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The pion electromagnetic form factor at spacelike momentum transfer is calculated in relativistic

impulse approximation using the covariant spectator theory. The same dressed quark mass function and

the equation for the pion bound-state vertex function as discussed in the companion paper are used for the

calculation, together with a dressed quark current that satisfies the Ward-Takahashi identity. The results

obtained for the pion form factor are in agreement with experimental data, they exhibit the typical

monopole behavior at high-momentum transfer, and they satisfy some remarkable scaling relations.
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I. INTRODUCTION

In the companion paper, Ref. [1], a model for the q �q
interaction was developed that uses the Nambu-Jona-
Lasinio mechanism to ensure that a pion bound state of
zero mass exists whenever mass can be spontaneously
generated through the self-interactions that dress a mass-
less quark. A novel feature of this model is its simplicity; in
momentum space, the kernel is the sum of a pure vector
�-function interaction and an interaction which provides
confinement, so that even though a feature of the covariant
spectator theory (CST) [2–4] is that one of the quarks can
be on shell (where both the q and �q will sometimes be
referred to collectively as ‘‘quarks’’), both quarks in the
pair can never be on shell simultaneously. The confining
interaction can be a mixture of vector and scalar exchanges,
but in the chiral limit (where the undressed mass of the
quark, m0, is zero) the scalar part of the confining interac-
tion decouples, allowing the chirally invariant vector inter-
actions to preserve the features of chiral symmetry. In
Ref. [1], the mass function was calculated by fitting two
model parameters to lattice data, and the bound-state q �q
equations were defined and their properties studied.

It is the purpose of this paper to show that the simple
model introduced and fixed in Ref. [1] can be used to
calculate the pion form factor without modifications. This
is the first demonstration showing how the model can be
applied to a variety of interesting physics problems. Even
though the CST has been well studied and used in previous
calculations of nuclear form factors [5,6], this calculation
introduces a number of new issues never before encoun-
tered. The discussion here will not only lead to some inter-
esting new results, but also extend understanding of how to

use the CST. Discussion of the results, and comparison with
some previous work, is saved for the last section.

II. PION FORM FACTOR IN THE
BETHE-SALPETER THEORY

The electromagnetic pion form factor in the spacelike
region has been calculated in a great variety of different
approaches; see, e.g., Refs. [7–19]. We begin by reviewing
the discussion of the pion form factor in the Bethe-Salpeter
(BS) formalism. We will consider a positively charged �þ
consisting of a u and a �d quark; the form factor for the ��
can be obtained by charge conjugation. In impulse approxi-
mation, the electromagnetic form factor of the �þ is
extracted from the sum of two triangle diagrams, in which
the photon couples either to the u or the �d quark, as
depicted in Fig. 1.
The top diagram, with the �d quark as spectator, is

weighted by the u quark’s electric charge 2
3 e, while the

bottom diagram, with the u quark as spectator, is weighted
by the electric charge � 1

3 e of the d quark traveling

backward in time. The sum of the two diagrams is

J�ðPþ; P�Þ ¼ eF�ðQ2ÞðPþ þ P�Þ�

¼ 2

3
e
Z d4k

ð2�Þ4 tr½ ��BSðk; pþÞ
� SðpþÞj�ðpþ; p�ÞSðp�Þ�BSðp�; kÞSðkÞ�

� 1

3
e
Z d4k

ð2�Þ4 tr½�BSðk; p0�Þ

� Sðp0�Þj�ðp0�; p0þÞSðp0þÞ ��BSðp0þ; kÞSðkÞ�;
(1)

where p� ¼ kþ P�, p0� ¼ k� P�, j�ðpþ; p�Þ is the
dressed current for off-shell quarks (defined below), and
SðpÞ is the dressed propagator of a quark withmomentum p:
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SðpÞ ¼ Zðp2Þ Mðp2Þ þ 6p
M2ðp2Þ � p2 � i�

; (2)

with Mðp2Þ being the quark mass function and Zðp2Þ the
wave function renormalization, as discussed in Ref. [1] and
reviewed below. For the model considered here, Zðp2Þ ¼ 1.
The quark mass function Mðp2Þ is obtained from the solu-
tion of the CST Dyson equation for the self-energy, and the
constituent (dressed) massm of the quark is then determined
from the condition Mðm2Þ ¼ m. We assume equal masses
for the u and d quarks, so the u and d propagators are
identical. Finally, following the notation of Ref. [1], the
vertex function �BSðp1; p2Þ describes a �þ coupling to
an outgoing u quark of momentum p1 and an incoming d
quark of momentum p2 (the same as an outgoing �d quark

of momentum �p2), while
��BSðp1; p2Þ describes a �þ

coupling to an incoming u quark of momentum p1 and
an outgoing d quark of momentum p2 (the same as an
incoming �d quark of momentum �p2).

Before turning to the CST formalism, we show how the
second contribution to the form factor can be transformed
into the first, and the two added together. To do this, we
need the following transformations of the vertex function
and the current under charge conjugation:

C�⊺
BSðp1; p2ÞC�1 ¼ �BSð�p2;�p1Þ;
Cj�⊺ðp0; pÞC�1 ¼ �j�ð�p;�p0Þ:

(3)

While these relations can be derived from general
principles, they also follow from the typical matrix struc-
ture of �BS [such as �BSðp1; p2Þ � ðm� 6p1Þ�5ðm� 6p2Þ]
or j� [such as j�ðp0; pÞ � ðm� 6p0Þ��ðm� 6pÞ]. Taking
the transpose of the trace, inserting CC�1 ¼ 1 between the
operators, and using the properties in Eq. (3) converts the
trace from the second term of Eq. (1) into

tr½� � �� ! �tr½ ��BSð�k;�p0þÞSð�p0þÞj�ð�p0þ;�p0�Þ
� Sð�p0�Þ�BSð�p0�;�kÞSð�kÞ�: (4)

Now, changing k ! �k under the integral and noting that
this converts p0� ! �p� shows that the trace in Eq. (4) is
identical to the trace in the first term of Eq. (1), except for
the minus sign which converts the factor � 1

3 ! 1
3 . Hence,

the two terms are identical (except for the charges), and
their sum equals the first term with the factor of 23 e replaced

by e. Note that the ability to change k ! �k under the
integral was essential to the argument.

This discussion can be easily extended to show that the
�0 form factor is identically zero, and that except for a
sign, the �� form factor is identical to the �þ form factor.

III. PION FORM FACTOR IN THE CST

In the CST, the integral over the relative momentum of
the two propagating particles is constrained by the require-
ment that one of the two particles must always be on shell,

with contributions from terms when both particles are off
shell moved to higher order in the series of terms that
define the relativistic two-body kernel. The motivation
for this rearrangement of terms is that, in many examples,
it can be shown that the off-shell terms (from box dia-
grams, for example) tend to cancel other higher-order
terms in the kernel (crossed box diagrams, for example),
so that keeping one particle on shell not only simplifies the
equations but also improves the convergence of the
approximation to the underlying field theory.
The pion form factor in CST will therefore also involve

triangle diagrams similar to the BS diagrams shown in
Fig. 1, but with the internal particles constrained to their
mass shell in the same way that they are constrained in the
two-body bound-state equation. As shown in Ref. [1], a
careful treatment of the pion bound state in the chiral limit
requires a four-channel equation, with contributions from
the positive and negative energy poles of both particles
included. The full treatment of the triangle diagram for the
�þ form factor using the four-channel equation would
therefore involve contributions from the positive- and
negative-energy poles of both the u and �d quarks.
In this first calculation of the pion form factor using CST,

we chose to make some approximations that still preserve the

FIG. 1 (color online). The two triangle diagrams for the elec-
tromagnetic pion form factor. Here P� are the outgoing and
incoming (on-shell) pion four-momenta, q is the four-momentum
of the virtual photon, S is the dressed quark propagator, �BS is the
Bethe-Salpeter pion vertex function, and j� is the electromagnetic
off-shell quark current. The top diagram describes the interaction
of the virtual photon with the u quark, with the �d quark (repre-
sented by a d quark traveling backward in time with momentum k)
as a spectator; the bottom diagram represents the interaction of the
virtual photon with the �d quark (again represented by a d quark
traveling backward in time), with the u quark as the spectator.
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important physics. To understand these approximations,
study the location of the particle poles in the BS diagrams
of Eq. (1) and Fig. 1. First, concentrate on the diagram where
the photon couples to the u quark, and the �d quark is spectator
(top panel in Fig. 1). This diagram has six propagator poles in
the complex k0 plane, three of them in the lower and three in
the upper half plane [20]. In the Breit frame, where

P� ¼
�
P0; 0;� 1

2
Q

�
; q ¼ f0; 0; Qg; (5)

with P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

4Q
2

q
, � the pion mass, and Q the

photon momentum transfer, the poles of the spectator d
quark are located at k0 ¼ �Ek � i�, denoted 1�, where
Ek ¼ ðm2 þ k2Þ1=2, and the poles of the struck u quark
with momenta p� and pþ are at

k0 ¼ �P0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

? þ
�
kz �Q

2

�
2

s
� i�;

k0 ¼ �P0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

? þ
�
kz þQ

2

�
2

s
� i�;

(6)

denoted 2� and 3�, respectively. Since the square roots in
the last two expressions are positive, recalling that p� ¼
kþ P� means that 2þ and 3þ are the positive-energy poles
and 2� and 3� are the negative-energy poles of the struck u
quark. The locations of these six poles in the complex k0
plane depend on m, �, Q, kz and k? ¼ ðkx; kyÞ, and are

shown in Fig. 2 for two different pion masses.
Before proceeding further, recall that the masses in the

denominators of the propagators are not fixed, but are
functions of the four-momenta, so that, for example, the
denominator of the spectator propagator is M2ðk2Þ � k2,
not m2 � k2. At the pole, however, the mass condition
Mðm2Þ ¼ m holds, so that the location and movement of
the poles can be computed just as if the masses were fixed.

The full four-channel CST equation requires averaging
the contributions from all of the propagator poles in the
upper and lower half planes. Study of the bottom panel of
Fig. 2 shows that when � is comparable to the dressed
quark mass m, the largest contribution will come from
the 1� pole. For small Q (and small jkj), it is close to
the poles at 2þ and 3þ in the lower half plane, and at the
same time far away from the other poles. This is the on-
shell contribution of the spectator, with the physical energy
of the outgoing �d antiquark in its positive-energy state
(because the incoming d quark is in its negative energy
state). This approximation, used previously in the study of
deuteron form factors, is known as the relativistic impulse
approximation (RIA) [21–24].

The top panel of Fig. 2 shows that for small � (and also
small Q), all of the poles in the upper half plane are close to
each other (and will coalesce into a triple pole when both
Q ¼ 0 and� ¼ 0). The requirement that the limit� ! 0 be
described correctly is precisely what led to the need for a

four-channel CST equation in the first place, and these addi-
tional channels, included in contributions from the 2� and
3� poles, are also needed for a correct description of the
form factor in the limit when both � and Q are small.
In this first calculation, we will use the RIA, and hence

we cannot expect to be able to correctly describe the form
factor in the limit when both � and Q are small, where the
neglected contributions from the 2� and 3� poles cannot
be ignored (in fact, the RIA becomes singular when bothQ
and � tend to zero).
The case when Q is large poses an interesting issue. In

this case the position of the poles is quite insensitive to the
value of�, and therefore the RIA describes the form factor
equally well for both large and small �. However, as kz !
Q=2, the integrand becomes large, with the precise role of
the poles depending on whether or not kz is less than or
greater than Q=2 [recall Eq. (6)]. If kz & Q=2, the poles
1� and 2þ pinch, as shown in the top panel of Fig. 3, while
if kz * Q=2, the poles 1� and 2� are close together, as
illustrated in the bottom panel of Fig. 3. In both cases it
looks like the integral could be singular, but it remains
finite (and small). Briefly, to see what is happening, it

11

11

33

33

22

22

Re k 0

Im k 0

11

11

33

33

22

22

Re k 0

Im k 0

FIG. 2 (color online). The locations of the six propagator
poles in the complex k0 plane of the diagram where the d quark
is spectator, shown here for both Q and jkj small, with m ¼
0:308 GeV. The top panel shows the case when � ¼ 0:14 GeV;
the bottom shows the case when � ¼ 0:42 GeV. Note that large
and different imaginary parts � have been chosen for each pole in
order to spread them out in the complex plane for better
illustration, but in all cases � ! 0 is implied.
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is necessary to examine the behavior of the propagator with
momentum p� when the residue of the pole 1� is eval-
uated, i.e., when the spectator is on its negative-energy
mass shell, with k0 ¼ �Ek þ i�. The relevant integral is

I �
Z

dkzfðkzÞ½m2 � p2���1

¼
Z

dkzfðkzÞ½��2 þ 2P0Ek �Qkz��1; (7)

where we have approximated M2ðp2�Þ ’ m2, because we
are interested in the kinematics where p2� is close to m2,
and fðkzÞ is the remainder of the integrand which provides
the needed convergence when kz ! 1. AsQ becomes very
large, this integral peaks at very large kz but is still finite.
To estimate it, we expand the factors

lim
Q!1

I !
Z

dkz
fðkzÞ
Qkz

��
1þ 2�2

Q2

��
1þ E2

?
2k2z

�
� 1

��1

’
Z

dkzfðkzÞ
�
2�2kz
Q

þ E2
?Q
2kz

��2

��1
; (8)

where E? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2?

q
. This shows that the integrand

peaks at kz ¼ E?Q=ð2�Þ, and it is finite there provided

that�< 2m. Because the peak is located at large values of
kz where the remainder of the integrand, fðkzÞ, is already
very small, the integral is small as well. The rapid peaking
at high Q plays a crucial role in giving the correct asymp-
totic behavior of the form factor, as will be discussed in
Sec. VB below. Examination of the other propagator in p2þ
shows a similar behavior, but at negative kz.
To summarize, for small Q2, the RIA, by retaining only

the spectator pole contribution 1�, is a good approximation
to the CST triangle diagram only for sufficiently large pion
masses. For large Q2, on the other hand, the locations of
the poles are insensitive to �, and therefore the RIA is
good not only for large but also for small values of �
(the physical pion mass of � ¼ 0:14 GeV, for example),
and even for vanishing pion mass in the chiral limit. This
concludes our discussion of the RIA contribution from the
spectator d quark.
Now we turn to the RIA contribution from the diagram

where the u quark is the spectator. The locations of the
poles can be analyzed in the same way as in the first case;
this will not be discussed in detail here. In essence, it is
now the positive-energy pole of the spectator u quark
(in the lower half k0 plane) that plays the same role as
the spectator pole from the d quark discussed above. This
contribution is represented diagrammatically in the lower
panel of Fig. 4.
The diagram shown in the lower panel of Fig. 4 can be

transformed into the expression for the upper panel, except
for a different charge factor. As in the BS case, invariance

under the transformation k̂ ! �k̂, where k̂ ¼ fEk;kg is the
on-shell spectator quark momentum, is needed for this
transformation, and it is possible because the first

FIG. 4 (color online). The two contributions to the �þ form
factor in the RIA.
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FIG. 3 (color online). The locations of the same six propagator
poles shown in Fig. 2, with m ¼ 0:308 GeV, � ¼ 0:14 GeV,
and k? ¼ 0, but with Q large. The top panel shows the case
when kz & Q=2 and the poles 1� and 2þ pinch; the lower panel
shows the case when kz * Q=2 and the poles 1� and 2� get
close to each other.
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contribution is obtained from the negative-energy pole
contribution of the spectator d quark of the upper half
plane and the second from the positive-energy pole con-
tribution of the spectator u quark of the lower half
plane. The first fixes k0 ¼ �Ek and the second k0 ¼ Ek,
and together with a change of the integration variable
k ! �k give the symmetry needed to relate the contribu-
tions from the u and the d spectators.

Adding the two contributions yields the �þ form factor
in RIA,

J
�
RIAðPþ; P�Þ ¼ e

Z
k
tr½ ��ð�k̂; pþÞSðpþÞj�ðpþ; p�Þ

� Sðp�Þ�ðp�;�k̂Þ�ð�k̂Þ�: (9)

Here, p� ¼ P� � k̂ are the off-shell quark momenta,

�ðp;�k̂Þ is the CST pion vertex functions, �ðk̂Þ is the
on-shell projector

�ðk̂Þ ¼ mþ k̂

2m
; (10)

and the shorthand

Z
k
�

Z d3k

ð2�Þ3
m

Ek

(11)

is used for the momentum integration.

IV. INGREDIENTS

In this section, the terms needed for the evaluation of the
trace in Eq. (9) are assembled. In the next section, the trace is
evaluated and its behavior asQ ! 1 is examined. Numerical
results for the form factor are presented in Sec. VI.

A. Pion vertex function

The pion vertex function �ðp; kÞ is required for the
calculation of the trace in Eq. (9). The complete CST
pion vertex function is obtained by solving the full four-
channel pion bound-state equation of Ref. [1]. This more
ambitious task will be the subject of future work. Here we
use an approximate pion vertex function that is an off-shell
extension near the chiral limit. Since the linear confining
interaction does not contribute to the pseudoscalar bound-
state equation in the chiral limit, as explained in Ref. [1],
this estimate will be made using the vector interaction only,
with the general form

V V ¼ 1

4
VC�

� 	 ��; (12)

where the specific form of the scalar function VC will
be given below. The CST equation for the bound state
(but with both external particles off shell) was already
derived in Ref. [1]; here we present an alternative deriva-
tion starting from the BS bound-state equation written in
the rest frame in the chiral limit (where P ¼ 0):

�ðp; pÞ ¼ Gðp2Þ�5 ¼ i
Z
poles

d4k

ð2�Þ4 VCGðk2ÞN
D
; (13)

where Gðp2Þ is a scalar function, and the notation on the
integral reminds us that the k0 part of the integral is to be
evaluated keeping only the k0 poles from the quark propa-
gators (and forsaking all others), and also anticipates the
result in the chiral limit, where only the �5 structure will
contribute to �. The numerator in the chiral limit therefore
becomes

N ¼ 1

4
��ðM�ðk2Þ þ 6kÞ�5ðM�ðk2Þ þ 6kÞ��

¼ �ðM2
�ðk2Þ � k2Þ�5; (14)

where M�ðk2Þ is the running mass function in the chiral

limit (i.e., with m0 ¼ 0). The denominator is

D ¼ ðM2
�ðk2Þ � k2 � i�Þ2: (15)

To obtain the CST equation, we are instructed to take the
poles of the propagators only, which, after the cancellation

of the factorM2
�ðk2Þ � k2, are single poles at k0 ¼ �Ek ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ k2
q

, with m� being the root of the mass equation

in the chiral limit, m� ¼ M�ðm2
�Þ. Now that one of the

initial quarks is on shell, it is possible to specify the scalar
function VC.
As discussed in Ref. [1], in the general case when the

total four-momentum P may not be zero,

VCðp1; p2; k1; k̂2Þ
¼ 2C

Ek

m
ð2�Þ3�3ðp� kÞhðp2

1Þhðp2
2Þhðk21Þhðm2Þ; (16)

where p1 ¼ pþ P=2, p2 ¼ p� P=2 (and similarly for
k1 and k2), C is a constant, h is the strong form factor
that models the quark-gluon vertex, and in this example

k̂22 ¼ m2, with m the dressed quark mass. The chiral limit
of Eq. (16) follows by setting m ! m�, P ! 0, and

hðm2
�Þ ¼ 1.

Returning to Eq. (13), extracting the �5, and using the
chiral limit of Eq. (16) gives

Gðp2Þ ¼ C

m�

h2ðp2Þ
Z

d3k�3ðp� kÞGðk̂2Þ

¼ C

m�

h2ðp2ÞG0; (17)

where k̂ ¼ fEk;kg is the value of the four-vector k at the
spectator pole, and the second line employs the definition

of the chiral limit of the vertex function,Gðk̂2Þ � G0. Note
that placing the external particle on shell gives a consistent
equation only if C ¼ m�, which is another way of showing

the constraint on C in the chiral limit that was discussed in
Ref. [1].
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The result in Eq. (17) suggests that near the chiral limit,
the vertex functions with one particle on shell should be
well approximated by

�ðp1; p̂2Þ¼�5hðp2
1ÞG0; �ðp̂1;p2Þ¼�5hðp2

2ÞG0: (18)

The validity of this approximation depends on the
observation that the most rapid variation of the scalar
functions that define �ðp1; p2Þ is through its dependence
on the strong form factors h.

B. Off-shell quark current

In order to calculate a conserved current for processes
involving bound states, we employ the general framework
introduced by Riska and Gross [25]. Here the strong form
factors (h in this paper) attached to the interaction vertices
are moved to the propagators connecting neighboring ver-
tices, where they provide an additional modification of the
dressed quark propagators connecting two bare vertices.
Consistency then requires that these form factors also
be ‘‘factored out’’ of the quark current, leading to the
introduction of a reduced or bare electromagnetic current
for the off-shell quarks defined by

j
�
R ðp0; pÞ ¼ h�1ðp02Þj�ðp0; pÞh�1ðp2Þ: (19)

In order to ensure current conservation [25,26], j
�
R must

satisfy the Ward-Takahashi (WT) identity:

q�jR�ðp0; pÞ ¼ ~S�1ðpÞ � ~S�1ðp0Þ; (20)

where ~SðkÞ is the dressed quark propagator multiplied by
the square of the quark form factor

~SðpÞ ¼ h2ðp2ÞSðpÞ: (21)

The simplest form of the reduced current that can satisfy
the WT identity [Eq. (20)] with a dressed propagator with a
mass function depending on momentum is a generalization
of the current previously introduced in Ref. [26]:

j
�
R ðp0; pÞ ¼ fðp0; pÞ

�
G�

1 ðqÞ þ �F2ðq2Þ i�
�	q	
2m

�
þ �ðp0; pÞ�ð�p0ÞG�

4 ðqÞ
þ �ðp; p0ÞG�

4 ðqÞ�ð�pÞ
þ gðp0; pÞ�ð�p0ÞG�

3 ðqÞ�ð�pÞ; (22)

where �ð�pÞ ¼ ðMðp2Þ � 6pÞ=2Mðp2Þ, and (for
i ¼ 1, 3, 4),

G�
i ðqÞ � ðFiðq2Þ � 1Þ~�� þ ��: (23)

Here the transverse gamma matrix, ~�� ¼ �� � q� 6q=q2,
makes no contribution to the WT identity, and the Fiðq2Þ
(with i ¼ 1; . . . ; 4) are dressed quark form factors (includ-
ing two new off-shell form factors F3 and F4). All of the
quark form factors are constrained by Fið0Þ ¼ 1, with �
being the anomalous magnetic moment of the quark. The
functions f, g, and � are fixed by the requirement that

j
�
R satisfy the WT identity [Eq. (20)]. Using the notation
h ¼ hðp2Þ, h0 ¼ hðp02Þ, M ¼ Mðp2Þ, and M0 ¼ Mðp02Þ,
with a propagator

~S�1ðpÞ ¼ M� 6p
h2

; (24)

a short calculation yields

gðp0; pÞ ¼ 4MM0

h2h02
h2 � h02

p02 � p2
; (25)

�ðp0; pÞ ¼ 2M0

h02
M0 �M

p02 � p2
; (26)

fðp0; pÞ ¼ M2 � p2

h2ðp02 � p2Þ �
M02 � p02

h02ðp02 � p2Þ : (27)

Note that if M0 ¼ M, � vanishes and f and g reduce to
results previously given in the literature. When contracted
into a conserved current, or a physical photon, the terms
proportional to q� vanish, reducing G�

i ðqÞ to
G�

i ðqÞ ! Fiðq2Þ��: (28)

The four quark form factors Fi can be calculated in the
CST, but this exercise will be saved for another day. For
now we will use the quark current in the chiral limit, where
the mass function reduces to [1]

M�ðp2Þ ¼ m�h
2ðp2Þ (29)

and, as appropriate for a pointlike bare quark, � ¼ 0 and
all form factors are set to unity. This simplifies the off-shell
structure functions

g�ðp0; pÞ ¼ �2��ðp0; pÞ ¼ 4m2
�ðh2 � h02Þ
p02 � p2

; (30)

f�ðp0; pÞ ¼ 1

4
g�ðp0; pÞ þ p02h2 � p2h02

h2h02ðp02 � p2Þ
¼ M2

� � p2

h2ðp02 � p2Þ �
M02

� � p02

h02ðp02 � p2Þ (31)

and reduces the current to

j�R�
ðp0; pÞ ¼ 6p0�� 6pþ p02��

h02ðp02 � p2Þ � 6p0�� 6pþ p2��

h2ðp02 � p2Þ
¼ �� h2p02 � h02p2

h2h02ðp02 � p2Þ þ
6p0�� 6p
h2h02

h2 � h02

p02 � p2
: (32)

It is interesting to compare this with the Ball-Chiu (BC)
[27] current used by Maris and Tandy [28]. In our notation,
denoting p0 þ p ¼ 2P, their current is

j
�
BCðp0; pÞ ¼ �� h2 þ h02

2h2h02
þ 2 6PP�

h2h02
h2 � h02

p02 � p2
: (33)

The difference between these two currents is
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j
�
R�
ðp0; pÞ � j

�
BCðp0; pÞ ¼ X�

2h02h2
h02 � h2

p02 � p2
; (34)

where X� is purely transverse:

X� ¼ 6p0�� 6p ¼ 6p�� 6p0 � 6qq� þ q2��: (35)

The fact that X� � 0 is a demonstration that the current
cannot be uniquely determined by the WT identity alone. It
was only after we derived our current that we became
aware of the BC current used by Maris and Tandy. In
fact, Maris and Tandy used this freedom to add a transverse

 contribution to their current. In the absence of a dynami-
cal calculation, we know of no way to determine these
transverse contributions.

In any case, the quark current can be computed from
an integral equation that sums the q �q interaction to all
orders and includes automatically contributions from the

; 
0; � � � tower of vector meson states. Since our formal-
ism can be applied equally well to the timelike region
where these states live, this will be explored in the near
future.

V. FINAL STEPS

A. Reduction of the current

Substituting Eqs. (18) and (32) into the pion current
[Eq. (9)] gives

F�ðQ2Þ2P0
0 ¼ �G2

0

Z
k
tr½~SðpþÞj0R�

ðpþ; p�Þ~Sðp�Þ�ðk̂Þ�;
(36)

where we keep the pion mass � � 0 but take the chiral
limit elsewhere, so that the on-shell quark has mass m�

(so that Ek is now
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ k2
q

), the �5’s have been removed,

and we specialize to the Breit frame [Eq. (5)], where

p2� ¼ �2 þm2
� � 2P0Ek � kzQ: (37)

Evaluating the trace gives

F�ðQ2Þ ¼ �G2
0

P0

Z
k

N
D

; (38)

where, using the notation M� ¼ M�ðp2�Þ and h� ¼
h�ðp2�Þ,

N ¼ �2h�f4P2
0E

3
k � 2P0E

2
kðMþM� þ 3 �m2 � 2MSÞ

þ Ek½2 �m2ðMþM� þ �m2Þ � 2m�MSð2P2
0 þ �m2Þ þ 4m2

�P
2
0 � k2zQ

2 þm�kzQM��
�m�P0½2m�ðMþM� þ �m2Þ � 2 �m2MS þ kzQM��g þ 2kzQhS½m�P0ðMS � 2m�Þ
þ EkðMþM� þ �m2 �m�MSÞ�; (39)

with hS ¼ hþ þ h�, h� ¼ hþ � h�, MS ¼ Mþ þM�,
M� ¼ Mþ �M�, and �m2 ¼ m2

� þ�2. The denominator
is

D ¼ 2kzQðM2þ � p2þÞðM2� � p2�Þ: (40)

To study the convergence of these integrals, look at the
limit as k becomes very large (in this section we use the
notation k � jkj). In this limit, the running quark masses
can be neglected compared to factors of k, giving

N ���!k
m�

2kðh2þ � h2�Þ½k2zQ2 � 4k2P2
0�;

D ���!k
m�

2kzQð4P2
0k

2 � k2zQ
2Þ:

(41)

Ignoring details, the most divergent term therefore behaves
like Z

k

N
D

’
Z
k
h2; (42)

guaranteeing that the integrals will converge if

lim
k!1

h2 <
1

k2
: (43)

This requires that h approach zero faster than k�1.

B. High-Q2 limit

The high-Q2 limit of the form factor is particularly
interesting. In preparation for this discussion, we use the
symmetry of the integrand to convert Eq. (38) to

Z 1

�1
dkzF ðkzÞ ¼ 2

Z 1

0
dkzF ðkzÞ: (44)

Next, we study the arguments p2þ and p2� in the limit of
largeQ. Keeping terms to order 1=Q in p2þ (which will turn
out to be sufficient) gives

p2þ ! �2 þm2
� �QðEk � kzÞ � 2�2

Q
Ek;

p2� ! �QðEk þ kzÞ:
(45)

Note that as Q ! 1, p2� ! �1 for all values of kz, and
hence only the leading term is needed. The functions h�
andM� vanish in that limit. In contrast, the behavior of p2þ
at large Q depends on the size of kz. The approximate
formula in Eq. (45) shows that p2þ ! �1 at the limits of
the kz integration. We saw already in the discussion of
Eq. (8) that the integrand only deviates significantly from
zero in the vicinity of the critical value
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kz0 ’ QE?
2�

; (46)

for which p2þ reaches its maximum, and where E? ¼
ðm2

� þ k2?Þ1=2. For large, finite Q, this is a large value of

kz that cannot be ignored. At this critical point,

Ek!QE?
2�

�
1þ2�2

Q2

�
; p2þ!p2

c¼�2þm2
��2�E?:

(47)

To understand the integral, it is convenient to introduce
the momentum fraction

x � Ek � kz
2Ek

: (48)

The kz integration will be replaced by an integration over x,
and since kz > 0, the x integration varies between 0 and 1

2 ,

with the JacobianZ 1

0

dkz
Ek

¼
Z 1

2

0

dx

2xð1� xÞ : (49)

In terms of this variable,

Ek ¼ E?
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp ; kz ¼ E?ð1� 2xÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp ;

p2þ ! �2 þm2
� � QE?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1� xÞp �
xþ�2

Q2

�
:

(50)

The last expression displays clearly how the nonleading
term is needed to give the correct limit p2þ ! �1 as
x ! 0, and that p2þ is finite (and hence h2þ large) only in
the limited region of small x��2=Q2. Hence, we may
assume x � 1 and write

p2þ ! �2 þm2
� ��E?

� ffiffiffi
y

p þ 1ffiffiffi
y

p
�
; (51)

with y ¼ xðQ=�Þ2. In terms of the variable y, the integrand
peaks near y� 1, as shown in Fig. 5. Evaluation of the
form factor at high Q is therefore ideally suited to a

peaking approximation, with the slowly varying part of
the integral evaluated at the peak. Figure 5 compares
h2þ with the integrand, N =D, scaled by a constant
factor. Both curves lie on top of each other, showing that
the peaking approximation works very well. With these
approximations, the form factor at large Q becomes

F�ðQ2Þ ’Q2
�2

�2G2
0

Q

Z
k?

Z 1

0

dy

y
h2ðp2þÞ

� ~N
D

�
peak

: (52)

Evaluation of the terms at the peak gives

~N ! �Q3 2E?
�2

½E2
?�� 2E?ðm2

� �m�Mþ þ�2Þ

þ 2m��ðm� �MþÞ�;

D ! Q4
E2
?

�2
ðM2þ ��2 �m2

� þ 2�E?Þ: (53)

Hence, the form factor falls like Q�2 at large Q, with the
coefficient independent of the detailed structure of the
strong form factor h.

VI. RESULTS

The numerical results for the pion form factor presented
in this paper use the simple strong quark form factor hðp2Þ,

hðp2Þ ¼
�
�2

� �m2
�

�2
� � p2

�
n
; (54)

obtained in Ref. [1]. Here �� ¼ 2:04 GeV is a mass

parameter determined by a fit of the quark mass function
to the lattice QCD data. The power n ¼ 2 is not incon-
sistent with the lattice data and ensures that the integrals
will converge. Note that hðp2Þ has a pole at �2

� ¼ p2, but

this point lies far outside of the region of the k integration.
Our pion form factor is very insensitive to the particular

choice of h, as long as n > 1 for convergence. This re-
markable property can be understood, at least for large Q2,
from the analysis of Sec. VB, which revealed that the
high-Q2 behavior of the form factor integral is completely
determined by its integrand evaluated at the peaking value
kz ¼ kz0 of h. In this work, we have neglected the anoma-
lous moment term in the quark current, proportional to �.
Conventional arguments suggest that it should be small at
large Q and it would vanish for pointlike quarks.
We emphasize that our model, in its present form,

gives reliable results only for pion masses in a limited
range. In particular, if � is larger than the threshold value
of �s ¼ 2m�, the dressed quark propagators develop

poles, which allow both quarks to go on mass shell at the
same time [recall the discussion following Eq. (8)]. This
can happen only because we have not yet included the
confining part of the interaction. Once confinement is
included, this cut will vanish. Since the value �s ¼ 2m�

is far above the physical pion mass, this does not represent
a serious limitation of the present model.

0.001 0.01 0.1 1 10 100
0

0.002

0.004

y

  
,

h
2

FIG. 5 (color online). N =D times a constant (black solid
line) compared with h2þ (red dashed line) for large Q2. Both
curves lie on top of each other, and they are strongly peaked at
y ¼ 1.
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For values of � below the threshold value 2m�,

we showed in Sec. III that the RIA used in this paper
breaks down for small pion masses at small Q2. This
happens because the pole contributions from the struck
quark, neglected in RIA, become large. Therefore, the
form factor in RIA for a physical pion mass is reasonable
at largeQ2, but too large at smallQ2, and does not give the
correct charge atQ2 ¼ 0. Therefore, for values of� some-
where near the chiral quark mass, m�, the RIA is a good

approximation.
Since the pion form factor depends on the pion mass, we

adopt the notation F�ðQ2; �Þ. In all cases, F�ð0; �Þ ¼ 1.
We found that the value � ¼ 0:42 GeV gave the best fit
to the data over the full range of Q2, so we adopted this
form factor as a standard of comparison. (Whenever we do
not explicitly specify the pion mass in the form factor
argument, the value � ¼ 0:42 GeV is implied.)

We find a remarkable scaling behavior at large Q2:

F�ðQ2; ��Þ ’Q2
�2

�2F�ðQ2; �Þ; (55)

where � is a scaling parameter. In particular, Fig. 6
shows the form factor results for �3 ¼ 0:14 GeV and

�2 ¼ 0:28 GeV when scaled to fit the result for
�1 ¼ 0:42 GeV. The three curves are compared with the
experimental data [29–37].
As Q2 becomes smaller, the three curves diverge as a

consequence of the breakdown of the RIA in the small-Q2

region for small �. In the high-Q2 region, as shown in the
top panel of Fig. 7, the curves almost lie on top of each
other. Furthermore, if the Q2 dependence is also scaled
over the whole range of Q2,

F�ð�2Q2; ��Þ ’ F�ðQ2; �Þ; (56)

the curves almost lie on top of each other, even at smallQ2.
This expresses the fact that our form factor depends very
weakly on the remaining scale-dependent quantities, m�

and ��.

The form factors satisfy a nearly monopole behavior

F�ðQ2Þ �Q2
�2 1

Q2 þ 	2
; (57)

with a mass scale of 	 ’ 0:63 GeV obtained from a fit to
the �1 ¼ 0:42 GeV form factor.
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FIG. 6 (color online). The pion form factor F�ðQ2; �iÞ scaled
with �2

i ¼ ð�1=�iÞ2 for different pion masses �1 ¼ 0:42 GeV
(gray dashed line), �2 ¼ 0:28 GeV (red dotted line) and
�3 ¼ 0:14 GeV (blue dot-dashed line), compared with the
data [29–37] at high Q2 (top) and low Q2 (bottom).
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FIG. 7 (color online). Scaled form factors compared to the
data [29–37]. The top panel shows �2

i Q
2F�ðQ2; �iÞ; the bottom

shows �2
i Q

2F�ð�2
i Q

2; �iÞ. In both panels, �i ¼ �1=�i for
different pion masses �1 ¼ 0:42 GeV (gray dashed line), �2 ¼
0:28 GeV (red dotted line) and�3 ¼ 0:14 GeV (blue dot-dashed
line).
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VII. SUMMARYAND CONCLUSIONS

This paper uses the covariant spectator theory (CST)
to compute the pion form factor in the relativistic
impulse approximation (RIA). The CST is formulated in
Minkowski space, so that even though results for the form
factor at spacelike momentum transfer (q2 ¼ �Q2 < 0)
are presented here, the theory can be used to calculate
the form factor in the timelike region (q2 > 0) as well.
The manifestly covariant dynamical model for the q �q
interaction that is the foundation of the calculations pre-
sented here incorporates both spontaneous chiral symme-
try breaking and confinement, and it is discussed in
Ref. [1]. Some features of these models were previously
introduced by Gross, Milana and Şavkli [38,39].

This first calculation of the pion form factor uses the
quark mass function obtained in Ref. [1] and expresses the
pion vertex function in terms of this mass function. This
approximation is particularly good near the chiral limit. We
emphasize that this is a very simple picture for the pion.
Still, when combined with the results of Ref. [1], we show
that this simple picture can give results that are in good
agreement with both the lattice data for the dressed quark
mass and the experimental data for the pion electromag-
netic form factor. We find some interesting scaling rela-
tions relating form factors with different values of �.

An interesting issue remains. This simple model is able
to describe the data well, yet it seems to include no con-
tribution from the 
 meson that is expected from vector
meson dominance. (For a comparison of our model with
what is expected from a simple 
 pole, see Fig. 8.) Where is
the 
 contribution? It should be contained in the dressing
of the quark current, j�. Maris and Tandy [28] suggest that
their Ball-Chiu current contains some of these contribu-
tions (in which case our dressed current probably also
contains them). The balance between the triangle diagram
with no 
 contribution and contributions coming from the

dynamical dressing of the quark current, including the 

pole, will best be understood once the dressed quark cur-
rent has been calculated in both the timelike and spacelike
regions.
For a more quantitative study of the light meson

properties, the solution of the complete four-channel CST
equation and a fit to the light meson spectrum is needed,
which will be the subject of our future program.
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