within the covariant LF framework

can be found in Refs. [6,7].
In Ref. [18], where a nonexplicitly covariant LF frame-

work was chosen, the scattering case was analyzed in
great detail, and the ladder approximation of the
Nakanishi kernel in the S-wave bound state [see
Eq. (22)] VðLdÞ

b was obtained through a proper limit of
the scattering kernel. In what follows, a more direct
and simple way to obtain VðLdÞ

b is presented (see
Appendix A for more details), eventually achieving an
expression suitable for exploiting the uniqueness theorem
of the Nakanishi weight function [12]. As to the numeri-
cal calculations, the results evaluated with our LF
approach and the ones shown in Refs. [3,6] are compared
in Sec. V.
In a reference frame, where p⊥ ¼ 0 and p� ¼ M,

the ladder approximation of VLF
b ðγ; z; γ0; z0Þ to be inserted

in the integral equation (22) is written as follows
(see Appendix A for details):

VðLdÞ
b ðγ; z; γ0; z0Þ ¼ −g2pþ

Z
d4k00

ð2πÞ4
1

½k002 þ p · k00z0 − γ0 − κ2 þ iϵ�3

×
Z

∞

−∞
dk−
2π

1

½ðp
2
þ kÞ2 −m2 þ iϵ�

1

½ðp
2
− kÞ2 −m2 þ iϵ�

1

ðk − k00Þ2 − μ2 þ iϵ

¼ − g2

2ð4πÞ2
Z

∞

−∞
dγ00

θðγ00Þ
½γ þ γ00 þ z2m2 þ κ2ð1 − z2Þ − iϵ�2

×

� ð1þ zÞ
ð1þ ζ0Þ θðζ

0 − zÞh0ðγ00; z; γ0; ζ0; μ2Þ þ ð1 − zÞ
ð1 − ζ0Þ θðz − ζ0Þh0ðγ00;−z; γ0;−ζ0; μ2Þ

�
; (26)

where

h0ðγ00; z; γ0; ζ0; μ2Þ ¼ θ

�
γ00

ð1þ ζ0Þ
ð1þ zÞ − γ0 − μ2 − 2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ02

M2

4
þ κ2 þ γ0

r �

×

�
− Bbðz; ζ0; γ0; γ00; μ2Þ
Abðζ0; γ0; κ2ÞΔðz; ζ0; γ0; γ0; κ2; μ2Þ

1

γ00
þ ð1þ ζ0Þ

ð1þ zÞ
Z

yþ

y−
dy

y2

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2
�

−
ð1þ ζ0Þ
ð1þ zÞ

Z
∞

0

dy
y2

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2 ; (27)

with

Abðζ0; γ0; κ2Þ ¼ ζ02
M2

4
þ κ2 þ γ0 ≥ 0

Bbðz; ζ0; γ0; γ0; μ2Þ ¼ μ2 þ γ0 − γ00
ð1þ ζ0Þ
ð1þ zÞ ≤ 0

Δ2ðz; ζ0; γ0; γ00; κ2; μ2Þ ¼ B2
bðz; ζ0; γ0; γ00; μ2Þ − 4μ2Abðζ0; γ0; κ2Þ ≥ 0

y� ¼ 1

2Abðζ0; γ0; κ2Þ
½−Bbðz; ζ0; γ0; γ00; μ2Þ � Δðz; ζ0; γ0; γ00; κ2; μ2Þ�: (28)

It is relevant for what follows that for z → ð−1Þ, (i) the theta function does not yield a constraint anymore, and (ii) the
function Bb → −∞, and (iii) the two integrals on y cancel each other. Then, one gets
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ð1þ zÞ
ð1þ ζ0Þ h

0ðγ00; z; γ0; ζ0; μ2Þ → ð1þ zÞ
ð1þ ζ0Þ

1

ðγ00Abðζ0; γ0; κ2ÞÞ
→ 0.

An analogous result can be obtained for z → 1 when the
term containing h0ðγ00;−z; γ0; ζ0; μ2Þ is considered.
Notably, in Eq. (26) the denominator 1=½γ þ γ00 þ

z2m2 þ κ2ð1 − z2Þ − iϵ�2 has been factored out, making

possible the application of the uniqueness theorem to the
ladder approximation of Eq. (22) that readsZ

∞

0

dγ0
gðLdÞb ðγ0; z; κ2Þ

½γ0 þ γ þ z2m2 þ ð1 − z2Þκ2 − iϵ�2

¼
Z

∞

0

dγ0
Z

1

−1
dz0VðLdÞ

b ðγ; z; γ0; z0ÞgðLdÞb ðγ0; z0; κ2Þ:
(29)

As a matter of fact, one can rewrite Eq. (29) as follows:Z
∞

0

dγ0
gðLdÞb ðγ0;z;κ2Þ

½γ0 þ γþ z2m2þð1− z2Þκ2− iϵ�2¼
g2

2ð4πÞ2
Z

∞

0

dγ0
Z

1

−1
dζ0gðLdÞb ðγ0;ζ0;κ2Þ

×
Z

∞

0

dγ00
1

½γþ γ00 þ z2m2þ κ2ð1−z2Þ− iϵ�2

×

� ð1þ zÞ
ð1þζ0Þθðζ

0−zÞh0ðγ00;z;γ0;ζ0;μ2Þþ ð1− zÞ
ð1−ζ0Þθðz− ζ0Þh0ðγ00;−z;γ0;−ζ0;μ2Þ

�
;

(30)

and after changing the name of the integration variable in the lhs, one gets

Z
∞

0

dγ00
1

½γ00 þ γ þ z2m2 þ ð1 − z2Þκ2 − iϵ�2
�
gðLdÞb ðγ00; z; κ2Þ − g2

2ð4πÞ2
Z

∞

0

dγ0
Z

1

−1
dζ0gðLdÞb ðγ0; ζ0; κ2Þ

×

� ð1þ zÞ
ð1þ ζ0Þ θðζ

0 − zÞh0ðγ00; z; γ0; ζ0; μ2Þ þ ð1 − zÞ
ð1 − ζ0Þ θðz − ζ0Þh0ðγ00;−z; γ0;−ζ0; μ2Þ

��

¼ 0. (31)

If the uniqueness theorem holds, then the ladder approximation of Eq. (24) reads

gðLdÞb ðγ00; z; κ2Þ ¼
Z

∞

0

dγ0
Z

1

−1
dζ0VðLdÞ

b ðγ00; z; γ0; ζ0; κ2Þ

¼ αm2

2π

Z
∞

0

dγ0
Z

1

−1
dζ0gðLdÞb ðγ0; ζ0; κ2Þ

×

� ð1þ zÞ
ð1þ ζ0Þ θðζ

0 − zÞh0ðγ00; z; γ0; ζ0; μ2Þ þ ð1 − zÞ
ð1 − ζ0Þ θðz − ζ0Þh0ðγ00;−z; γ0;−ζ0; μ2Þ

�
; (32)

where

α ¼ 1

16π

�
g
m

�
2

is an adimensional quantity, since in our model Lagrangian, Lint ¼ gΦ†
aΦaϕb, the coupling constant g has the dimension of

a mass (as it must be for a ϕ3 theory). It is worth noting that the kernel between the square brackets is symmetric with
respect to the transformation fz; ζ0g → f−z;−ζ0g. Moreover, gbðγ; z ¼ �1; κ2Þ ¼ 0, given the presence of the theta func-
tions and the vanishing value of

ð1� zÞ
ð1� ζ0Þ h

0ðγ00;�z; γ0;�ζ0; μ2Þ
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for z → ∓1, as discussed below Eq. (28) (see the second
reference in [9–11] for a discussion of the Wick-
Cutkosky model).
In Ref. [3], where a covariant framework was adopted for

performing the needed analytic integrations, the uniqueness
theorem for the Nakanishi weight function [12] was applied
directly to the BSE, obtaining an eigenequation like Eq. (32)
and a kernel quite involved. However, the kernel shown in
Appendix C of Ref. [3] is more general than the one shown
inEqs. (32) and (26), since a renormalized (at one loop)propa-
gator and a sum of exchanged scalars have been considered.
Fortunately, the presented numerical results were evaluated in
ladder approximation, asper thecalculations shown inRef. [6]
where the ladder approximation of Eq. (23)was adopted.This
motivated our investigation to only the ladder approximation
for the time being. Indeed, the actual evaluation of the ladder
kernel shown in Eq. (26) allows one to appreciate the well-
known attractive feature of the LF framework to make less
cumbersome the analytic integration, since the complexity
of the calculation profitably distributes among two variables:
kþ andk− (see,e.g.,Ref. [24] forasimplediscussionof thebox
diagram). Finally, it is important to emphasize that Eq. (32) is
aneigenequation,witheigenvalue1=α, once themassM of the
interacting system is assigned. Such a simple structure is a
direct consequence of the linear dependence upon α of the
kernel iK, in ladder approximation. Differently, Eq. (29) is
a generalized eigenequation (cf. Ref. [6]).

As to the γ dependence, we have already noted that for
physical reasons [see Eqs. (17) and (18)], gbðz; γ; κ2Þ must
decrease for large values of γ. Moreover, one can check in
ladder approximation that such a property is valid, since a
constant gðLdÞb ðz; γ; κ2Þ for γ → ∞ leads to a different
behavior for the lhs and rhs of Eq. (32). This can be seen
by taking into account that in Eq. (27) the difference
between the second term and the third one becomes van-
ishing for large γ00, and one remains with a 1=γ00 falloff on
the rhs, namely, the first term in Eq. (32), in contrast with
the assumed constant behavior of gðLdÞb ðz; γ00; κ2Þ.

IV. LF MOMENTUM DISTRIBUTIONS

It is attractive to perform numerical comparisons that in
perspective could be useful for an experimental investiga-
tion of actual interacting systems. In view of this, it is very
interesting to consider (see the next section for the actual
calculations) the LF distributions of the valence component
[cf. Eqs. (16) and (20)]. As shown below, those distribu-
tions can be evaluated through gbðz; γ; κ2Þ. Moreover, the
normalization of the valence component, once the BS
amplitude itself is properly normalized (see Appendix B
for a short review of this issue and Refs. [9–11,29] for
details), yields the probability to find the valence contribu-
tion in the Fock expansion of the interacting two-scalar state
(see, e.g., Refs. [26,30]), viz.,

Pval ¼
1

ð2πÞ3
Z

1

0

dξ
2ξð1 − ξÞ

Z
dk⊥ψ2

n¼2=pðξ; k⊥Þ

¼ 1

ð16πÞ2
Z

1

−1
dzð1 − z2Þ

Z
∞

0

dγ

�Z
∞

0

dγ0
gbðγ0; z; κ2Þ

½γ0 þ γ þ z2m2 þ ð1 − z2Þκ2�2
�
2

; (33)

where Eq. (16) has been inserted in the last step, ξ ¼ ð1 − zÞ=2 and dk⊥ ¼ dϕdγ=2. It should be reminded that Pval ≡ N2,
which is given in Eq. (15).
As is well known, one can define the probability distribution to find a constituent with LF longitudinal fraction

ξ ¼ pþ
i =P

þ in the valence state as follows:

ϕðξÞ ¼ 1

ð2πÞ3
1

2ξð1 − ξÞ
Z

dk⊥ψ2
n¼2=pðξ; k⊥Þ

¼ 2
ð1 − z2Þ
ð16πÞ2

Z
∞

0

dγ

�Z
∞

0

dγ0
gbðγ0; z; κ2Þ

½γ0 þ γ þ z2m2 þ ð1 − z2Þκ2�2
�
2

; (34)

with the obvious normalization
R
1
0 dξϕðξÞ ¼ Pval. Furthermore, one can consider the probability distribution in γ ¼ jk⊥j2,

i.e.,

PðγÞ ¼ 1

2ð2πÞ3
Z

1

0

dξ
2ξð1 − ξÞ

Z
2π

0

dφ ψ2
n¼2=pðξ; k⊥Þ

¼ 1

ð16πÞ2
Z

1

−1
dzð1 − z2Þ

�Z
∞

0

dγ0
gbðγ0; z; κ2Þ

½γ0 þ γ þ z2m2 þ ð1 − z2Þκ2�2
�
2

; (35)

with the normalization
R∞
0 dγPðγÞ ¼ Pval.
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Two final remarks are in order. First, let us remind that
for μ → 0 and n ¼ 2 in Eq. (3), the Nakanishi amplitude
factorizes as gbðγ0; z; κ2Þ → δðγ0Þfðz; κ2Þ (see, e.g.,
Ref. [30]), and, therefore, in the Wick-Cutkosky model,
one gets

ψWiC
n¼2=pðξ; k⊥Þ ∝

fðz; κ2Þ
½γ þ z2m2 þ ð1 − z2Þκ2�2 : (36)

Second, we would emphasize that the valence wave func-
tion behaves as expected (see Ref. [26]) for large values of
k2⊥ ¼ γ once we choose n ¼ 2. As a matter of fact, the
Nakanishi weight function drops out for increasing γ0,
and one has for γ → ∞,

ψn¼2=pðξ;k⊥Þ¼
ð1−z2Þ
4

ffiffiffi
2

p
Z

∞

0

dγ0
gbðγ0;z;κ2Þ

½γ0þγþz2m2þð1−z2Þκ2�2

→
CðzÞ
γ2

; (37)

with a γ tail independent of the mass of the exchanged
scalar.
In the next section, the numerical results of the LF dis-

tributions obtained in ladder approximation are presented.
We can anticipate that such LF distributions evaluated by
using the solutions of Eqs. (29)) and (32) for a given mass
of the exchanged meson and binding energy overlap,
though the numerical Nakanishi weight functions

gðLdÞb ðγ0; z; κ2Þ show few-percent differences for low values
of γ, as discussed in what follows.

V. NUMERICAL COMPARISONS

In order to implement the quantitative studies of the
Nakanishi weight function for the S-wave BS amplitude
of a two-scalar system with a massive scalar exchange,
we have adopted a proper basis. This basis allows us to
expand the nonsingular weight function by taking into

account the features of gðLdÞb ðγ; z; κ2Þ discussed in
Secs. II and III, namely, (i) the symmetry with respect to

z, (ii) the constraint gðLdÞb ðγ; z ¼ �1; κ2Þ ¼ 0; and (iii) the
falloff in γ. In particular, Gegenbauer polynomials with
proper indexes have been chosen for describing the z
dependence, while the Laguerre polynomials have been
adopted for the γ dependence. In short, we have expanded
the Nakanishi weight function as follows:

gðLdÞb ðγ; z; κ2Þ ¼
XNz

l¼0

XNg

j¼0

AljGlðzÞLjðγÞ; (38)

where (i) the functions GlðzÞ are given in terms of even

Gegenbauer polynomials Cð5=2Þ
2l ðzÞ by

GlðzÞ¼4ð1−z2ÞΓð5=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ5=2Þð2lÞ!

πΓð2lþ5Þ

s
Cð5=2Þ
2l ðzÞ; (39)

and (ii) the functions LjðγÞ are expressed in terms of the
Laguerre polynomials LjðaγÞ by

LjðγÞ ¼
ffiffiffi
a

p
LjðaγÞe−aγ=2: (40)

The following orthonormality conditions are fulfilled:Z
1

−1
dzGlðzÞGnðzÞ ¼ δln;Z

∞

0

dγLjðγÞLlðγÞ ¼ a
Z

∞

0

dγe−aγLjðaγÞLlðaγÞ ¼ δjl:

(41)

In order to speed up the convergence, in the actual calcu-
lations the parameter a ¼ 6.0 has been adopted, and the
variable γ has been rescaled according to γ → 2γ=a0 with
a0 ¼ 12. It is worth noting that the two parameters a and a0
control, loosely speaking, the range of relevance of the
Laguerre polynomials and the structure of the kernel,
respectively. Finally, the integration over the variable z
has been performed by using a Gauss-Legendre quadrature
rule, while the Gauss-Laguerre quadrature has been
adopted for the variable γ.

A. Eigenvalues and eigenvectors

We have first solved Eq. (29), i.e., the one proposed in
Ref. [6], but using our basis instead of the spline basis
adopted there. With the spline basis for both z and γ, some
instabilities appear, and in Ref. [6] a small parameter
was introduced to achieve stable results (see also below).
Our basis allows us to overcome such a problem, since
it contains the above-mentioned general features of
gðLdÞb ðγ; z ¼ �1; κ2Þ. This first step was necessary to gain
confidence in our basis through the comparison with
the results in Ref. [6] (see what follows). As a second step,
we evaluated the eigenvalues and eigenvectors of Eq. (33),
which was deduced by invoking the uniqueness theorem.
As for this equation, it should be pointed out that a
completely different numerical method was chosen in
Ref. [3]. In particular, it was applied an iterative procedure,
suggested by the structure of the ladder kernel obtained
in [3].
In the following tables, a detailed comparison betweenour

resultsand theonesobtained inRefs. [3,6] ispresented.Letus
remind that in Ref. [3], though the proposed ladder kernel
containsdressedpropagators andasumofexchangedmeson,
the numerical evaluations were performed without such
extras, and, therefore, their results can be directly compared
tooursand theones inRef. [6],withonly thecaveatofadiffer-
ent definition of the coupling constant α. As already pointed
out in Refs. [3,6], the kernel contains a highly nonlinear
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dependence upon themassM of the interacting system, but a
linear dependence upon the coupling constant α, given the
adopted ladder approximation. Therefore, it is customary
(i) first to choose avalue for the binding energy in the interval

0 ≤
B
m

¼ 2 −M
m

≤ 2;

and(ii) then to lookfor theminimalvalueof thecouplingcon-
stant that allows such a binding energy. A comment on the
range of the usually chosen interval is in order. As is well
known (see Ref. [31]), all the ϕ3 models do not show any

TABLE I. Values of α ¼ g2=ð16πm2Þ obtained by solving the
eigenequations (29) and (32) (i.e., the eigenequation with the
application of the uniqueness theorem). Results correspond to
μ=m ¼ 0.15, 0.50 varying the binding energies, B=m. The
second column contains the results obtained in Ref. [6] by
using the spline basis and Eq. (29); the third column shows
our results obtained from Eq. (29) by using our basis
[Eqs. (38)–(40)] with Nz ¼ 18, Ng ¼ 32, and a ¼ 6 in
Eq. (40); the fourth column contains our results obtained from
the eigenequation (32) and our basis.

μ=m ¼ 0.15

B=m α [6] α Eq. (29) α Eq. (32)
0.01 0.5716 0.5716 0.5716a

0.10 1.437 1.437 1.437
0.20 2.100 2.099 2.099
0.50 3.611 3.610 3.611
1.00 5.315 5.313 5.314

μ=m ¼ 0.50

B=m α [6] α Eq. (29) α Eq. (32)
0.01 1.440 1.440 1.440
0.10 2.498 2.498 2.498
0.20 3.251 3.251 3.251
0.50 4.901 4.901 4.901
1.00 6.712 6.711 6.711
aFor μ=m ¼ 0.15 and B=m ¼ 0.01, the stability of the
coupling constant (α < 1) is reached for Ng ≥ 46.

TABLE II. Values of α ¼ g2=ð16πm2Þ obtained by solving the
eigenequations (32) (i.e., with the application of the uniqueness
theorem) and (29). Results correspond to μ=m ¼ 0.50 varying the
binding energies, B=m. The second column shows the values
obtained in Ref. [3], where the uniqueness theorem was
exploited and an iterative method was adopted; the third
column corresponds to the solution of Eq. (32) by using our
basis [cf. Eqs. (38)–(40)]; the fourth column contains our
results from Eq. (29).

μ=m ¼ 0.50

B=m α[3] α Eq. (32) α Eq. (29)
0.002 1.211 1.216 1.216
0.02 1.624 1.623 1.623
0.20 3.252 3.251 3.251
0.40 4.416 4.415 4.416
0.80 6.096 6.094 6.094
1.20 7.206 7.204 7.204
1.60 7.850 7.849 7.849
2.00 8.062 8.061 8.061
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FIG. 1. The Nakanishi weight function gðLdÞb ðγ; z; κ2Þ for
μ=m ¼ 0.5 and B=m ¼ 0.2, 0.5, 1.0 (from the top) vs γ=m2

and two values of z. Thick lines refer to z ¼ 0 and thin lines
to z ¼ 0.4, as indicated by the inset. Solid lines: results from
Eq. (32). Dotted lines: results from Eq. (29).
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ground state; nonetheless, they are widely adopted for
illustrative purposes and for gaining insights into the effec-
tiveness of theoretical tools.Here,we also adhere to this gen-
eral attitude (seeRef. [32] for somedetailsonhowand towhat
extent it is possible to reconcile the general features of theϕ3

modelsand theactualcalculations).After introducingabasis,
it should be noticed that in the case of Eq. (29), one has a
generalized eigenvalue problem (cf. Ref. [6]) that in a sym-
bolic form reads

1

α
BðMÞgðLdÞ ¼ AðLdÞðMÞgðLdÞ; (42)

while for Eq. (32), one has a genuine eigenvalue problem,
viz.,

1

α
g ¼ DðLdÞðMÞgðLdÞ: (43)

The possibility to reduce the first problem to the second one
relies on the existence of the inverse of the integral operator
BðMÞ and the numerical feasibility of such inversion with
enough accuracy. In particular, in Ref. [6], where the spline
basiswas adopted, a small parameterwas added to thematrix
BðMÞ in order to achieve a good stability. We have investi-
gated if adopting our basis, which includes the expected
falloff of the weight function for large values of γ, one has
to similarly introduce a small parameter. Fortunately, with
our basis, the small quantity to be added to the diagonal terms
of AðLdÞðMÞ is ϵ ¼ 10−9 [the largest number of Gaussian
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FIG. 2. The Nakanishi weight function gðLdÞb ðγ; z; κ2Þ for μ=m ¼ 0.5 and B=m ¼ 0.2, 0.5, 1.0 (from the top) vs z and four values of
γ=m2. Thick lines refer to γ ¼ 0 and γ ¼ 0.01m2, while thin lines to γ ¼ 0.8m2 and γ ¼ 1m2, as indicated by the inset. Solid lines:
results from Eq. (32). Dotted lines: results from Eq. (29).
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points was 80 for each variable in gðLdÞ]. As for Eq. (32), one
has been able to get rid of the numerical inversion of the
matrix, since,defacto, ithasbeenmathematicallyperformed.
Finally, it is important noticing that for both equations, the
involvedmatrices are real but not symmetric, and, therefore,
pairs of complex eigenvalues can appear.
In order to achieve a very good convergence for both

eigenvalues and eigenvectors [in particular, for Eq. (32)],
the numerical studies with the basis in Eqs. (38)–(40)
has been extended up to Nz ¼ 18 and Ng ¼ 32, for all
the values of B=m, except for B=m ¼ 0.01 where we
extend Ng up to 48. Indeed, for B=m ≥ 0.1 a nice stability
of the eigenvalues can be reached already for Nz ¼ 8 and
Ng > 24. In general, the stability of the eigenvalues settles
well before that the convergence of the eigenvectors.
In Table I, the results for the coupling constant α corre-

sponding to Eqs. (29) and (32) for μ=m ¼ 0.15, 0.50 and
a set of binding energies B=m are shown. In particular, in

the second column, the results obtained in Ref. [6] by using
the spline basis are reported, while our results corresponding
to both Eqs. (29) and (32) are presented in the third column
and the fourthone, respectively. It is important to note that for
B=m ¼ 0.01 and μ=m ¼ 0.15, the stability of the eigenvalue
obtained through Eq. (32) is reached with Ng ≥ 46, when
a ¼ 6 is chosen, while Ng ¼ 28 is enough when a ¼ 12
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FIG. 3. The longitudinal LF distribution ϕðξÞ for the
valence component Eq. (34) vs the longitudinal-momentum
fraction ξ for μ=m ¼ 0.05, 0.15, 0.50. Dash-double-dotted
line: B=m ¼ 0.20. Dotted line: B=m ¼ 0.50. Solid line:
B=m ¼ 1.0. Dashed line: B=m ¼ 2.0. Recall that

R
1
0 dξϕðξÞ ¼

Pval (cf. Table III).

TABLE III. Values of Pval Eq. (33) evaluated by using the
weight function gðLdÞb ðγ; z; κ2Þ corresponding to Eq. (32) (i.e.,
with the application of the uniqueness theorem) are shown for
three values of μ=m and varying the binding energy, B=m.
Notice that for B=m ¼ 0.001, the values Nz ¼ 16, Ng ¼ 48,
and a ¼ 12 have been adopted in Eqs. (38) and (40) for
obtaining a better convergence.

μ=m ¼ 0.05

B/m α Pval
0.001 0.1685 0.94
0.01 0.3521 0.89
0.10 1.191 0.75
0.20 1.850 0.72
0.50 3.358 0.68
1.00 5.056 0.66
2.00 6.336 0.65

μ=m ¼ 0.15

B=m α Pval
0.001 0.3667 0.97
0.01 0.5716 0.94
0.10 1.437 0.80
0.20 2.099 0.75
0.50 3.611 0.70
1.00 5.314 0.67
2.00 6.598 0.66

μ=m ¼ 0.50

B=m α Pval
0.001 1.167 0.98
0.01 1.440 0.96
0.10 2.498 0.87
0.20 3.251 0.83
0.50 4.900 0.77
1.00 6.711 0.74
2.00 8.061 0.72
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is adopted (with thisvalue fora, theconvergenceof theeigen-
vectors is not satisfactory for Ng ¼ 28).
Table II shows the comparison with the results from

Ref. [3]. It should be pointed out that in Ref. [3], only
the value μ=m ¼ 0.50 was considered, and the coupling
constant contained an extra factor π with respect to the def-
inition adopted in the present paper and in Ref. [6]. It is

important to remind that the eigenvalues shown in
Ref. [3] compared very favorably with the ones obtained
in Ref. [33], where the BS equation in ladder approximation
was solved in Euclidean space. Moreover, one can find in
Refs. [34,35] more evaluations both within the LF
Hamiltonian dynamics and in Euclidean space, which appear
in nice agreement with our calculations.
Finally, it should be pointed that all the digits of our

results presented in the tables are stable, and the numerical
uncertainties affect only the digit beyond the ones shown, at
the level of a few units.
In Figs. 1 and 2, the comparison between the weight

functions obtained from Eqs. (29)) and (31) is shown for
μ=m ¼ 0.50 and B=m ¼ 0.2, 0.5, 1.0. Few-percent
differences appear for small values of γ and are bigger
for small values of the binding energy. In this case,
the characteristic momentum associated with the weak-
binding energy is much smaller than the mass scale of
the system, and, therefore, to appropriately describe the
Nakanishi weight function, one should use a larger basis
which accurately spans both the small and large momentum
regions. This demands more numerical efforts that
can be postponed, since our present aim is to validate the
Nakanishi approach over the largest range of dynamical
regimes, which can be covered by the basis we have chosen
(see, e.g., Table I and B=m ¼ 0.01 and μ=m ¼ 0.15).
Notably, the above-mentioned differences do not have
any sizable effect on the LF distributions (see the next
subsection).
As a further check, we evaluated the solution of Eq. (29)

corresponding to μ=m ¼ 0.50 and B=m ¼ 1.0, by introduc-
ing a small parameter as in Ref. [6]. In particular, we
adopted ϵ ¼ 10−4 for comparing with the weight function
presented in Figs. 2 and 3 in Ref. [6], and we obtained the
same results. It is worth noting that also by adopting the
small parameter ϵ ¼ 10−4, we did not find any sizable
effects on the LF distributions.

B. Valence probability and LF distributions

After determining the expansion coefficients of the
Nakanishi weight function, as given in Eq. (38), and
imposing the normalization condition on the BS ampli-
tude, Eq. (B14)), one can calculate the valence compo-
nent of the interacting system, Eq. (16). Then, very
interesting (in particular, from the phenomenological
point of view) quantities can be evaluated. First of
all, the valence probability Eq. (33) can be obtained.
The results are shown in Table III for μ=m ¼ 0.05,
μ=m ¼ 0.15, and μ=m ¼ 0.5. Several values of B=m have
been chosen for covering the interval 0 < B=m ≤ 2.
It should be recalled that the asymptotic value Pval ¼ 1
reached for B=m → 0 is more and more closely
approached for smaller and smaller values of B=m (or
equivalently smaller values of α) when μ=m decreases.
Since in Table III there are also the results for
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FIG. 4. The transverse LF distribution PðγÞ for the valence
component Eq. (35) vs the adimensional variable γ=m2,
for μ=m ¼ 0.05, 0.15, 0.50. Dash-double-dotted line:
B=m ¼ 0.20. Dotted line: B=m ¼ 0.50. Solid line: B=m ¼ 1.0.
Dashed line: B=m ¼ 2.0. Recall that γ ¼ k2⊥ and

R
∞
0 dγPðγÞ ¼

Pval (cf. Table III).
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μ=m ¼ 0.05, a by-product of these calculations is the
following interesting remark. For B=m ¼ 2 and decreas-
ing μ=m, the values of α show a decreasing behavior
toward α ¼ 2π, namely, the value of α obtained in the
Wick-Cutkosky case, i.e., μ=m ¼ 0 (cf. Ref. [30]).
Correspondingly, the valence probability approaches
the Wick-Cutkosky value Pval ∼ 0.64 [30].
In Figs. 3 and 4, the valence LF distributions given in

Eqs. (34) and (35) are shown for μ=m ¼ 0.05, 0.15, 0.5,
and B=m ¼ 0.2, 0.5, 1.0, 2.0. The curves correspond to
the eigenvectors of Eq. (32), since the ones obtained from
Eq. (29) completely overlap with the previous ones, though
the weight functions have differences at low values of γ.
It should be pointed out that the valence wave function,
the main ingredient for calculating the LF distributions,
is obtained from the weight function by applying the inte-
gral operator symbolically indicated by BðMÞ in Eq. (42).
This eliminates the above-mentioned instabilities that are
possibly produced by the inversion of BðMÞ.

VI. CONCLUSION

We have quantitatively investigated the ladder Bethe-
Salpeter equation in Minkowski space within the perturba-
tion theory integral representation of the multileg transition
amplitudes proposed by Nakanishi in the 1960s [9,12].
The formal analysis leading to the determination of the
Nakanishi weight function takes a great benefit from the
light-front framework, as shown in Ref. [6] for the bound
states and in Ref. [18] for the scattering states. In particular,
if one exploits both (i) the equation obtained from BSE
for the valence component of the Fock expansion of the
interacting-system state and (ii) the Nakanishi theorem
[12] on the uniqueness of the nonsingular weight function
related to the vertex function in PTIR, one can obtain

Eq. (32). This equation and Eq. (29) allow the numerical
evaluation of the weight function corresponding to a given
value of the binding energy of the interacting system and
the exchanged-boson mass. We have shown that the eigen-
values and the eigenvectors obtained by solving Eqs. (32)
and (29) can be substantially taken as the same (the
eigenvectors differ at the level of few-percent for γ → 0).
In particular, if one considers only the phenomenological
observables, i.e., eigenvalues and LF distributions, the out-
comes of both equations can be even taken as equal. This
gives us great confidence in the validity of the uniqueness
theorem also in a nonperturbative regime.
An important feature of our analysis is represented by the

basis we have chosen for expanding the weight function.
Such a basis is able to include all the general properties
of the weight function, allowing a good control on the
instabilities, that, in principle, could plague the numerical
solutions of the above equations.
In perspective, the numerical analysis we have performed

appears very encouraging, and it makes compelling the next
steps represented by the evaluation of observables related to
the scattering states, like the scattering length and the inclu-
sion of the crossed-boxdiagrams, as already done inRef. [7],
but exploiting the Nakanishi uniqueness theorem.

APPENDIX A: A NEW FORM FOR THE LF
KERNEL IN LADDER APPROXIMATION

This appendix contains the details for obtaining the
expression of the kernel in Eq. (26), VðLdÞ

b , which is suitable
for applying the uniqueness theorem for the Nakanishi
weight function.
In a reference frame where p⊥ ¼ 0 and p� ¼ M, the

kernel in ladder approximation is (cf. Ref. [18])

VðLdÞ
b ðγ; z; γ0; z0Þ ¼ −g2pþ

Z
d4

ð2πÞ4
1

½k002 þ p · k00z0 − γ0 − κ2 þ iϵ�3

×
Z

∞

−∞
dk−
2π

1

½ðp
2
þ kÞ2 −m2 þ iϵ�

1

½ðp
2
− kÞ2 −m2 þ iϵ�

1

ðk − k00Þ2 − μ2 þ iϵ

¼ g2

2ð4πÞ2
1

½γ þ ð1 − z2Þκ2 þ z2m2 − iϵ�
Z

1

0

dvv2F ðv; γ; z; γ0; ζ0Þ; (A1)

where

F ðv; γ; z; γ0; ζ; ζ0Þ ¼ ð1þ zÞ2
X2ðv; ζ; ζ0Þ

θðζ0 − zÞ
½γ þ z2m2 þ κ2ð1 − z2Þ þ Γðv; z; ζ0; γ0Þ − iϵ�2

þ ð1 − zÞ2
X2ðv; ζ;−ζ0Þ

θðz − ζ0Þ
½γ þ z2m2 þ κ2ð1 − z2Þ þ Γðv;−z;−ζ0; γ0Þ − iϵ�2 ; (A2)

with
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Xðv; ζ; ζ0Þ ¼ vð1 − vÞð1þ ζ0Þ

Γðv; z; ζ0; γ0Þ ¼ ð1þ zÞ
ð1þ ζ0Þ

�
v

ð1 − vÞ
�
ζ02

M2

4
þ κ2ð1þ ζ2Þ þ γ0

�
þ μ2

v
þ γ0

�
: (A3)

The previous expression coincides with the one in Ref. [6].
For combining the denominators in the last line of Eq. (A1) and in Eq. (A2) the standard Feynman trick can be used, viz.,

1

BA2
¼ lim

λ→0þ

1

λ

�
1

BA
− 1

BðAþ λÞ
�
¼ lim

λ→0þ

1

λ

�Z
1

0

dξ
1

½B − ξðB − AÞ�2 −
Z

1

0

dξ
1

½B − ξðB − AÞ þ ξλ�2
�
; (A4)

with

A ¼ γ þ z2m2 þ κ2ð1 − z2Þ þ Γðv;�z;�ζ0; γ0Þ − iϵ;

B ¼ γ þ z2m2 þ κ2ð1 − z2Þ − iϵ; (A5)

obtaining the following expression

VðLdÞ
b ðγ; z; γ0; ζ0Þ ¼ − g2

2ð4πÞ2
� ð1þ zÞ
ð1þ ζ0Þ θðζ

0 − zÞH0ðγ; z; γ0; ζ0; μ2Þ þ ð1 − zÞ
ð1 − ζ0Þ θðz − ζ0ÞH0ðγ;−z; γ0;−ζ0; μ2Þ

�
; (A6)

where

H0ðγ; z; γ0; ζ0μ2Þ ¼ lim
λ→0þ

1

λ
½Hðγ; z; γ0; ζ0; μ2; λÞ −Hðγ; z; γ0; ζ0; μ2; 0Þ�; (A7)

with

Hðγ; z; γ0; ζ0; μ2; λÞ ¼ ð1þ zÞ
ð1þ ζ0Þ

Z
1

0

dv
ð1 − vÞ2

Z
1

0

dξ
Z

∞

−∞
dγ00

δ½γ00 − ξΓðv; z; ζ0; γ0Þ − ξλ�
½γ þ γ00 þ z2m2 þ κ2ð1 − z2Þ − iϵ�2 : (A8)

The positivity of γ0 [cf. Eq. (22)] entails the positivity of Γðv; z; ζ0; γ0Þ and, eventually, of γ00. Given the linear dependence
upon ξ in the delta function, one can productively perform first the integration on ξ, obtaining

Hðγ; z; γ0; ζ0; μ2; λÞ ¼
Z

∞

−∞
dγ00

θðγ00Þhðγ00; z; γ0; ζ0; μ2; λÞ
½γ þ γ00 þ z2m2 þ κ2ð1 − z2Þ − iϵ�2 ; (A9)

where

hðγ00; z; γ0; ζ0; μ2; λÞ ¼ ð1þ zÞ
ð1þ ζ0Þ

Z
1

0

dv
ð1 − vÞ2

Z
1

0

dξδ½γ00 − ξΓðv; z; ζ0; γ0Þ − ξλ�

¼ ð1þ zÞ
ð1þ ζ0Þ

Z
1

0

dv
ð1 − vÞ2

θðΓðv; z; ζ0; γ0Þ − γ00 þ λÞ
Γðv; z; ζ0; γ0Þ þ λ

; (A10)

since ξ must belong to the interval [0,1]. The derivative of hðγ00; z; γ0; ζ0; μ2; λÞ implied by Eq. (A7) is given by
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h0ðγ00; z; γ0; ζ0; μ2Þ ¼ ð1þ zÞ
ð1þ ζ0Þ

1

γ00

Z
1

0

dv
ð1 − vÞ2 δðΓðv; z; ζ

0; γ0Þ − γ00Þ − ð1þ zÞ
ð1þ ζ0Þ

Z
1

0

dv
ð1 − vÞ2

θðΓðv; z; ζ0; γ0Þ − γ00Þ
½Γðv; z; ζ0; γ0Þ�2

¼ ð1þ zÞ
ð1þ ζ0Þ

1

γ00

Z
∞

0

dy δðΓðy; z; ζ0; γ0Þ − γ00Þ − ð1þ zÞ
ð1þ ζ0Þ

Z
∞

0

dy
θðΓðy; z; ζ0; γ0Þ − γ00Þ

½Γðy; z; ζ0; γ0Þ�2

¼ 1

γ00

Z
∞

0

dyδ

�
1

y
ðy2Abðζ0; γ0; κ2Þ þ yBbðz; ζ0; γ0; γ00; μ2Þ þ μ2Þ

�

−
ð1þ ζ0Þ
ð1þ zÞ

Z
∞

0

dy y2
θ½y2Abðζ0; γ0; κ2Þ þ yBbðz; ζ0; γ0; γ00; μ2Þ þ μ2�

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2 ; (A11)

where the transformation v → y=ð1þ yÞ has been performed. In Eq. (A11), the function Γðy; z; ζ0; γ0Þ is given by

Γðy; z; ζ0; γ0Þ ¼ ð1þ zÞ
ð1þ ζ0Þ

�
y

�
ζ02

M2

4
þ κ2 þ γ0

�
þ 1þ y

y
μ2 þ γ0

�
¼ ð1þ zÞ

ð1þ ζ0Þ
1

y
fy2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2g (A12)

and

Abðζ0; γ0; κ2Þ ¼ ζ02
M2

4
þ κ2 þ γ0 ≥ 0

Bbðz; ζ0; γ0; γ00; μ2Þ ¼ μ2 þ γ0 − γ00
ð1þ ζ0Þ
ð1þ zÞ : (A13)

The two contributions to h0ðγ00; z; γ0; ζ0; μ2Þ will be discussed separately in what follows. The first term is

I1 ¼
1

γ00

Z
∞

0

dy δ

�
1

y
ðy2Abðζ0; γ0; κ2Þ þ yBbðz; ζ0; γ0; γ00; μ2Þ þ μ2Þ

�

¼ 1

γ00

Z
∞

0

dy
�
θðyþÞyþ

δðy − yþÞ
Abðζ0; γ0; κ2Þjyþ − y−j

þ θðy−Þy−
δðy − y−Þ

Abðζ0; γ0; κ2Þjyþ − y−j
�
θðΔ2ðz; ζ0; γ0; γ00; κ2; μ2ÞÞ; (A14)

where yi are the two solutions of

y2Abðζ0; γ0; κ2Þ þ yBbðz; ζ0; γ0; γ00; μ2Þ þ μ2 ¼ 0; (A15)

namely,

y� ¼ 1

2Abðζ0; γ0; κ2Þ
½−Bbðz; ζ0; γ0; γ00; μ2Þ � Δðz; ζ0; γ0; γ00; κ2; μ2Þ�; (A16)

with

Δ2ðz; ζ0; γ0; γ00; κ2; μ2Þ ¼ B2
bðz; ζ0; γ0; γ00; μ2Þ − 4μ2Abðζ0; γ0; κ2Þ ≥ 0: (A17)

Notice that

yþy− ¼ μ2

Abðζ0; γ0; κ2Þ
: (A18)

This means that the two solutions have the same sign. Only for positive solutions, I1 is not vanishing.
From the requested positivity of the two solutions, one deduces that

0 ≥ Bbðz; ζ0; γ0; γ00; μ2Þ ¼ μ2 þ γ0 − γ00
ð1þ ζ0Þ
ð1þ zÞ : (A19)

Therefore, the two constraints θðyþÞ and θðy−Þ, once y� exist, are simultaneously fulfilled if
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θ

�
γ00

ð1þ ζ0Þ
ð1þ zÞ − γ0 − μ2

�
: (A20)

In conclusion, Eq. (A14) becomes

I1 ¼
1

γ00
θ

�
γ00

ð1þ ζ0Þ
ð1þ zÞ − γ0 − μ2

�
yþ þ y−

Abðζ0; γ0; κ2Þjyþ − y−j
θðΔ2ðz; ζ0; γ0; γ00; κ2; μ2ÞÞ

¼ − Bbðz; ζ0; γ0; γ00; μ2Þ
Abðζ0; γ0; κ2ÞΔðz; ζ0; γ0; γ00; κ2; μ2Þ

1

γ00
θ

�
γ00

ð1þ ζ0Þ
ð1þ zÞ − γ0 − μ2

�
θðΔ2ðz; ζ0; γ0; γ00; κ2; μ2ÞÞ: (A21)

The second term in Eq. (A11), i.e.,

I2 ¼ − ð1þ ζ0Þ
ð1þ zÞ

Z
∞

0

dy y2
θ½y2Abðζ0; γ0; κ2Þ þ yBbðz; ζ0; γ0; γ00; μ2Þ þ μ2�

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2 (A22)

can be analyzed as follows. One has to discuss two cases: (i) if Bbðz; ζ0; γ0; γ00; μ2Þ ≥ 0, the argument of the theta function is
positive for any y; (ii) if Bbðz; ζ0; γ0; γ00; μ2Þ < 0, one has to check the sign of Δ2ðz; ζ0; γ0; γ00; κ2; μ2Þ. In conclusion, one can
single out the following three contributions:

IðaÞ2 ¼ − ð1þ ζ0Þ
ð1þ zÞ θðBbðz; ζ0; γ0; γ00; μ2ÞÞ

Z
∞

0

dy
y2

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2 ;

IðbÞ2 ¼ − ð1þ ζ0Þ
ð1þ zÞ θð−Bbðz; ζ0; γ0; γ00; μ2ÞÞθðΔ2ðz; ζ0; γ0; γ00; κ2; μ2ÞÞ

Z
∞

0

dy
y2½θðy − yþÞ þ θðy− − yÞ�

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2

¼ − ð1þ ζ0Þ
ð1þ zÞ θð−Bbðz; ζ0; γ0; γ00; μ2ÞÞθðΔ2ðz; ζ0; γ0; γ00; κ2; μ2ÞÞ

Z
∞

0

dy
y2½1 − θðyþ − yÞ þ θðy− − yÞ�

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2 ;

IðcÞ2 ¼ − ð1þ ζ0Þ
ð1þ zÞ θð−Bbðz; ζ0; γ0; γ00; μ2ÞÞθð−Δ2ðz; ζ0; γ0; γ00; κ2; μ2ÞÞ

Z
∞

0

dy
y2

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2 : (A23)

Therefore,

I2 ¼ IðaÞ2 þ IðbÞ2 þ IðcÞ2 ¼ − ð1þ ζ0Þ
ð1þ zÞ

Z
∞

0

dy
y2

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2

þ ð1þ ζ0Þ
ð1þ zÞ θ

�
γ00

ð1þ ζ0Þ
ð1þ zÞ − γ0 − μ2

�
θðΔ2ðz; ζ0; γ0; γ00; κ2; μ2ÞÞ

Z
yþ

y−
dy

y2

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2 : (A24)

Collecting the above results, Eq. (A11) can be cast in the following form:

h0ðγ00; z; γ0; ζ0; μ2Þ ¼ θ

�
γ00

ð1þ ζ0Þ
ð1þ zÞ − γ0 − μ2

�
θðΔ2ðz; ζ0; γ0; γ00; κ2; μ2ÞÞ

�
− Bbðz; ζ0; γ0; γ00; μ2Þ
γ00Abðζ0; γ0; κ2ÞΔðz; ζ0; γ0; γ00; κ2; μ2Þ

þ ð1þ ζ0Þ
ð1þ zÞ

Z
yþ

y−
dy

y2

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2
�

−
ð1þ ζ0Þ
ð1þ zÞ

Z
∞

0

dy
y2

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2 : (A25)

The two theta functions can be simplified taking the profit of their interplay.
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The explicit form for Δ2 is

Δ2ð�z;�ζ0; γ0; γ00; κ2; μ2Þ ¼
�
γ00

ð1� ζ0Þ
ð1� zÞ − γ0 − μ2

�
2 − 4μ2

�
ζ02

M2

4
þ κ2 þ γ0

�

¼
"
γ00

ð1� ζ0Þ
ð1� zÞ − γ0 − μ2 − 2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ02

M2

4
þ κ2 þ γ0

r #

×

"
γ00

ð1� ζ0Þ
ð1� zÞ − γ0 − μ2 þ 2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ02

M2

4
þ κ2 þ γ0

r #
: (A26)

In order to have Δ2ð�z;�ζ0; γ0; γ00; κ2; μ2Þ ≥ 0, given the presence of the first theta function in Eq. (A25), it is enough that

γ00
ð1� ζ0Þ
ð1� zÞ − γ0 − μ2 ≥ 2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ02

M2

4
þ κ2 þ γ0

r
≥ 0: (A27)

Summarizing the above discussion, one can write the kernel as follows:

h0ðγ00; z; γ0; ζ0; μ2Þ ¼ θ

�
γ00

ð1þ ζ0Þ
ð1þ zÞ − γ0 − μ2 − 2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ02

M2

4
þ κ2 þ γ0

r �

×

�
− Bbðz; ζ0; γ0; γ00; μ2Þ
Abðζ0; γ0; κ2ÞΔðz; ζ0; γ0; γ00; κ2; μ2Þ

1

γ00
þ ð1þ ζ0Þ

ð1þ zÞ
Z

yþ

y−
dy

y2

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2
�

−
ð1þ ζ0Þ
ð1þ zÞ

Z
∞

0

dy
y2

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2�2 : (A28)

APPENDIX B: THE NORMALIZATION OF THE BS AMPLITUDE

In this appendix, the normalization of the BS amplitude in ladder approximation for a two-scalar system in S wave is
presented. The reader can find more details in Refs. [9,11,29,36].
In general, but disregarding self-energy contributions, the BS amplitude is normalized through the following constraint:

Z
d4k
ð2πÞ4

Z
d4k0

ð2πÞ4 Φ̄bðk0; pÞ
� ∂
∂pμ ½G−1

0 ð12Þðk; pÞð2πÞ4δ4ðk − k0Þ − iKðk; k0; pÞ�
�����

p2¼M2

Φbðk; pÞ ¼ i2pμ; (B1)

with

G0ð12Þðk; pÞ ¼ G0

�
p
2
þ k

�
G0

�
p
2
− k

�
¼ i

ðp
2
þ kÞ2 −m2 þ iϵ

i
ðp
2
− kÞ2 −m2 þ iϵ

: (B2)

In ladder approximation, fortunately, the kernel iKðk; k0; pÞ becomes independent of p, viz.,

iKðLdÞðk; k0; pÞ ¼ ið−iÞ2
ðk − k0Þ2 − μ2 þ iϵ

: (B3)

Therefore, the ladder BS amplitude is normalized through

ð−iÞ
Z

d4k
ð2πÞ4 Φ̄

ðLdÞ
b ðk; pÞ

��
pμ

2
þ kμ

�
G−1

0

�
p
2
− k

�
þG−1

0

�
p
2
þ k

��
pμ

2
− kμ

��
ΦðLdÞ

b ðk; pÞ ¼ i2pμ: (B4)
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Since ΦðLdÞ
b ðk; pÞ is symmetric under the exchange 1 → 2, and recalling that kμ changes sign under such a transformation,

one can rewrite Eq. (B4) as follows:

−
Z

d4k
ð2πÞ4 Φ̄

ðLdÞ
b ðk; pÞðM2 þ 2k · pÞ

��
p
2
− k

�
2 −m2

�
ΦðLdÞ

b ðk; pÞ

¼
Z

d4k
ð2πÞ4 Φ̄

ðLdÞ
b ðk; pÞ½M2ðκ2 − k2Þ þ 2ðk · pÞ2�ΦðLdÞ

b ðk; pÞ ¼ i2M2; (B5)

where κ2 ¼ m2 −M2=4 and the odd contributions in kμ have been eliminated given the symmetry of the BS amplitude. By
introducing the expression of ΦðLdÞ

b ðk; pÞ in terms of the Nakanishi weight function, Eq. (3), with n ¼ 1 (as explained in the
main text), one gets

Z
d4k
ð2πÞ4 ½M

2ðκ2 − k2Þ þ 2ðk · pÞ2�
Z

1

−1
dz0

Z
∞

0

dγ0 gðLdÞb ðγ0; z0; κ2Þ
½k2 þ p · kz0 − γ0 − κ2 þ iϵ0�3

Z
1

−1
dz

Z
∞

0

dγ
gðLdÞb ðγ; z; κ2Þ

½k2 þ p · kz− γ − κ2 þ iϵ�3

¼
Z

1

−1
dz0

Z
∞

0

dγ0gðLdÞb ðγ0; z0; κ2Þ
Z

1

−1
dz

Z
∞

0

dγgðLdÞb ðγ; z; κ2ÞF ðγ0; z0; γ; zÞ ¼ i2M2: (B6)

It is worth noting that (i) the S-wave weight function is real, and (ii) the boundary condition iϵ has to be chosen in
Φ̄ðLdÞ

b ðk; pÞ for ensuring the correct propagation in time (see, e.g., Refs. [29,36]).
In order to evaluate F ðγ0; z0; γ; zÞ, let us apply the Feynman trick as follows (cf. Refs. [30,37]):

1

½k2 þ p · kz0 − γ0 − κ2 þ iϵ0�3
1

½k2 þ p · kz − γ − κ2 þ iϵ�3

¼
Z

1

0

dv
30v2ð1 − vÞ2

½vðk2 þ p · kz0 − γ0 − κ2 þ iϵ0Þ þ ð1 − vÞðk2 þ p · kz − γ − κ2 þ iϵÞ�6 ¼

¼
Z

1

0

dv
30v2ð1 − vÞ2

½k2 − κ2 þ p · kðvz0 þ ð1 − vÞzÞ − γ0v − γð1 − vÞ þ iη�6 ¼

¼
Z

1

0

dv
30v2ð1 − vÞ2

½q2 − κ2 − p2

4
λ2 − γ0v − γð1 − vÞ þ iη�6

; (B7)

reduces to

F ðγ0; z0; γ; zÞ ¼
Z

d4k
ð2πÞ4

½M2ðκ2 − k2Þ þ 2ðk · pÞ2�
½k2 þ p · kz0 − γ0 − κ2 þ iϵ0�3

1

½k2 þ p · kz − γ − κ2 þ iϵ�3

¼
Z

d4q
ð2πÞ4

Z
1

0

dv
½M2ðκ2 − q2 þ M2

4
λ2Þ þ 2ðp · qÞ2 −M2λðp · qÞ�30v2ð1 − vÞ2

½q2 − κ2 − M2

4
λ2 − γ0v − γð1 − vÞ þ iη�6

¼
Z

d4q
ð2πÞ4

Z
1

0

dv
½M2ðκ2 − q2 þ M2

4
λ2Þ þ 2ðp · qÞ2�30v2ð1 − vÞ2

½q2 − κ2 − M2

4
λ2 − γ0v − γð1 − vÞ þ iη�6 ; (B8)

where the term (p⋅q) yields a vanishing contribution after integrating over d4q.
Then, by choosing a reference framewhere pμ ≡ fM; 0g for the sake of simplicity, and performing aWick rotation, given

the positions of the poles, the integration on d4q can be evaluated in a Euclidean 4D space, i.e., d4q → id4qE. One obtains
the following result (cf. Refs. [30,37]):

QUANTITATIVE STUDIES OF THE HOMOGENEOUS … PHYSICAL REVIEW D 89, 016010 (2014)

016010-19



F ðγ0;z0;γ;zÞ¼
Z

d4q
ð2πÞ4

Z
1

0

dv
½M2ðκ2−q2þM2

4
λ2Þþ2ðp ·qÞ2�30v2ð1−vÞ2

½q2−κ2−M2

4
λ2−γ0v−γð1−vÞþ iη�6

¼ i
Z

d4qE
ð2πÞ4

Z
1

0

dv
½M2ðκ2þq2EþM2

4
λ2Þ−2M2ðq0EÞ2�30v2ð1−vÞ2

½q2Eþκ2þM2

4
λ2þγ0vþγð1−vÞ− iη�6

¼ iM2

ð2πÞ4
Z

1

0

dv30v2ð1−vÞ2
Z

dρρ3
Z

2π

0

dφ
Z

1

−1
dcosðθ1Þ

Z
π

0

sin2ðθ2Þdθ2
½κ2þρ2þM2

4
λ2−2ρ2cos2ðθ2Þ�

½ρ2þκ2þM2

4
λ2þγ0vþγð1−vÞ− iη�6 ;

(B9)

with

d4qE → ρ3dρdϕ sinðθ1Þdθ1 sin2ðθ2Þdθ2:
Finally, by using

Z
2π

0

dϕ
Z

1

−1
d cosðθ1Þ

Z
π

0

sin2 ðθ2Þdθ2
Z

∞

0

dρ
ρ3

ðρ2 þ AÞ6 ¼ 2π2
1

2

Z
∞

0

dy
y

ðyþ AÞ6 ¼
π2

20A4
(B10)

and

Z
2π

0

dϕ
Z

1

−1
d cosðθ1Þ

Z
π

0

dθ2 sin2ðθ2Þ½1 − 2 cos2ðθ2Þ�
Z

∞

0

dρ
ρ5

ðρ2 þ AÞ6 ¼ π2
1

2

Z
∞

0

dy
y2

ðyþ AÞ6 ¼
π2

60A3
; (B11)

one gets

F ðγ0; z0; γ; zÞ ¼ iM2π2

2ð2πÞ4
Z

1

0

dv v2ð1 − vÞ2 ½3ðκ
2 þ M2

4
λ2Þ þ ðκ2 þ M2

4
λ2 þ γ0vþ γð1 − vÞÞ�

½κ2 þ M2

4
λ2 þ γ0vþ γð1 − vÞ − iη�4 : (B12)

Recollecting the above results, the normalization condition Eq. (B6) readsZ
1

−1
dz0

Z
∞

0

dγ0gðLdÞb ðγ0; z0; κ2Þ
Z

1

−1
dz

Z
∞

0

dγ gðLdÞb ðγ; z; κ2ÞF ðγ0; z0; γ; zÞ

¼ iM2

2ð4πÞ2
Z

1

−1
dz0

Z
∞

0

dγ0 gðLdÞb ðγ0; z0; κ2Þ
Z

1

−1
dz

Z
∞

0

dγ gðLdÞb ðγ; z; κ2Þ
Z

1

0

dvv2ð1− vÞ2 ½4ðκ2 þM2

4
λ2Þ þ γ0vþ γð1− vÞ�

½κ2 þM2

4
λ2 þ γ0vþ γð1− vÞ− iη�4

¼ i2M2: (B13)

In conclusion, from Eq. (B13) one obtains the following normalization of the Nakanishi weight function for the S-wave
bound state of a two-scalar system:

1

ð8πÞ2
Z

1

−1
dz0

Z
∞

0

dγ0 gðLdÞb ðγ0; z0; κ2Þ
Z

1

−1
dz

Z
∞

0

dγ gðLdÞb ðγ; z; κ2Þ
Z

1

0

dvv2ð1− vÞ2 ½4ðκ2 þ M2

4
λ2Þ þ γ0vþ γð1− vÞ�

½κ2 þ M2

4
λ2 þ γ0vþ γð1− vÞ− iη�4 ¼ 1:

(B14)
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