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The thermodynamics of pure glue theories can be described in terms of an effective action for the
Polyakov loop. This effective action is of the Landau-Ginzburg type, and its variables are the angles para-
metrizing the loop. In this paper we compute perturbative corrections to this action. Remarkably, two-loop
corrections turn out to be proportional to the one-loop action, independent of the eigenvalues of the loop.
By a straightforward generalization of the ’t Hooft coupling, this surprisingly simple result holds for any of
the classical and exceptional groups.
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I. INTRODUCTION

Understanding of the deconfined phase QCD at high
temperature T is growing as a result of the heavy ion experi-
ments at RHIC and the LHC and theoretical and numerical
lattice work. The latter, in particular, has shown that the con-
formal anomaly, which is the energy density minus three
times the pressure, in the deconfined phase of SUðNÞ pure
gauge theories is approximately proportional to T2, up to
temperatures several times the critical temperature Tc for
deconfinement [1]. This demonstrates that e − 3p is not
dominated by a constant “bag pressure.” Even without a
detailed understanding of the physical origin of this behav-
ior, previous work has shown that it can be parametrized as a
dimension-two constant times a condensate for the eigenval-
ues of the Polyakov loop which “evaporates” at high T
[2–4]. At very high temperature then, the behavior of
ðe − 3pÞ=T2 for SUð3Þ is described very well by “hard
thermal loop” resummed perturbation theory [5].
The goal of the present paper is to compute perturbative

quantum corrections to the pressure of that classical con-
densate at two-loop order. That is, we compute the leading
correction due to interactions among gluons in the presence
of the condensate. Our main tool is the effective action as a

function of the eigenvalues of the Polyakov loop. While the
two-loop correction to the effective potential does not affect
the interaction measure,1 it does of course modify the pres-
sure and the energy density of the gluon plasma. We hope
that our results may be useful for improving the models
[2–4,6], which typically employ the one-loop effective po-
tential. Furthermore, our efforts show that the models men-
tioned above can be improved systematically, at least in
regard to the perturbative component, rather than offering
mere parametrizations of the lattice results.
We study hot gluodynamics for any number of colors, and

make use of the global ZðNÞ symmetry [7] in that system.
However, lattice simulations for groups without a center
[8–10] show that deconfinement does not require a global
symmetry. Hence, aside from SUðNÞ we perform our per-
turbative two-loop calculations also for all other classical
gauge groups, including the exceptional group Gð2Þ.
For SUðNÞ gluodynamics, there is an order parameter

associated with the global symmetry ZðNÞ, i.e. the
Polyakov loop,

Lðx⃗Þ ¼ P exp

�
i
Z

1=T

0

dτA0ðx⃗; τÞ
�
: (1)

The global symmetry acts on the loop as a large gauge
transformation Ωkðx⃗; τÞ. It develops a ZðNÞ valued*dumitru@quark.phy.bnl.gov
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discontinuity expðik 2π
N Þ when we move in the periodic

Euclidean time direction τ.
The loop Lðx⃗Þ transforms like an adjoint field and hence

its trace,

1

N
TrLðx⃗Þ; (2)

picks up a ZðNÞ phase,

1

N
TrLðx⃗Þ → exp

�
ik
2π

N

�
1

N
TrLðx⃗Þ: (3)

The effective action is simply the traditional path inte-
gral over the gauge fields subject to a constraint [11]. This
constraint is obviously that the integration is done while
preserving the value of the Polyakov loop at some fixed
value l. Doing so, one generates a probability distribution
for the eigenvalues determined by l. We are interested in a
loop which is constant in space, so the constraint should be
a delta function with the argument

l − 1

N
TrL̄; (4)

involving the spatially averaged loop,

TrL̄ ¼ 1

V

Z
V
dx⃗TrLðx⃗Þ: (5)

Clearly, to fix all independent phases Φ, one has to take as
many powers of the loop as there are independent phases.
To avoid clutter we do not write these higher powers explic-
itly; in this simplified notation the effective action becomes

expð−VVðlÞÞ ¼
Z

DAμδ

�
l− 1

N
TrL̄

�
exp

�
− 1

g2
SðAÞ

�
:

(6)

Hence, for SUð2Þ, where there is only one independent
phase, this expression fully fixes the phase of the loop.
So, there is just one real constraint on the full path integral.
We take l to be a trace over a diagonal matrix, without loss
of generality (see Sec. II). The loop L̄ is, in general, not
diagonal because the fluctuating scalar potential A0 is arbi-
trary so long as it satisfies the constraint. As we will see, in
perturbation theory the constraint amounts to taking out the
N − 1 zero modes of the fluctuation matrix, for SUðNÞ.
The constraint is nonlinear in the fluctuations, since the

Polyakov loop is so. As consequence, at two and higher loop
order there is an extra vertex involving the zero mode. It gen-
erates diagrams with radiative corrections inserted into the
Polyakov loop [12,18]. They are crucial for gauge invariance
of the effective potential, and we will use them in this paper.
To compute VðlÞ at small coupling fluctuations around

the background of a constant Polyakov loop, l are inte-
grated over. This leads to the gluon black body radiation

contribution plus a ZðNÞ invariant polynomial of fourth
order in the phases Φ of the loop. To be specific, we con-
sider the SUð2Þ gauge group. The loop has only one inde-
pendent phase, 2q1 ¼ −2q2 ¼ q. In terms of the variable q,
one obtains [13,14]

VpertðqÞ ¼ − π2

15
T4 þ 4π2

3
T4q2ð1 − qÞ2: (7)

In this expression, q is defined modulo 1 and a Zð2Þ trans-
formation corresponds to q → 1 − q. The minima of this
Zð2Þ invariant polynomial are at 0 and 1, where the loop
l ¼ �1. The motivation of this paper is to establish
how radiative corrections affect this potential. An earlier
answer to this question [15] presented an elegant but formal
proof using the Vafa-Witten trick [16], bypassing issues
related to infrared divergences.
The implication of our work is that
i) in perturbation theory the eigenvalue distribution
∼ expð−VVpertÞ is not affected by two-loop correc-
tions.2 In particular, the expectation value of

the Polyakov loop calculated at these minima re-
mains l ¼ �1.
ii) the pressure calculated from the minimum of the po-

tential equals the known perturbative pressure calcu-
lated at q ¼ 0.

However, we stress that when a nonperturbative contribu-
tion is added [3,4], that the two-loop corrections to the per-
turbative potential do modify the total result. We postpone a
detailed fit to lattice results to a future publication.
The roman lowercase letters points above are corrobo-

rated by the two loop contribution to the perturbative poten-
tial which we compute explicitly in Sec. III. Section II
contains a discussion of simple properties of the effective
action and the gauge independence of our corrections. In
Sec. III we discuss the explicit result at two loops; the
simplified expressions for the insertion diagram are given
in Sec. IV; the last section contains the conclusions.

II. GENERALITIES OF THE
EFFECTIVE POTENTIAL

For the sake of notation and clarity wewill mostly work in
this sectionwith theSUð2Þgaugegroup. In the first subsection
we discuss the relation between various ways of defining the
effective action. Its expansion about a constant Polyakov loop
background is analyzed next, and finally extended Becchi-
Rouet-Stora (BRS) identities are derivedwhich give us a very
useful control over the perturbative expansion.

A. Two ways of obtaining the effective action

First we introduce a definition of the effective potential
which is manifestly gauge invariant, manageable on the

2However, it may change at higher orders.
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lattice and, most importantly for this paper, has relatively
simple Feynman rules. It is the constrained effective action,
defined in a large three volume V in Euclidean space, and
periodic in Euclidean time direction with period 1=T.
The Polyakov loop was defined above as

Lðx⃗Þ ¼ P exp

�
i
Z

1=T

0

A0ðx⃗; τÞdτ
�
: (8)

The effective potential is [11]

expð−VVðlÞÞ≡
Z

DAμδ

�
l − 1

2
TrL̄

�
exp

�
− 1

g2
SðAÞ

�
:

(9)

Here l is some a priori specified number.
The partition function Z equals

Z≡
Z

DAμ exp

�
− 1

g2
SðAÞ

�
; (10)

TrL̄≡ 1

V

Z
V
dx⃗TrLðx⃗Þ: (11)

The integration is over fields which are periodic in the
Euclidean time direction with period 1=T. Note that the
SUð2Þ matrix Lðx⃗Þ can be diagonalized at every point x⃗
by a gauge transformation. Hence the space-averaged trace
of the loop becomes a spatial average over a cosine, a num-
ber not larger than 1. If all the eigenphases of Lðx⃗Þ are
aligned, the space average, of course, becomes the cosine
of the common eigenphase.
Thus l is bound by3

−1 ≤ l ≤ 1 (12)

and can be parametrized as the trace of a constant SU(2)
matrix,

lðqÞ ¼ 1

2
Tr expð2πiqÞ; (13)

with

q ¼
�
q1 0

0 q2

�
; q1 ¼ −q2: (14)

Now we will show that in the large volume limit the def-
inition (9) is equivalent to the traditional definition of the
effective potential where a source term,4

jV TrL̄ ¼ j
Z
V
dx⃗TrLðx⃗Þ; (15)

is introduced into the path integral Z,

expð−VWðjÞÞ ¼
Z
DAμ exp

�
− 1

g2
SðAÞ − j

Z
V
dx⃗TrLðx⃗Þ

�
;

(16)

with

l≡ hTrL̄i ¼ ∂W
∂j ; GðlÞ≡WðjÞ − jl: (17)

The effective action GðlÞ depends on the source j only
through l, and it satisfies

∂G
∂l ¼ −j: (18)

To compare this definition of the effective action GðlÞ to
the one in Eq. (9), we Laplace transform the latter withR
dl expð−VjlÞ,
Z

dl expð−VjlÞ expð−VVðlÞÞ ¼ expð−VWðjÞÞ: (19)

Steepest descent of this integral in the large V limit tells us
that the effective potential obeys

∂VðlÞ
∂l ¼ −j; VðlÞ þ jl ¼ WðjÞ; (20)

and so

GðlÞ ¼ VðlÞ þ fðTÞ: (21)

This means that both definitions give the same effective po-
tential, up to a temperature dependent but l-independent
function. However, the constrained version is well adapted
to lattice calculations and admits a straightforward saddle
point expansion around any value of l. This expansion is
discussed in the next two sections.
The source term j

R
V dx⃗TrLðx⃗Þ is manifestly gauge

invariant. Hence, we expect the effective potential to be
the same in whatever gauge we calculate it. This will turn
out to be true although the expectation value of the space-
averaged loop hTrL̄i is gauge dependent (except at j ¼ 0).
This gauge dependence precisely cancels that of the
free- energy contributions as we will expound in Secs. II E
and II F.
After Fourier transforming the delta function constraint,

we can write the constrained path integral as

3Modulo renormalization effects, see e.g. [17].
4We absorb the 1=N normalization of the trace of L into the

source j.
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expð−VVðlÞÞ≡
Z

DAμdε exp

�
− 1

g2
SconðA; εÞ

�
;

SconðA; εÞ ¼ iε

�
l − 1

2
TrL̄

�
þ SðAÞ: (22)

We have traded the constraint for an extra field ε in the path
integral, and we added a phase to the original gauge action.
The new field ε is therefore gauge invariant, like the
constraint it generates.

B. The effective potential in perturbation theory

Below we shall give explicitly the Feynman rules for
fluctuations around a fixed background εc and Bμ. The
background is supposed to be a minimum of Scon. A simple
choice of background is

εc ¼ 0; Aμ ¼ Bδμ;0; B constant in space time:

(23)

This is indeed an extremum of Scon when minimizing over
the fluctuations in

Aμ ¼ Bδμ;0 þ gQμ; and ε ¼ εc þ gεq: (24)

The gauge zero modes have to be tamed by introducing
gauge-fixing and ghost terms,

Sgauge ¼ SðAÞ þ Sgf þ Sgh ¼ Sfree þ gSint: (25)

Our choice of gauge fixing is covariant background gauge,

Sgf ¼
1

ξ

Z
dx⃗ dτ TrðDμðBÞQμÞ2;

DμðBÞ ¼ ∂μ þ i½Bδμ;0;…�; (26)

and the constrained action Scon changes accordingly into

Scon ¼ iε

�
l − 1

2
TrL̄

�
þ Sgauge: (27)

Expand SconðA; εÞ in terms of Q and εq as

SconðBþ gQ; εc þ gεqÞ ¼
X∞
n≥0

gnSðnÞcon: (28)

To avoid clutter in the formulas we shall use the following
notation for the expansion in powers of the fluctuation
field Q0:

LðBþ gQ0Þ ¼ LðBÞ þ gQ0 ·L0ðBÞ
þ g2Q2

0 ·L
00ðBÞ þOðg3Q3

0Þ; (29)

and similar for the action Sgauge. The operator “·” means
integration over space time and summation over
(Lorentz and) color indices.
One mode becomes particularly important in this expan-

sion. It is the zero Matsubara frequency of the zero momen-
tum mode Q̄0ðτÞ ¼

R
V dx⃗Q0ðx⃗; τÞ=V,

¯̄Q0 ≡
Z

1=T

0

dτQ̄0ðτÞ: (30)

It is the only mode that can produce linear terms in the
expansion around the space time independent background.
All other modes Qμðx⃗; τÞ are orthogonal to B.
The terms linear in the fluctuations [i.e. in Sð1ÞconðqÞ] are

required to vanish. They are

iεcTrð ¯̄Q0L0ðBÞÞ þ Trð ¯̄Q0S0guageðBÞÞ ¼ 0;

εq

�
l − 1

2
TrLðBÞ

�
¼ 0: (31)

From the first condition it follows that εc ¼ 0, because
S0guageðBÞ ¼ 0. The second fixes B in terms of l,

l − 1

2
TrLðBÞ ¼ 0: (32)

Hence, from (13) we have the background B fixed in terms
of the phases q1 and q2 ¼ −q1 of the Polyakov loop,

B ¼ 2πqT: (33)

Hence Sð0ÞconðqÞ ¼ 0.
In what follows we write the zero momentum and zero

Matsubara frequency mode projected onto L0ðqÞ as

Trð ¯̄Q0L0ðqÞÞ≡ Q̂0: (34)

The quadratic term in the expansion of Scon is therefore the
first nonvanishing term,

Sð2Þcon ¼
Z

dx⃗dτðTrQμðx⃗; τÞð−D2ðqÞÞδμν
þ ð1 − ξÞDμðqÞDνðqÞQνðx⃗; τÞÞ − iεqQ̂0; (35)

where we wrote the explicit form of S00gauge.
Thus the expansion of the effective potential (η and ω are

the ghost fields) becomes

expð−VVÞ ¼
Z

DQμDη̄Dωdεq

× expð−Q2 · S00gaugeðqÞ − iεqQ̂0Þð1 − RÞ:
(36)

The last factor equals
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1 − R ¼ 1 − gQ3 · S000gaugeðqÞ − g2Q4 · S0000gaugeðqÞ
þ g2iεqTrðQ̄2

0 ·L
00ðqÞÞQ3 · S000gaugeðqÞ þ � � � :

(37)

Let us discuss (36) and (37). The terms in the exponent are
familiar, except for the last one. This latter term, after inte-
gration over εq, is restoring the delta function constraint.
It tells us not to integrate over Q̂0.

C. One-loop determinant

First we neglect all interactions, i.e. the term R in (36),
leaving the determinant without the zero mode Q̂0.
It is useful to generalize at this point the discussion from

SUð2Þ to SUðNÞ. For SUðNÞ, the N − 1 independent
eigenvalues are fixed by a product of N − 1 delta functions;
their respective arguments are

δ

�
ln − 1

N
TrðLðA0ÞÞn

�
; 1 ≤ n ≤ N − 1: (38)

The generalization of the ϵ field to SUðNÞ follows immedi-
ately: it is such that it couples to the Polyakov loop winding
n times around the thermal circle. To fix the eigenvalues we
need N − 1 windings TrLn. Hence, there are N − 1 fields
εn and they generate the delta function constraints via the
following term in the exponent:

i
X
n

εnðln − TrðLðA0ÞÞnÞ (39)

with

TrðLðA0ÞÞn ≡ 1

V

Z
V
dx⃗TrðLðA0ÞÞn: (40)

After expanding around the saddle point, the analogue of
Q̂0 in Eq. (34) is labeled by the number of windings,

Q̂n
0 ≡ Trð ¯̄Q0ðLnðqÞÞ0Þ≡X

d

¯̄Qd
0 tndðqÞ: (41)

We introduced the matrix tndðqÞ≡ TrðλdðLnðqÞÞ0Þ for
later use. It connects the winding basis labeled by n to
the diagonal Cartan basis labeled by d.
By analogy to SUð2Þ, the ln can be written as

ln ¼
1

N
Tr expð2πinqÞ: (42)

The matrix q is taken to be diagonal with its N eigenvalues
qj obeying

P
j qj ¼ 0.

The diagonalization of S00gauge is well known [13,14] and
simply employs the plane wave basis Qμðp0; p⃗Þ. The color
basis is the well-known Cartan basis, spelled out in Sec. III

for all classical groups. In this section we just need one
salient property of this basis.
It is divided into diagonal elements Hd and off-diagonal

elements Eα, eigenmatrices of the Hd,

½Hd; Eα� ¼ αdEα: (43)

The coefficients αd are the components of an r-dimensional
vector, the root α⃗, where r is the rank of the group.
For the fundamental representation of SUðNÞ, this is

as follows. The fluctuation variables are labeled by d ¼
1; 2;…; N − 1 corresponding to the N − 1 diagonal matri-
ces. The off-diagonal fluctuation variables correspond to
the NðN − 1Þ off-diagonal matrices λij, where the indices
i; j ¼ 1; 2;…; N with i ≠ j. The off-diagonal matrices are a
direct generalization of the off-diagonal Pauli matrices for
SUð2Þ,

ðλijÞkl ¼
1ffiffiffi
2

p δikδjl: (44)

As a consequence the Matsubara frequency in D0ðqÞ,
Eq. (26), acting on the off-diagonal mode Qij

μ ðp0;…Þ is
shifted by qi − qj ≡ qij but remains unchanged if it acts
on a diagonal mode Qd

μ,

D0ðqÞQij
μ ðp0;…Þ ¼ iðp0 þ 2πqijÞQij

μ ðp0;…Þ;
D0ðqÞQd

μðp0;…Þ ¼ ip0Qd
μðp0;…Þ: (45)

Hence the shifted four-momenta are either pij ¼
ðp0 þ qij; p⃗Þ, or pd ¼ ðp0; p⃗Þ, with p0 ¼ 2πTn0 where
n0 is an integer. We will use this notation throughout the
paper. These rules generalize to any other classical group
(see Sec. III).
After these preliminaries we can easily compute the one

loop determinant; in dimensional regularization we obtain
the well-knowm result [13,14],

Γf ¼ −pSB þ 2π2

3
T4

X
i≠j

B4ðqijÞ: (46)

The Bernoulli polynomial B4 is given in Appendix A.

D. Interactions without the ε fields

These interactions are fully contained in the interaction
terms in the first line of (37). They give the usual
free-energy diagrams Γf as in Fig. 2 with propagators
and vertices determined by l ¼ cosð2πqÞ. Only the zero
momentum mode Q̂0 is not integrated over.
The Feynman rules in the presence of the color diagonal

background q are simple. They have been discussed in the
previous section and amount to replacing the momenta as in
Eq. (45) and below.
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With these rules it is straightforward to obtain the con-
tribution Γf due to the free- energy diagrams in Fig. 2 to
one and two loop order in Feynman gauge ξ ¼ 1,

Γf ¼ −pSB þ
X
a

B̂4ðqaÞ þ g2
X
a;b;c

jfa;b;cj2B̂2ðqbÞB̂2ðqcÞ:
(47)

The first two terms correspond to the one loop result (46),
the last term is the two loop correction. The indices a, b, c
run through the diagonal indices d and the off-diagonal
indices ij. So, qd ¼ 0 and qij ¼ qi − qj. The Bernoulli
polynomials are simple and defined in Appendix A.

E. The insertion diagram due to the constraint

We now consider the interactions involving the fluctua-
tions εq in the second line of Eq. (36). They play an essen-
tial role at two and more loops [18]. They originate in terms
Sð3Þcon, ðSð3ÞconÞ2 etc. Among other contributions the latter gives
the term we wrote explicitly,

g2iεqTrðQ̄2
0 ·L

00ðqÞÞðQ3 · S000gaugeðqÞÞ: (48)

To avoid inessential complications we first discuss SUð2Þ.
The first factor in this expression is the Polyakov loop

expanded to second order in the fluctuation Q0. To two-
loop order, this is the only term that contributes at OðVÞ
to V. No other term does because of the absence of infrared
divergences.5

To perform the integration over εq, we replace iεq by ∂
∂Q̂0

acting on the last term in (35). By inspection, the only con-
traction of OðVÞ is

hQ̄2
0 · TrL

00ðqÞi
� ∂
∂Q̂0

Q3 · S000gaugeðqÞ
�
: (49)

The first contraction is the expectation value of the
Polyakov loop through one gluon exchange. The second
contraction is the one point function at zero momentum.
The one point function is nonzero in thermal physics
because Lorentz invariance is reduced to rotational invari-
ance, so Q0 is a scalar. It is shown in Fig. 1.
This term would vanish if L00ðqÞ ¼ 0, i.e. if the con-

straint were linear. But it is not or else it would not be gauge
invariant. Indeed, in addition to the usual free-energy terms,
this contribution renders the total result independent of the
gauge choice. This will become clear from the BRS analy-
sis below.
In the SUð2Þ case the spatial averages and the Polyakov

loop average simplify to

hTrQ̄2
0 ·L

00ðqÞi ¼ ð3 − ξÞB̂1ðq12Þ sinðπq12Þ;
Q̂0 ¼ Trð ¯̄Q0σ3Þ sinðπq12Þ; (50)

where we used Eq. (34). Also, Eq. (49) becomes

hTrQ̄2
0 ·L

00ðqÞi
� ∂
∂Q̂0

Q3 · S000gaugeðqÞ
�

¼ 4ð3 − ξÞB̂1ðq12ÞB̂3ðq12Þ: (51)

Note that all reference to the unitary nature of the loop in
the constraint has dropped out. The derivative of the loop,
sinðπq12Þ drops out of the insertion of the radiative correc-
tion for the Polyakov loop into the one loop effective
action. For groups larger than SUð2Þ this is true as well,
though much less trivial (see Appendix B).
In the SUðNÞ case the contribution (48) becomes a sum

over N − 1 winding contributions,

Γi ¼
X
n

hQ̄2
0 · TrL

nðqÞ00i
� ∂
∂Q̂n

0

Q3 · S000gaugeðqÞ
�
: (52)

In Appendix B we prove the crucial identity

hTrðQ̄2
0 · ðLnÞ00Þi ¼ hTrQ̄2

0 ·L
00ðqÞid · tndðqÞ: (53)

This identity relates the one-loop expectation values of
multiply winding loops to that for single winding, using
the matrix defined in (41). In conjunction with (41) it elim-
inates the summation over windings n in (52) and reduces it
to a summation over diagonal indices d.

Γð2Þ
i ¼ ð3 − ξÞg2

X
d;b;c

fd;b;−bfd;c;−cB̂1ðqbÞB̂3ðqcÞ: (54)

We used for this result that the VEV for single winding is
the Oðg2Þ correction to the Polyakov loop TrLðqÞ in the
background q,

hTrQ̄2
0 ·L

00ðqÞid ¼ ð3 − ξÞ
X
d;ij

fd;ij;jiB̂1ðqijÞ: (55)

FIG. 1. The insertion diagram, Eq. (49). The two blobs corre-
spond to the two contractions. The Polyakov loop is the fat circle,
with the gluon going across. The dot is where Q̂0 acts to create the
one point function shown by the thin circle.

5At three-loop order there are, however, linear infrared
divergences.
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Note that this expectation value refers to the traced
loop without the normalization factor 1=N. Further, that
it is gauge choice dependent and proportional to the
Bernoulli function B̂1ðqijÞ. This function is linear, periodic
mod 1, antisymmetric and vanishes at qij ¼ 1=2. Hence it
is a sawtooth function, with nonzero values at qij ¼ 0, 1.
As usual, d refers to the diagonal index while b and c run
through off-diagonal indices only. In Sec. IV we simplify
the summation over the index d.
As B̂3 vanishes linearly for small argument it follows that

Γð2Þ
i vanishes, to this order, in the limit of zero background.

F. BRS identities and the gauge independence
of the effective potential

We need to understand why the ξ dependence in the dia-
gram for the free-energy contribution Γf cancels against
that in the insertion diagram Γi. There is a simple way
to see this, using the BRS identities in the presence of a
thermal background [18].
All we have to do is to take the free-energy contribution

for an arbitrary value of ξ and to note that the ξ dependence
is due exclusively to the gluon propagators. It does not
appear anywhere else in the free-energy diagrams.
Varying the gluon propagators in the three diagrams (a1),

(a2) and (a3) shown in Fig. 2 multiplies each by 3, 2 and 1,
respectively. Combining these factors with the combinato-
rial factors in the figure turns the result into the one loop

gluon self-energy Πð1Þa;b
μ;ν [see (b1)–(b3) in Fig. 2] folded

into the gauge part of the propagator,6

∂Γð2Þ
f

∂ξ ¼ ⨋pΠ
ð1Þa;b
μ;ν

pa
μpb

ν

ðpaÞ4 : (56)

We use the shorthand notation

T
X
n0

Z
dd−1p⃗
ð2πÞd−1 ≡ ⨋p: (57)

If a ¼ b ¼ d, with d a diagonal index, the BRS identity
tells us, as in the case without background, that the one-
loop self-energy is transverse,

Πð1Þd;d
μ;ν pd

μpd
ν ¼ 0: (58)

In case a ¼ ðijÞ, b ¼ ðjiÞ is off-diagonal, the BRS identity
relates the two-point function to the one-point function Γd,

Γð1Þ
d ¼

�∂Sint
∂Qd

0

�
: (59)

Only the scalar, color diagonal one-point function is non-
vanishing in thermal field theory. We obtain

Πð1Þij;ji
μ;ν pij

μ p
ji
ν ¼ fd;ij;jipij

0 Γ
ð1Þ
d ðqÞ;

Γð1Þ
d ðqÞ ¼

X
k;l

fd;kl;lkB̂3ðqklÞ: (60)

Unless explicitly shown there is no summation over
color indices in (58) and (59). The second equality relates
the one point function to the background field derivative of
the free energy. The final result for the gauge variation fol-
lows from Eq. (56) and the BRS identities (58) and (60),

∂Γð2Þ
f

∂ξ ¼ g2
X
ijkl

⨋p

pij
0

ðpijÞ4
X
d

fd;ij;jifd;kl;lkB̂3ðqklÞ: (61)

Inspection of the first factor in this expression shows (see
Appendix A on Bernoulli functions) that

⨋p

pij
0

ðpijÞ4 ¼ B̂1ðqijÞ: (62)

Hence, the gauge dependence cancels precisely with the
gauge variation of the insertion diagram (54).

III. TWO-LOOP CORRECTION:
EXPLICIT RESULT

Now that we have seen the cancellation of the gauge
artifacts in the two contributions to the effective action,
we evaluate them for various groups. Because the free-
energy contribution Γf, Eq. (46), is so simple in ξ ¼ 1
gauge, we calculate Eq. (54) for ξ ¼ 1 as well. It shows
that the insertion diagram not only guarantees gauge
parameter independence, but also a surprisingly simple
outcome for the effective action.
We should mention also that although the specific forms

of Eqs. (46) and (54) are based on our discussion of SUðNÞ,
they in fact apply to all the groups that we are going to
consider. For later use, we rewrite the effective potential
up to two-loop order with ξ ¼ 1 as

(a1)

(b1)

(a2)

(b2)

(a3)

(b3)

FIG. 2. The two-loop free-energy contributions Γð2Þ
f to the

effective potential are shown in (a1), (a2) and (a3). The one-loop
self-energy is shown in (b1)–(b3).

6This identity is a special case of an identity valid for any field
theory.
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Γð1Þ ¼ − π2T4dðAÞ
45

þ
X
a

B̂4ðqaÞ; (63)

Γð2Þ
f ¼ g2

X
a;b;c

jfa;b;cj2B̂2ðqbÞB̂2ðqcÞ; (64)

Γð2Þ
i ¼ 2g2

X
d;b;c

fd;b;−bfd;c;−cB̂1ðqbÞB̂3ðqcÞ: (65)

Here, the one-loop effective action depends on the dimen-
sion of the adjoint representation of the group which is
denoted as dðAÞ. It equals N2 − 1 for SUðNÞ, 2N2 − N
for SOð2NÞ, 14 for Gð2Þ, while for both SpðNÞ and
SOð2N þ 1Þ we have dðAÞ ¼ 2N2 þ N. The index a runs

through the off-diagonal indices. In Γð2Þ
f , the indices a, b

and c run over both diagonal and off-diagonal indices.

In Γð2Þ
i , each structure constant contains the diagonal indi-

ces d, while b and c denote off-diagonal indices. If b is a
typical off-diagonal index, the index −b is defined as fol-
lows: let Eb being some off-diagonal generator, then
E−b ≡ ðEbÞ†. The definition of these indices will become
more clear in the following.
Our calculation will show that the two-loop effective

potential is simply a multiplicative and background
independent renormalization of the one-loop result. In
terms of the quadratic Casimir invariant C2ðAÞ in the
adjoint representation,

Γð2Þ

Γð1Þ ¼ − 5g2C2ðAÞ
16π2

; (66)

where the Casimir invariant is given by

C2ðAÞδce ¼ fa;b;cfa;b;e: (67)

From this definition it follows in particular that for two
diagonal indices c ¼ d and e ¼ d0;

C2ðAÞdðrÞ ¼ fa;b;dfa;b;d; (68)

where dðrÞ is the rank of the group, i.e. the dimension of the
Cartan space. We have that C2ðAÞ ¼ N − 1 for SOð2NÞ,
N − 1

2
for SOð2N þ 1Þ, N þ 1 for Spð2NÞ, 2 for Gð2Þ,

and finally C2ðAÞ ¼ N for the SUðNÞ groups. For the
SUðNÞ groups the result (66) was in fact known since long
for straight paths7 from the origin, q ¼ 0, to the degenerate
ZðNÞ minima [19]. These paths run along the edges of the
SUðNÞ Weyl chamber and a combinatorial proof of

Eq. (66) exists [20]. We do not (yet) know how the
combinatorics works out inside the Weyl chamber.
Below we gather the tools to produce explicit expres-

sions for the two loop insertion Γð2Þ
i and the free energy

Γð2Þ
f . Due to the increasing number of independent variables

of the background field and the complication of the indices
of the structure constants, we developed a MATHEMATICA

program [21] for all classical groups to evaluate explicitly
the above two contributions, Eq. (64) and Eq. (65).
However, we have not succeeded in finding a general proof
of Eq. (66) which does not require explicit evaluation by
brute force.

A. Generalities on the classical Lie algebras

We start with the commutation relations in the Cartan
basis for any semi-simple Lie algebra,

½H⃗; Eα� ¼ α⃗Eα (69)

½Eα; E−α� ¼ α⃗ · H⃗ (70)

½Eα; Eβ� ¼ fα;β;−α−βEαþβ;

if αþ β is a root; if not; it vanishes:
(71)

We define the structure constants from the generators in the
fundamental representation of the group, with the genera-
tors normalized as

TrðEαE−αÞ ¼ TrðH2
dÞ ¼ 1=2: (72)

The components of H⃗ are the orthonormal matrices span-
ning the Cartan subalgebra and they are the diagonal gen-
erators in the Cartan basis. The orthonormal Eα, labelled by
the roots α, are vectors in Cartan space. They are the off-
diagonal generators.
The roots themselves are labeled by an off-diagonal

index. For a typical off-diagonal index, say a, we have

½Hd; Ea� ¼ fd;a;−aEa: (73)

Hence, the dth component of a root (labeled by an off-
diagonal index a) is the structure constant fd;a;−a.
Besides the structure constants involving a diagonal com-
ponent, we have another kind of structure constants
fα;β;−α−β which connect off-diagonal generators. With
our normalization, the absolute values of fα;β;−α−β are all
equal to 1ffiffi

2
p for SUðNÞ. For all the other classical groups

they are 1
2
. For the exceptional group Gð2Þ, they are given

in Sec. IIIE. In the following, we shall discuss the commu-
tation relations of the generators and the corresponding
structure constants for each group separately.

7However, in general the minimum of the potential does not
exactly follow a straight path as a function of temperature [4].
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B. Calculation for SUðNÞ
Starting from Eqs. (64) and (65), we are able to calculate

the two-loop perturbative correction to the effective poten-
tial. First of all, we need to know the structure constants.
They can be obtained from the commutation relations of
the generators in Cartan basis.
For SUðNÞ, there are NðN − 1Þ off-diagonal generators

Eij ≡ λij with i; j ¼ 1;…; N and i ≠ j. The explicit
forms are given in Eq. (44). In addition, we have
N − 1 traceless diagonal generators Hd ≡ λd with
d ¼ 1;…; N − 1,

λd ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðdþ 1Þp diagð1; 1;…;−d; 0; 0;…; 0Þ: (74)

The commutators between diagonal generators are obvi-
ously zero. The nonvanishing commutators we need are8

½Hd; Eij�≡ fd;ij;lkEkl ¼ ðλdii − λdjjÞEij; (75)

½Eij; Ekl�≡ fij;kl;tsEst ¼ 1ffiffiffi
2

p ðδjkEil − δilEkjÞ. (76)

Here, λdii is the ith diagonal component of λd. From Eq. (75)
we find that the roots α⃗ij ¼ ðλ⃗ii − λ⃗jjÞ. As mentioned
before, the dth component of α⃗ij is the structure constant
fd;ij;ji.
We can define a diagonal matrix,

Λij ≡ λ⃗ · α⃗ij

ðα⃗ijÞ2 ; (77)

and it is easily to find the following commutator:

½Λij;Eij�¼Eij: (78)

Using the explicit form of Eij, we get Λij ¼ 1
2
diagð0; 0;

…; 1; 0;…; 0;−1; 0;…; 0Þ, i.e. the ith component
is 1, the jth component is −1 and all others are zero.
Taking the square of Eq. (77) and then the trace on both

sides, the roots satisfy

ðα⃗ijÞ2 ¼ 1: (79)

In other words, the roots can be written in terms of an ortho-
normal basis fe⃗ig spanning an N-dimensional space,

α⃗ij ¼ 1ffiffiffi
2

p ðe⃗i − e⃗jÞ: (80)

Using Eqs. (68) and (79), we have C2ðAÞ ¼ N for SUðNÞ.
Notice that there are N2 − N off-diagonal indices and that
the rank of SUðNÞ is N − 1.
Using the total antisymmetry of the structure con-

stants, all the nonvanishing structure constants without
diagonal index can be read off from Eq. (76). It is
obvious that the absolute values of these structure con-
stants are 1=

ffiffiffi
2

p
.

Since the explicit form of the generators is known, the
calculations of the structure constants is straightforward
but rather tedious as N becomes large. In fact, we can
rewrite Eqs. (75) and (76) to obtain the following expres-
sions for the structure constants:

fd;ij;kl ¼ 2TrðEkl · ½Hd; Eij�Þ;
fij;kl;st ¼ 2TrðEst · ½Eij; Ekl�Þ: (81)

These expressions permit a straightforward computation of
the structure constants using MATHEMATICA.
When using Eqs. (63) to (65) to compute the effec-

tive potential for SUðNÞ, one needs to observe that for
a diagonal index qa ¼ 0. However, for an off-diagonal
index ij one has qa ¼ qi − qj. We have N − 1 indepen-
dent qi, for i ¼ 1; 2;…; N − 1. Thus, the background
field can be parametrized as Q ¼ diagðq1; q2;…; qNÞ
with the single constraint qN ¼ −q1 − q2 −… − qN−1.
The above discussion can be understood by using the fol-
lowing commutator:

½Q;Eij� ¼ ðqi − qjÞEij: (82)

It is obvious that Q commutes with Hd which leads to
qd ¼ 0 as stated.
In general, there is no restriction to the possible values of

qi with i ¼ 1; 2;…; N − 1. Therefore, modulo functions
appear in the Bernoulli polynomials which makes the cal-
culation more involved. However, without loss of general-
ity, we can perform the calculation with a set of q0i such that
the absolute values of the arguments of the Bernoulli
polynomials are less than 1, i.e., −1 < q0i − q0j < 1. It is
easy to show that it is always possible to find such a set
of q0i. For example, when considering SUð3Þ, we have
Q ¼ diagðq1; q2; q3Þ with q3 ¼ −q1 − q2. If we define
q0i ¼ qi − ni where ni is an integer, we can achieve 0 ≤
q0i < 1 by appropriate choice of ni. Since the Bernoulli pol-
ynomials are periodic modulo 1, one can use q0i instead of
qi to calculate the effective potential and the result is the
same. The advantage of using q0i is to avoid these modulo
functions (see Appendix A) which can not be handled
easily by MATHEMATICA. We mention that in terms of q0i
the background field is not necessarily traceless. In fact,
we have q03 ¼ −q01 − q02 þ n with n ¼ 0, 1, 2. With the
set of q0i, the Bernoulli polynomials are given by
Eq. (A6) with sign functions only. By permutation of
the matrix elements of the background field, we can assume

8For SUðNÞ, if a typical off-diagonal index b is denoted by
b ¼ ij, then we have −b ¼ ji.
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that q01 ≥ q02 ≥ � � � ≥ q0N . With this assumption, the sign of
q0i − q0j becomes definitive which can further simplify the
calculation by ignoring the sign functions in the Bernoulli
polynomials. The details can be found in Appendix A.
Based on Eq. (81) and the above discussion, we have

been able to compute the two-loop perturbative correction
to the effective potential for SUðNÞ for any given but arbi-
trary N; we have performed this calculation explicitly up to
N ¼ 5 with MATHEMATICA [21] and verified the relation
(66). For example, for SUð2Þ we find

Γð2Þ
f ¼ g2T4

24
½1þ 2q01ðq01 − 1Þ

þ 2q02ð1þ q02 − 2q01Þ�½1þ 6q01ðq01 − 1Þ
þ 6q02ð1þ q02 − 2q01Þ�;

Γð2Þ
i ¼ g2T4

3
ð1þ 2q02 − 2q01Þ2ðq01 − q02Þð1þ q02 − q01Þ:

(83)

The effective potential at one-loop order is given by

Γð1Þ ¼ − π2T4

15
þ 4T4π2

3
ðq02 − q01Þ2ð1þ q02 − q01Þ2; (84)

so that

Γð2Þ
f þ Γð2Þ

i

Γð1Þ ¼ − 5g2

8π2
; for N ¼ 2: (85)

Note that we write these equations in terms of q0i to remind
the readers that these variables should satisfy 0 ≤ q0i < 1
and q01 ≥ q02 ≥ � � � ≥ q0N . For example, if the background
field is given as Q ¼ diagð− 5

3
; 5
3
Þ, to get the correct effec-

tive potential from Eqs. (83) and (84) one should set q01 ¼ 2
3

and q02 ¼ 1
3
. This procedure can be easily generalized to

higher N.

C. Calculation for SOð2NÞ and SOð2N þ 1Þ
For these groups we use a variant of the notation from

Georgi’s book [22]. The generatorsMab in the fundamental
representation have matrix elements,

ðMabÞxy ¼ − i
2
ðδaxδby − δayδbxÞ: (86)

Obviously there is antisymmetry under exchange of the
labels a and b, i.e. Mab ¼ −Mba.
Furthermore, we can define the off-diagonal generators

in the Cartan basis. For both groups, there are Nð2N − 2Þ
off-diagonal generators Eηi:η0j with i; j ¼ 1;…; N and
i > j. Here, we define the indices i with an associated sign
η. Similarly, j is defined with η0. The signs η or η0 are inde-
pendently �1. The explicit form of the generators is

Eηi:η0j¼1

2
ðM2i−1;2j−1þiηM2i;2j−1þiη0M2i−1;2j−ηη0M2i;2jÞ:

(87)

For SOð2N þ 1Þ there are 2N additional off-diagonal
generators

Eηi ¼ 1ffiffiffi
2

p ðM2i−1;2Nþ1 þ iηM2i;2Nþ1Þ: (88)

For either of the groups the N-dimensional Cartan subal-
gebra is spanned by mutually commuting and orthogonal
generators Hd, with

Hd ¼ M2d−1;2d; with d ¼ 1; 2;…N: (89)

So far, we have defined all the generators in the Cartan
basis; the structure constants can be obtained from the
commutation relation9

½Hd; Eηj�≡ fd;ηj;−η0kEη0k ¼ η

2
δdjEηj (90)

½Hd; Eηj:η0k�≡ fd;ηj:η
0k;−ρl:−ρ0mEρl:ρ0m

¼ 1

2
ðηδdj þ η0δdkÞEηj:η0k (91)

½Eηi:η0j; Eρk�≡ fηi:η
0j;ρk;−σlEσl

¼ i
4
ðδkið1 − ρηÞEη0j − δkjð1 − ρη0ÞEηiÞ (92)

½Eηi:η0j; Eρk:ρ0l�≡ fηi:η
0j;ρk:ρ0l;−σt:−σ0nEσt:σ0n

¼ i
4
ðδkið1 − ρηÞEη0j:ρ0l − δkjð1 − ρη0ÞEηi:ρ0l

− δljð1 − ρ0η0ÞEρk:ηi þ δilð1 − ηρ0ÞEρk:η0jÞ: (93)

From Eqs. (90) and (91), the roots can be expressed as

α⃗ηi ¼ η

2
e⃗i; α⃗ηi:η

0j ¼ 1

2
ðηe⃗i þ η0e⃗jÞ: (94)

There are Nð2N − 2Þ off-diagonal generators associated
with the long roots and 2N off-diagonal generators associ-
ated with the short roots. For both SOð2NÞ and

9For SOð2NÞ and SOð2N þ 1Þ, if the typical off-diagonal in-
dex b is denoted as b ¼ ηi:η0j then −b ¼ −ηi: − η0j; if b ¼ ηi,
then −b ¼ −ηi. In Eq. (93), with our notation, Eρk:ηi should be
understood as −Eηi:ρk if i > k. Similarly for Eη0j:ρ0l.
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SOð2N þ 1Þ, dðrÞ ¼ N. Using Eq. (68) we can easily get
C2ðAÞ ¼ N − 1

2
for SOð2N þ 1Þ and C2ðAÞ ¼ N − 1

for SOð2NÞ.
Like for SUðNÞ, in order to perform the calculation with

MATHEMATICA we express the structure functions as

fd;ηj;η
0k ¼ 2TrðEη0k · ½Hd; Eηj�Þ

fd;ηj:η
0k;ρl:ρ0m ¼ 2TrðEρl:ρ0m · ½Hd; Eηj:η0k�Þ

fηi:η
0j;ρk;σl ¼ 2TrðEσl · ½Eηi:η0j; Eρk�Þ

fηi:η
0j;ηk:η0l;σt:σ0n ¼ 2TrðEσt:σ0n · ½Eηi:η0j; Eρk:ρ0l�Þ: (95)

If an index a is an off-diagonal index, we have two different
cases: if a ¼ ηi, then qa ¼ ηqi; if a ¼ ηi:η0j, then
qa ¼ ηqi þ η0qj. Here, we have N independent qi for
i ¼ 1; 2;…; N. Thus, the background field can be parame-
trized as Q ¼ P

N
d¼1 2qdH

d. The above discussion can be
understood by using the two commutators from Eqs. (90)
and (91).
In order to perform the computation with our

MATHEMATICA program we again require an appropriate
choice of qi. For SOð2N þ 1Þ and SOð2NÞ, we can always
start the calculation by using a set of qi which satisfy
− 1

2
< qi ≤ 1

2
. As a result, the arguments of the Bernoulli

polynomials are restricted to the interval −1 ≤ x ≤ 1,
and we can use Eq. (A6) which does not involve modulo
functions. Without loss of generality, we can also assume
q1 ≥ q2 ≥ � � � ≥ qN ≥ 0 by a suitable permutation of the
matrix elements of Q. At this point we are able to use
our program to compute the effective potential for these
two groups. For example, with N ¼ 2, the results for
SOð5Þ are

Γð2Þ
f ¼ g2T4

8

�
5

6
þ ð3q21 − 3q1Þð2 − 3q1 þ 3q21Þ

− ð8q21 − 8q1 þ 2Þq2
þ ð11 − 36q1 þ 36q21Þq22 − 6q32 þ 9q42

�
;

Γð2Þ
i ¼ g2T4

4

�
3ð1 − 2q1Þ2ð1 − q1Þq1 þ 4

�
q21 − q1 þ

1

4

�
q2

þ ð48q1 − 13 − 48q21Þq22 þ 8q32 − 12q42

�
: (96)

The effective potential at one-loop order reads

Γð1Þ ¼ − 2π2T4

9

þ 4T4π2

3
½3ðq1 − 1Þ2q21 − 2q32 þ 3q42

þ 3ðq2 − 2q1q2Þ2�: (97)

It is straightforward to show that

Γð2Þ
f þ Γð2Þ

i

Γð1Þ ¼ − 15g2

32π2
; for N ¼ 2: (98)

We can easily get analogous results for SOð2NÞ simply by
ignoring the off-diagonal generator Eηi. We have verified
Eq. (66) for SOð2N þ 1Þ and SOð2NÞ up to N ¼ 5.

D. Calculation for Spð2NÞ
In this section we discuss the symplectic groups Spð2NÞ.

They are the pseudoreal part of SUð2NÞ constructed by
defining the charge conjugation matrix,

I2N ¼ iσ2 ⊗ 1N; (99)

and requiring the special unitary matrix U to obey

I2NUI†2N ¼ U�; (100)

where σi are the Pauli matrices with i ¼ 1, 2, 3, and 1N is
the N-dimensional unit matrix.
Writing U ¼ expðiGÞ, the symplectic generator is of

the form

G ¼
�

A B

B� −A�

�
: (101)

Here, A is a Hermitian matrix with A ¼ A†, and B ¼ Bt is
complex. For N ¼ 1, this form indeed reduces to the gen-
erator of SUð2Þ. The Hermitian matrix A is not traceless,
but G is. We therefore haveN2 real degrees of freedom from
A, and NðN þ 1Þ degrees of freedom from the symmetric
complex matrix B. In total, we have Nð2N þ 1Þ. The
Cartan space is N dimensional.
The diagonal generators of Spð2NÞ is

Hd ¼ 1ffiffiffi
2

p σ3 ⊗ λd; d ¼ 1;…; N: (102)

Here, the N − 1matrices λd are the same as for SUðNÞ, and
we need the additional λN ¼ 1ffiffiffiffiffi

2N
p 1N .

The corresponding off-diagonal generators Eij are

Eij ¼ 1ffiffiffi
2

p
�
λij 0

0 −λji

�
; i; j ¼ 1;…; N; and i ≠ j:

(103)

The Eij produce the roots of SUðNÞ, up to a factor of 1ffiffi
2

p ,

½Hd; Eij� ¼ 1ffiffiffi
2

p ðλdii − λdjjÞEij: (104)

In addition, we have additional NðN þ 1Þ off-diagonal
generators of the complex symmetric matrix B which are
denoted Eηij; the first index η is a sign index. They are
defined by
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Eηij ¼
�
1ffiffiffi
2

p þ δij

�
1

2
− 1ffiffiffi

2
p

��
ση ⊗ ðλij þ λjiÞ;

i; j ¼ 1;…; N; and i ≥ j; (105)

where ση ¼ 1
2
ðσ1 þ iησ2Þ. Here, the index i can be equal to

j which defines 2N long roots. The generators Eηij produce
a new type of roots. For i > j, we have

½Hd; Eηij� ¼ ηffiffiffi
2

p ðλdii þ λdjjÞEηij: (106)

For i ¼ j, we have

½Hd; Eηii� ¼ η
ffiffiffi
2

p
λdiiE

ηii: (107)

Like for SUðNÞ, we can write the roots for Spð2NÞ
in terms of the orthonormal basis fe⃗ig introduced in
Sec. III B,

α⃗ηij ¼ η

2
ðe⃗i þ e⃗jÞ; 1 ≤ j < i ≤ N;

α⃗ij ¼ 1

2
ðe⃗i − e⃗jÞ; 1 ≤ i ≤ N; 1 ≤ j ≤ N and i ≠ j;

α⃗ηi ¼ ηe⃗i; 1 ≤ i ≤ N: (108)

Here, the first roots are associated with the generators
Eηij when i > j and the second roots are associated with
the generators Eij. These two kinds of roots have length
1ffiffi
2

p and they are the short roots. There are 2NðN − 1Þ of
those. The roots α⃗ηi (which can be also written as α⃗ηii)
come from Eηii. The 2N roots α⃗ηi have length 1 and are
the long roots.
Inversion of the roots is called duality and delivers

the roots of SOð2N þ 1Þ. The roots of Spð2NÞ are those
of SOð2N þ 1Þ, with the long roots being the short
ones, and the short roots being the long ones. With
our normalization of the generators there is an overall
factor of 1=2.
From this discussion we can easily get C2ðAÞ ¼ N þ 1

for Spð2NÞ. For N ¼ 1, we find C2ðAÞ ¼ 2 which is the
same as for SUð2Þ, as expected.
On the other hand, the commutation relations between

the off-diagonal generators are

½Eij; Ekl� ¼ 1

2
ðδjkEil − δilEkjÞ;

½Eþij; E−kl� ¼ 1

2
ðδjkEil þ δilEjk þ δjlEik þ δikEjlÞ;

½Eηij; Eηkl� ¼ 0: (109)

The first line is the commutation relation of SUðNÞ, with
the structure constant 1=2 instead of 1=

ffiffiffi
2

p
. The other lines

all reflect the symmetry in the indices of the Eηkl.

For Spð2NÞ, we have four different types of structure
constants due to the nonvanishing commutators, namely,
fd;ηij;η

0kl, fd;ij;kl, ftn;ij;kl and ftn;ηij;η
0kl. The structure con-

stants can be obtained from the nonvanishing commutators
as discussed above.10 As before, these structure constants
can be obtained also by the trace calculation. With the def-
inition of the structure constants, it is very straightforward
to write down the equations corresponding to Eqs. (81)and
(95).
The background field of Spð2NÞ can be parametrized as

Q ¼ σ3 ⊗ Q0 where Q0 ¼ diagðq1; q2;…; qNÞ is an N × N
diagonal matrix. Using the commutators

½Q;Eij� ¼ ðqi − qjÞEij; ½Q;Eηij� ¼ ηðqi þ qjÞEηij;

(110)

we found that the arguments of the Bernoulli functions
are the following: qd¼0, qij¼qi−qj and qηij ¼
ηðqi þ qjÞ.
For the N independent variables qi of the background

field, with the same assumption on their values as
SOð2N þ 1Þ and SOð2NÞ, we can compute the effective
potential for Spð2NÞ with our program. For example, with
N ¼ 2, the results for Spð4Þ are given by

Γð2Þ
f ¼ 5g2T4

24

�
27

2
q42 − 10q32 þ q2ð2q1 − 2q21 − 1Þ

þ q22

�
9

2
− 7q1 þ 9q21

�

þ q1
2
ð17q1 − 34q21 þ 27q31 − 4Þ

�
;

Γð2Þ
i ¼ g2T4½30q32 − 36q42 − 2ð1 − 3q1Þ2q1ð2q1 − 1Þ

þ q2ð1 − 2q1 þ 2q21Þ − 2q22ð6 − 11q1 þ 12q21Þ�:
(111)

The effective one-loop potential is

Γð1Þ ¼ − 2π2T4

9

þ 8T4π2

3
½9q42 − 8q32 þ q22ð3 − 6q1 þ 6q21Þ

þ q21ð3 − 10q1 þ 9q21Þ�: (112)

Therefore,

10For Spð2NÞ, if the typical off-diagonal index b is denoted as
b ¼ ij, then −b ¼ ji which is the same as for SUðNÞ; if b ¼ ηij,
then −b ¼ −ηij.
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Γð2Þ
f þ Γð2Þ

i

Γð1Þ ¼ − 15g2

16π2
; for N ¼ 2: (113)

For Spð2NÞ, we verify Eq. (66) explicitly up to N ¼ 5.

E. Calculation for Gð2Þ
Gð2Þ is a subgroup of SOð7Þ. It leaves the structure

constants of the octonians invariant, and this is the way
it is traditionally defined. However, the algebra of Gð2Þ
is related in a straightforward way, by simple projections,
to that of SOð7Þ as shown in Fig. 3. In what follows the
indices i,j run from 1 to 3 and i > j. The relation between
the two groups is quite simple: six of the twelve long roots
α⃗ηi:η

0j are in the plane q1 þ q2 þ q3 ¼ 0 as shown in Fig. 4).
They are the roots associated with the generators Eþi:−j and
E−i:þj. The other six that are not in that plane are projected
onto that plane. They are the projections of the six short
roots of SOð7Þwhich are associated with the generators Eηi.
Because of the projection, the short roots of Gð2Þ are 1ffiffi

3
p

in units of the long roots. Recall that the short roots of
SOð7Þ were 1ffiffi

2
p in units of the long roots. The projection

respects the commutation relations of SOð7Þ, except for
the scale factor we just mentioned. For example, in
SOð7Þ, we have

½Eηi; Eηj� ¼ i
2
Eηi:ηj: (114)

Thegeneratoron the right-handsideprojectsonto−ηϵijkE−ηk.
As a result, for Gð2Þ, the above commutator reads

½Eηi; Eηj� ¼ − iηffiffiffi
3

p ϵijkE−ηk: (115)

The three commuting generators of theSOð7ÞCartan alge-
bra reduce to two for Gð2Þ, because of the constraint
q1 þ q2 þ q3 ¼ 0. For Gð2Þ, we define the two Cartan
generators

H1 ¼ 1ffiffiffi
2

p ðM12 −M34Þ; (116)

H2 ¼ 1ffiffiffi
6

p ðM12 þM34 − 2M56Þ: (117)

The prefactor ensures that TrðHdÞ2 ¼ 1
2
. Together with the

other twelve off-diagonal generators Eþi:−j, E−i:þj and
Eηi, we have the explicit form of all the 14 generators
for Gð2Þ. Except for the one given by Eq. (115), all other
commutation relations can be obtained from the corre-
sponding equations of SOð7Þ, i.e. Eqs. (92) and (93).
In addition, the commutation relations involving the diago-
nal generators are

½H1; Eηi� ¼ η

2
ffiffiffi
2

p ðδ1i − δ2iÞEηi;

½H2; Eηi� ¼ η

2
ffiffiffi
6

p ðδ1i þ δ2i − 2δ3iÞEηi;

½H1; Eηi:η0j� ¼ 1

2
ffiffiffi
2

p ðηðδ1i − δ2iÞ þ η0ðδ1j − δ2jÞÞEηi:η0j;

½H2; Eηi:η0j� ¼ 1

2
ffiffiffi
6

p ðηðδ1i þ δ2i − 2δ3iÞ

þ η0ðδ1j þ δ2j − 2δ3jÞÞEηi:η0j: (118)
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FIG. 3 (color online). The three-dimensional root space of
SOð7Þ, with the plane where the six roots α⃗ηi:η

0j lie. This plane
is the root space of Gð2Þ, on which the six short roots α⃗ηi of
SOð7Þ are projected. The six projections α⃗ηi are of length 1ffiffi

3
p

in units of the length of the six roots α⃗ηi:η
0j.
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FIG. 4 (color online). The root space ofGð2Þ, which is the q1 þ
q2 þ q3 ¼ 0 plane in Fig. 3, with the same notation for the roots.
The roots are related to the matrices T� etc. in Ref. [23].
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The above commutators state that the square of the roots
α⃗ηi:η

0j, which are associated with the 6 generators Eηi:η0j,
equal 1=2 and the square of the roots α⃗ηi associated with
the 6 generators Eηi equal 1=6. Since the rank of Gð2Þ is
2, we get C2ðAÞ ¼ 2.
We can obtain all the structure constants that are needed

to compute the effective potential through

fd;ηi;ρj ¼ 2TrðEρj · ½Hd; Eηj�Þ
fd;ηj:−ηk;ρl:−ρm ¼ 2TrðEρl:−ρm · ½Hd; Eηj:−ηk�Þ;
fηi:−ηj;ρk;−ρl ¼ 2TrðE−ρl · ½Eηi:−ηj; Eρk�Þ;

fηi:−ηj;ρk:−ρl;σt:−σn ¼ 2TrðEσt:−σn · ½Eηi:−ηj; Eρk:−ρl�Þ: (119)

In addition, we have a special one from Eq. (115) which is
fηi;ηj;ρk ¼ − iηffiffi

3
p ϵijkδηρ. We employ these expressions to

compute the structure constants in our MATHEMATICA

program.
The background field of Gð2Þ can be parametrized in the

same way as SOð7Þ, with an additional constraint that
q3 ¼ −q1 − q2. Furthermore, for the possible values of
qi, we use the same assumptions as for SUð3Þ. As a result,
the constraint becomes q3 ¼ −q1 − q2 þ n with n ¼ 0, 1,
2. Notice that for Gð2Þ, the argument of the Bernoulli func-
tions can be 0, ηqi and ηðqi − qjÞ. Unlike SOð7Þ, there is
no qi þ qj in the Bernoulli functions and our assumption
on the values of qi enables us to avoid the modulo function
and also make the sign function definitive.

The resulting effective potential for Gð2Þ reads

Γð2Þ
f ¼ g2T4

3

�
7

12
þ q3 − q2 þ 4q41 þ 4q23ð1þ q3 þ q23Þ − q3ð1þ q3Þð1þ 6q3Þq2

þ ð4þ 5q3 þ 10q23Þq22 − 2ð1þ 3q3Þq32 þ 4q42 − 2q31ð4þ 3q3 þ 3q2Þ þ q21ð7þ 8q3 þ 10q23 þ 5q2 þ 10q22Þ

− q1ð3þ 4q3 þ 10q23 þ 6q33 þ q2 þ 7q22 þ 6q32Þ
�
;

Γð2Þ
i ¼ g2T4

9
½−32q41 − q3ð3þ 8q3Þð2þ 3q3 þ 4q23Þ þ q3ð25þ 57q3 þ 52q23Þq2 − ð25þ 69q3 þ 72q23Þq22

þ 4ð3þ 13q3Þq32 − 32q42 þ q31ð60þ 52q3 þ 52q2Þ − q21ð34þ 78q3 þ 72q23 þ 69q2 þ 72q22Þ
þ q1ð6þ 34q3 þ 66q23 þ 52q33 þ 25q2 þ 57q22 þ 52q32Þ�: (120)

Comparing to the one-loop result

Γð1Þ ¼ − 14π2T4

45
þ 4T4π2

3
½ðq1 − 1Þ2q21 þ ðq1 − 1 − q3Þ2ðq1 − q3Þ2 þ ðq3 − 1Þ2q23

þ ðq1 − 1 − q2Þ2ðq1 − q2Þ2 þ ðq3 − q2Þ2ð1þ q3 − q2Þ2 þ ðq2 − 1Þ2q22�; (121)

we see that

Γð2Þ
f þ Γð2Þ

i

Γð1Þ ¼ − 5g2

8π2
: (122)

However, unlike for SUðNÞ, to obtain this result we must
explicitly use that q3¼−q1−q2þ1 or q3 ¼ −q1 − q2 þ 2
or q1 ¼ q2 ¼ q3 ¼ 0.

IV. A SIMPLIFIED FORM FOR THE INSERTION

The insertion diagram involves sums over diagonal indi-
ces d which can be performed quite easily as they corre-
spond to inner products between the corresponding
roots. We use the relation between the roots and the unit
vectors mentioned in the previous sections to reduce the
inner products to sums of Kronecker δ’s. In addition, the

antisymmetry of the Bernoulli polynomials B̂1 and B̂3 is
needed. For example, B̂1ðηqi þ η0qjÞ ¼ η0B̂1ðηη0qi þ qjÞ,
etc. Those are then applied to the expression for Γð2Þ

i from
Eq. (65).
For SUðNÞ this is quite simple. Using

α⃗ijB̂nðqi − qjÞ ¼
ffiffiffi
2

p
e⃗iB̂nðqi − qjÞ; (123)

we get

Γð2Þ
i ðSUðNÞÞ ¼ 4g2

X
ijl

B̂1ðqi − qjÞB̂3ðqi − qlÞ: (124)

Here, the only constraint on the indices is that i ≠ j and
i ≠ l. In Eq. (123), B̂n always refers to B̂1 or B̂3 and this
applies throughout this section.
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For the orthogonal groups the long and short roots satisfy
the following relations11

X
ηη0

α⃗ηi:η
0jB̂nðηqi þ η0qjÞ ¼ e⃗iðB̂nðqi þ qjÞ þ B̂nðqi − qjÞÞ;

(125)

X
η

α⃗ηiB̂nðηqiÞ ¼ e⃗iB̂nðqiÞ: (126)

As a result, the insertion diagram for SOð2NÞ is reduced to

Γð2Þ
i ðSOð2NÞÞ ¼ 2g2

X
i;j;l

ðB̂1ðqi þ qjÞ

þ B̂1ðqi − qjÞÞðB̂3ðqi þ qlÞ
þ B̂3ðqi − qlÞÞ; (127)

with i ≠ j and i ≠ l. For SOð2N þ 1Þ, the result is

Γð2Þ
i ðSOð2N þ 1ÞÞ ¼ Γð2Þ

i ðSOð2NÞÞ þ 2g2
X
i;j

½ðB̂1ðqi þ qjÞ

þ B̂1ðqi − qjÞÞB̂3ðqiÞ þ ðB̂3ðqi þ qjÞ
þ B̂3ðqi − qjÞÞB̂1ðqiÞ�
þ 2g2

X
i

B̂1ðqiÞB̂3ðqiÞ: (128)

and the same constraints i ≠ j and i ≠ l apply.
Finally, for Spð2NÞ, we have

X
η

α⃗ηijB̂nðηðqi þ qjÞÞ ¼ e⃗ið1þ δijÞB̂nðqi þ qjÞ; (129)

α⃗ijB̂nðqi − qjÞ ¼ e⃗iB̂nðqi − qjÞ: (130)

In Eq. (129), the case where i ¼ j is included. In Eq. (130),
i ≠ j applies. The simplified insertion diagrams read

Γð2Þ
i ðSpð2NÞÞ ¼ 2g2

X
i

�X
j

ðB̂1ðqi þ qjÞ þ B̂1ðqi − qjÞÞ

þ 2B̂1ð2qiÞ
��X

l

ðB̂3ðqi þ qlÞ

þ B̂3ðqi − qlÞÞ þ 2B̂3ð2qiÞ
�
; (131)

where i ≠ j and i ≠ l apply.

For Gð2Þ, we can also work out the structure constants
to get

Γð2Þ
i ðGð2ÞÞ ¼ 2g2

X
ijl

B̂1ðqi − qjÞðB̂3ðql − qjÞ

− B̂3ðql − qiÞÞ þ
4g2

3

X
i

B̂1ðqiÞB̂3ðqiÞ

þ 2g2
X
ij

B̂1ðqi − qjÞð2B̂3ðqi − qjÞ

þ B̂3ðqiÞ − B̂3ðqjÞÞ

þ 2g2

3

X
il

B̂1ðqiÞð3B̂3ðqi − qlÞ − B̂3ðqlÞÞ;

(132)

where i > j, j ≠ l and i ≠ l.
Using the explicit expressions for Γð2Þ

i given in this sec-
tion, we can compute for larger N more efficiently. At the
same time, we can easily prove that the result for Γð2Þ

i is
independent of the value of B̂1ðn0Þ for integer n0. We point
out that for the last term in Gð2Þ, to show the independence
on B̂1ðn0Þ, we need to use the condition q1 þ q2 þ q3 ¼ 0,
1, 2. Notice that although the same condition appears for
SUðNÞ, it is not actually needed to show independence
of B̂1ðn0Þ.
For the free energy Γð2Þ

f , according to Eq. (64), there is an
obvious simplification if one of the indices in the structure
constant is diagonal. In this case,

P
d jfd;b;cj2 is just the

square of the roots’ length which is already known.
(Here, b and c denote off-diagonal indices.) For instance,
for SUðNÞ such a term becomes

g2
X
ij

ð2B̂2ð0ÞB̂2ðqi − qjÞ þ ðB̂2ðqi − qjÞÞ2Þ: (133)

It is straightforward to get these contributions for other
groups and we don’t list the rest here.
For the case where fa;b;c has no diagonal index, there is

no obvious simplification. However, the values of these
structure constants can be simply read off from the commu-
tators given above.

V. CONCLUSIONS

The main result of this paper is that the two-loop renorm-
alization of the effective potential is very simple: the two-
loop potential is proportional to that at one loop, Eq. (66).
There is nothing in the way we perform the computation
that suggests such simplicity. For SUðNÞ groups it has long
been known [20,24] that this proportionality holds along
the edges of the Weyl chamber.
Hence, at this order in perturbation theory the minima of

the perturbative action stay put. How this works out to three-
loop order is something that remains to be worked out.

11On the left-hand side of Eq. (125), j > i is forbidden accord-
ing to our notations. However, on the right-hand side of this
equation, j > i is permitted. The same is true for Eq. (129).
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The two-loop effective potential found here could now
be supplemented by a model for nonperturbative physics,
e.g. along the lines of Refs. [2–4], in an attempt to under-
stand the eigenvalue distribution of the Polyakov loop in
the gauge theories mentioned above.
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APPENDIX A: BERNOULLI POLYNOMIALS

We define the Bernoulli polynomials,

B̂d−2kðxÞ ¼ T
X
n0

Z
dd−1p⃗
ð2πÞd−1

1

ðpijÞ2k ; (A1)

B̂d−2kþ1ðxÞ ¼ T
X
n0

Z
dd−1p⃗
ð2πÞd−1

pij
0

ðpijÞ2k ; (A2)

B̂dðxÞ ¼ T
X
n0

Z
dd−1p⃗
ð2πÞd−1 ðlogðp

ijÞ2 − log p2Þ: (A3)

In these equations, pij
0 ¼ 2πTðn0 þ xijÞ with n0 an integer.

Below, the indices i and j associated with x are omitted
for simplicity of notation. Also, ðpijÞ2 ¼ ðpij

0 Þ2 þ p⃗2 and
p2 ¼ ð2πn0TÞ2 þ p⃗2.
In d ¼ 4 dimensions and for k ¼ 0, 1, we have the

following four Bernoulli polynomials:

B̂4ðxÞ ¼
2

3
π2T4B4ðxÞ; B̂3ðxÞ ¼

2

3
πT3B3ðxÞ;

B̂2ðxÞ ¼
1

2
T2B2ðxÞ; B̂1ðxÞ ¼ −

T
4π

B1ðxÞ; (A4)

with

B4ðxÞ ¼ x2ð1 − xÞ2; B3ðxÞ ¼ x3 − 3

2
x2 þ 1

2
x;

B2ðxÞ ¼ x2 − xþ 1

6
; B1ðxÞ ¼ x − 1

2
: (A5)

The above expressions are defined on the interval 0 ≤ x ≤
1 and they are periodic functions of x, with period 1.

For arbitrary values of x, the argument of the above
Bernoulli polynomials should be understood as x − ½x�with
½x� the largest integer less than or equal to x, which is
nothing but the modulo function.
If −1 ≤ x ≤ 1 we can drop the modulo functions and the

Bernoulli polynomials reduce to

B4ðxÞ ¼ x2ð1 − ϵðxÞxÞ2;

B3ðxÞ ¼ x3 − 3

2
ϵðxÞx2 þ 1

2
x;

B2ðxÞ ¼ x2 − ϵðxÞxþ 1

6
;

B1ðxÞ ¼ x − 1

2
ϵðxÞ; (A6)

where ϵðxÞ is the sign function.
In fact the Bernoulli polynomials B1ðxÞ and B3ðxÞ are

odd functions of x, while B2ðxÞ and B4ðxÞ are even func-
tions of x, so we can always make the arguments of
Bernoulli polynomials positive(or be zero) and ignore
the sign functions which can save a lot of computing time.
However, we point out that B1ðxÞ has discontinuities at
integer x. For example, the value of B1ð0Þ depends on
the way one approaches zero, from above or from below.
If the result of the effective potential depends on B1ð0Þ, we
have to know how one approaches zero in order to use the
correct values of B1ð0Þ. In this case, the sign function in
B1ðxÞ is very important and can not be dropped even
x ≥ 0. Fortunately, we can prove that the contributions
related to B1ðn0Þ vanish without specifying the value of
B1ðn0Þ. Therefore, the effective potential does not depend
on B1ðn0Þ and we can simply drop the sign functions when
x ≥ 0. The proof is straightforward when using the total
antisymmetry of the structure constants. Alternatively,
one can also prove it by using the simplified expressions
of the insertion diagram given in Sec. IV.

APPENDIX B: THE IDENTITY EQUATION (53)

This identity relates the one-gluon correction of the
multiply winding Polyakov loop to the one-gluon correc-
tion of the Polyakov loop with single winding,

hTrðQ2
0 · ðLnÞ00Þi ¼ hQ̄2

0 ·L
00idtndðΦÞ: (B1)

Here, Dii ¼ P
j λ

ijλji and the definition of ΔðrÞ is
12

ΔðrÞðΦijÞ ¼ ⨋p

1

ðpij
0 Þr

Δ00ðpijÞ; (B2)

with

12The dependence on the argument Φij is through pij. We have
ðpijÞ2 ¼ ðpij

0 Þ2 þ p⃗2 and pij
0 ¼ 2πTn0 þ TΦij.
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Δ00ðpijÞ ¼
δ00 − ð1 − ξÞ ðp

ij
0
Þ2

ðpijÞ2

ðpijÞ2 : (B3)

The multiply winding loop TrðLðA0ÞnÞ can be written as
a time-ordered product from time τ ¼ 0 to τ ¼ n

T,

TrðLðA0ÞnÞ ¼ TrP exp

�
i
Z

n=T

0

dτA0ðx⃗; τÞ
�
: (B4)

There is a caveat: the field A0 is periodic modulo 1
T, not

n
T.

This smaller periodicity is guaranteed by the Matsubara
frequencies being integer multiples of 2πT. The propagator
follows from the action and has the small periodicity 1=T.
Diagonal gluons do not feel the background field; upon

integration over the emission and absorption times they are
odd in the Matsubara frequency and so do not contribute.
We only have to consider the contractions of off-diagonal
hQij

0 ðτ2ÞQji
0 ðτ1Þi. These propagators are gauge field propa-

gators in ξ gauge,

hQij
0 ðτ2ÞQji

0 ðτ1Þi ¼ expðip0ðτ2 − τ1ÞÞΔ00ðpijÞ: (B5)

Note the shift of the Matsubara frequencies in the propa-
gator Δ00ðpijÞ. This follows from the diagonalization in
color space of the bilinear part of the action. The propaga-
tors in (B5) are still periodic modulo 1=T.
Thus, the calculation of the one-loop average of

TrðLðA0ÞnÞ boils down to the one- gluon exchange correc-
tion in

TrP exp

�
i
Z

n=T

0

A0ðx⃗; τÞ
�
: (B6)

For convenience in what follows we write Φ instead of
q ¼ Φ=2π in the arguments of L and the exponents.
The calculation of the average is now quickly achieved,

�
TrP exp

�
i
Z

n=T

0

A0ðx⃗; τÞ
��

¼ −g2
Z

n=T

0

Z
τ1

0

dτ1dτ2hTr expðiΦTτ2ÞQ0ðτ2Þ

× expðiΦTðτ1 − τ2ÞÞQ0ðτ1Þ expðiΦðn − Tτ1ÞÞi:
(B7)

We now use the propagator (B5) for hQij
0 ðτ2ÞQji

0 ðτ1Þi and
the identities

expðiΦTτÞλij expð−iΦTτÞ ¼ expðiΦijTτÞλij; (B8)

to shift the Matsubara frequencies from p0 to p0þ
ΦijT ¼ pij

0 . The result is that we can drop the heavy quark

propagators but shift the frequency p0 in the propagator in
Eq. (B5) to pij

0 ¼ p0 þ ΦijT.
The time-ordered integrals give two terms,

Z
n=T

0

Z
τ1

0

dτ1dτ2 expðipij
0 ðτ2 − τ1ÞÞ

¼ ð1 − expð−inΦijÞÞ
ðpij

0 Þ2
− n

iTpij
0

: (B9)

We do the same for the mode with hQji
0 ðτ2ÞQij

0 ðτ1Þi. As
expected it gives Eq. (B9) with i↔j. If we sum over
−p0 instead of p0, we see that the denominator of the first
resp. second term are even resp. odd under interchange of i
and j. Substituting into Eq. (B7) we get the combination
(remember that Dii ¼ λijλji)

hTrðQ̄2
0 · ðLnÞ00Þi

¼ − g2

2

X
ij

Tr

�
n
iT

expðinΦÞðDii −DjjÞΔð1ÞðΦijÞ

þ expðinΦÞΔð2ÞðΦijÞðDiið1 − expð−inTΦijÞÞ

þDjjð1 − expðinTΦijÞÞÞ
�
: (B10)

The second term, proportional to Δð2Þ drops out after
taking the trace. The reason is that TrðexpðinΦÞDiiÞ ¼
1
2
expðinΦiÞ. Clearly, the untraced loop contains unphysi-

cal results like the divergent Δð2Þ but the trace projects
them out.
The latter argument is not only valid for SUðNÞ but also

for the other classic groups (by using the roots e⃗i).
Remarkably, the matrix tndðΦÞ factors out and we obtain

Eq. (53),

hTrðQ̄2
0 · ðLnÞ00Þi ¼ hQ̄2

0 ·L
00idtndðΦÞ: (B11)

This the desired factorization, and the first factor hQ̄2
0 ·

L00id is the projection on λd of the one-gluon corrected
Polyakov loop.
Recall that the insertion diagram in Fig. 1 involves only

summation over the looping index n. The derivative acting
on the gauge field vertices is, according to (41),

Q̂n
0 ≡

X
d

tndðqÞ ¯̄Qd
0: (B12)

Hence, the summation over these loop indices n drops out,
because of the factorization we just obtained,
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Γi ¼
XN−1

n¼1

hTrðQ̄2
0 · ðLnÞ00Þi

�∂Sint
∂Q̂n

0

�

¼
XN−1

d¼1

hQ̄2
0 ·L

00id
�∂Sint
∂ ¯̄Qd

0

�
: (B13)

hQ̄2
0 ·L

00id ¼ g2
1

2T

X
ij

fd;ij;jiΔð1ÞðΦijÞ: (B14)

This is the result for all covariant background gauges and
all classical groups. We leave it to the reader to isolate the
part proportional to the gauge parameter ξ. This follows
immediately from the expression for Δð1Þ in Eq. (B2).
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