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We formulate the covariant equations for quark-antiquark bound states in Minkowski space in the

framework of the covariant spectator theory. The quark propagators are dressed with the same kernel that

describes the interaction between different quarks. We show that these equations are charge-conjugation

invariant, and that in the chiral limit of vanishing bare quark mass, a massless pseudoscalar bound state is

produced in a Nambu–Jona-Lasinio (NJL) mechanism, which is associated with the Goldstone boson of

spontaneous chiral symmetry breaking. In this introductory paper, we test the formalism by using a

simplified kernel consisting of a momentum-space � function with a vector Lorentz structure, to which

one adds a mixed scalar and vector confining interaction. The scalar part of the confining interaction is not

chirally invariant by itself, but decouples from the equations in the chiral limit and therefore allows the

NJL mechanism to work. With this model we calculate the quark mass function, and we compare our

Minkowski-space results to lattice QCD data obtained in Euclidean space. In a companion paper, we apply

this formalism to a calculation of the pion form factor.
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I. INTRODUCTION

The connection between the mass spectrum and struc-
ture of hadrons and their underlying internal gluon-quark
dynamics is today an important and challenging problem
in physics. At the heart of forthcoming experimental
programs at, for instance, JLab and FAIR, and of the
immense progress in lattice QCD (LQCD) calculations
[1,2] lies the identification of hybrid baryons, exotic and
hybrid mesons, as well as the understanding of the full
implications of dynamical chiral symmetry breaking. At
present, models are necessary to establish a link between
LQCD calculations and experimental data.

Furthermore, today a believable model must go beyond
the extensive work of Isgur and Godfrey [3] and Spence
and Vary [4]. These models might be adequate for heavy-
quark systems well described within a nonrelativistic
framework, but mesons containing at least one light quark
require a fully relativistic treatment. It is therefore desir-
able for a unified description of all quark-antiquark states
to use a bound-state equation that is both Lorentz covariant
and that reduces to the Schrödinger equation in the non-
relativistic limit. In addition, these earlier quark models
ignored chiral symmetry breaking and used static poten-
tials (often variations of the very successful Cornell poten-
tial [5–7]) to describe the interaction between constituent
quarks with a fixed mass.

Nonperturbative methods, including numerical solutions
of QCD on a discrete space-time lattice and of the modern
Dyson-Schwinger and mass gap equations [8–23], have de-
veloped tools which unify the explanation of a wide range of
meson and baryon phenomena [24–26]. A key feature
of these approaches is the emergence of a dynamical descrip-
tion of a constituent quark which can acquire, through dy-
namical chiral symmetry breaking, a momentum-dependent
mass function leading to an effective constituent quark mass
which can be much larger than the current quark mass. It is
now possible to discuss the structure of the constituent quark,
or how, in the chiral limit, the spontaneous generation of a
constituent quark mass is linked to the existence of the pion
bound state with zero mass through the famous NJL mecha-
nism. This connection is both interesting and an essential
ingredient to our understanding of the light meson spectrum.
Without it, the light pion mass appears to be an accident
resulting from fine-tuning of the interaction parameters.
A covariant treatment of mesons including the NJL

mechanism can be found in the papers by C.D. Roberts
and his collaborators (see for example Refs. [27,28] and
references therein) based on the Dyson-Schwinger equa-
tion, which we denote by DSE. The work presented here
starts from a physical model of dynamical quarks and
mesons similar to that assumed by the DSE, but it differs
in two important aspects: (i) we work in Minkowski space
instead of Euclidean space, and (ii) we include a Lorentz
scalar confining interaction. Both of these differences are
significant and have their own advantages.
Aspect (i) is important because, while some observables

can be calculated just as well in Euclidean space as in
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Minkowski space (particle masses, for example), others,
such as transition form factors in the timelike region,
require a framework defined in Minkowski space. Aspect
(ii) enables us to address an important question: although
phenomenological approaches and lattice calculations may
suggest that the confining force is scalar, those indications
are not definitive [29–35], and while DSE suggests that
confinement is not important to (and maybe even absent
from) the light meson spectrum, it is clearly an advantage
to have an approach that is flexible enough to allow the
confining interaction to be present (and to investigate the
relative strengths of scalar and vector components). This is
certainly possible in the approach that is developed in this
paper. As it turns out, the scalar confining interaction,
when its relativistic extension is adequately defined, de-
couples in the chiral limit, allowing the NJL mechanism to
work. Therefore, the breaking of chiral symmetry by such a
scalar component does not constitute a problem in our
formulation. This remarkable fact will be discussed in
some detail in this paper.

This work extends and improves upon early work done
by Gross and Milana [36–38] and Savkli and Gross [39],
denoted collectively by GMS. The covariant spectator
theory (CST) [40–42] already used in GMS was exten-
sively tested in the treatment of nucleon-nucleon scattering
[43,44] and pion-nucleon scattering [45,46]. This paper
improves on GMS and prepares the way for subsequent
studies of the structure of all mesons, planned for future
papers. The formulation shown in this paper differs from
previous CST models in the sense that the mass function
is calculated by solving the one-body CST-Dyson equa-
tion, directly from the same kernel entering the two-body
CST-Bethe-Salpeter equation. This makes our model com-
pletely self-consistent and in line with the traditional
Dyson-Schwinger approaches. Other advances presented
here are (i) the proof of chiral symmetry breaking in a
charge-conjugation-symmetric CST four-channel formula-
tion, and (ii) a new extended definition of the relativistic
kernels that is needed when both particles are off shell,
essential for some applications.

Before turning to the details of the model, we remind the
reader of an essential feature of the CST approach: quarks
can have real mass poles and can be on their mass shells.
Confinement is achieved by constructing an interaction
that guarantees that two or more quarks cannot be on shell
together. The alternative view is that confinement occurs
because the quark propagator does not have any real mass
shell poles. For those who find the concept of an on-shell
quark distasteful, it may help to think of the on-shell quark
as a effective degree of freedom that is not physical, since,
unlike nucleons (for example), quarks can never be isolated
and can never be observed. The issue is whether or not such
an effective degree of freedom is useful in explaining the
phenomena of QCD; until it is developed and tested, a
definitive answer cannot be given. A feature of this picture

of confinement of quarks is that it is similar to the usual
nonrelativistic picture, allowing us to make comparisons
with nonrelativistic models.
In Sec. II, we motivate and write the charge-conjuga-

tion-invariant CST four-channel equations. In Sec. III, we
focus on the equations for the pseudoscalar bound state. In
Sec. IV, we prove that in the chiral limit, the one-body
CST-Dyson equation coincides with the two-body CST-
Bethe-Salpeter equation corresponding to a zero-mass
Goldstone boson. Section V describes the general form
of the CST kernel. The results for the quark mass function
and their connection to LQCD are shown in Sec. VI.
Section VII summarizes and describes our conclusions.
A companion paper (prepared at the same time) uses the

results of this paper to calculate the pion electromagnetic
form factor [47].

II. CHARGE-CONJUGATION-INVARIANT
EQUATIONS FOR QUARK-ANTIQUARK

BOUND STATES

A. Background

The purpose of this section is to motivate the structure of
the equations used in this and forthcoming papers. The
details of the interaction kernel are not of importance at
this stage and will therefore be specified later in Sec. V.
We begin by clarifying and reviewing the relation be-

tween the Bethe-Salpeter (BS) [48] and CST equations.
The CST equations can be conveniently obtained from the
BS equations by integrating over the internal energy var-
iables and retaining only the contributions from certain
propagator poles. (For a two-body equation for nonident-
ical particles with unequal mass, only the heavier particle
pole is retained.) While this is a convenient technique for
obtaining the equation, one might conclude from it that the
CST equation is merely the result of an approximation of
the BS equation. Unfortunately, this interpretation misses
the key point, namely that the omission of the poles of the
kernel or other propagators reflects, in some cases, cancel-
lations between various parts of the complete kernel and its
iterations, in particular between ladder and crossed-ladder
diagrams. One has to keep in mind that an exact BS kernel
contains an infinite set of irreducible diagrams, which has
to be truncated in practical calculations. When using a
truncated kernel (usually a ladder truncation), omitting
its poles can actually yield a better approximation to the
exact BS equation (i.e., with a nontruncated complete
kernel) than keeping them. This surprising observation
plays a central role in the CST framework. Furthermore,
the CST equations are manifestly covariant (in common
with the BS equations) and, even when used with a trun-
cated kernel (the ladder sum, for example), have a smooth
nonrelativistic limit (not usually a feature of the BS equa-
tion with a truncated kernel). A brief review of the foun-
dations of the CST and its many applications can be found
in Ref. [49].

BIERNAT et al. PHYSICAL REVIEW D 89, 016005 (2014)

016005-2



A unified description of all mesons composed of
quark-antiquark pairs requires a bound-state equation that
transforms correctly under charge conjugation: the equa-
tion for a bound-state particle should transform into the
equation for the bound-state antiparticle. In particular,
both the vertex function and its charge conjugate must
satisfy the same equation. For instance, for the case of
the pion, the vertex functions for both �þ and ��, which
are connected by charge conjugation, should be the solu-
tions of the same bound-state equation.

We begin the discussion of charge conjugation symme-
try with the BS equation, which is manifestly covariant and
naturally satisfies charge conjugation symmetry. As out-
lined above, the CSTequation can be obtained from the BS
equation by keeping only certain propagator poles of the
BS integrand. As a consequence of the omission of some of
the propagator poles, the CST equations are not automati-
cally charge-conjugation symmetric. In most cases where
this framework has been applied so far, in particular in the
description of few-nucleon systems, charge-conjugation
invariance is not an important issue. But for this paper,
where we want to deal in particular with quark-antiquark
systems of equal-mass quarks, it is important. In this
section, charge-conjugation invariance is restored by sym-
metrizing the equations, leading to a system of four
coupled equations [39]. These are the ‘‘four-channel CST
equations.’’

B. Bethe-Salpeter equation

The BS vertex function is denoted �BSðp1; p2Þ, with
p1 ¼ pþ 1

2P being the four-momentum of the outgoing

quark and �p2 ¼ �pþ 1
2P the four-momentum of the

outgoing antiquark (diagrammatically represented as an
incoming quark of momentum p2 ¼ p� 1

2P). P is the

bound-state four-momentum, and k1 ¼ kþ 1
2P and�k2 ¼

�kþ 1
2P are the intermediate four-momenta of the quark

and antiquark, respectively. With this notation, the BS
equation for the vertex function, shown diagrammatically
in Fig. 1, is written

�BSðp1; p2Þ ¼ i
Z d4k

ð2�Þ4 V ðp; k;PÞ
� S1ðk1Þ�BSðk1; k2ÞS2ðk2Þ: (1)

Here V is the interaction kernel, which is an operator
in the color and Dirac spaces of the two quarks whose
interaction it describes. It is written in the general form

V ðp; k;PÞ ¼ 3

4
F1 � F2

X
i

Viðp; k;PÞOi
1 �Oi

2; (2)

where Oi
1 and Oi

2 are Dirac matrices of type i at the
vertex involving quarks 1 and 2, respectively, and
Viðp; k;PÞ are covariant scalar functions describing the
corresponding momentum dependence. It is convenient to
write the kernel in terms of the relative momenta p, k and
the total momentum P instead of the individual particle
labels, p1, etc. How this kernel acts as an operator in
Dirac space can be seen by following along a fermion line
in Fig. 1:

V ðp; k;PÞS1ðk1Þ�BSðk1; k2ÞS2ðk2Þ
¼ X

i

Viðp; k;PÞOi
1S1ðk1Þ�BSðk1; k2ÞS2ðk2ÞOi

2: (3)

The color SU(3) generators are given in terms of the
Gell-Mann matrices, Fa ¼ 1

2�a. Mesons are color-singlet

states, for which

hF1 � F2i ¼ 4

3
: (4)

The factor of 3=4 in Eq. (2) has been factored out in
order to cancel this color matrix element. Color degrees
of freedom can then be effectively ignored and will no
longer be referred to in the remainder of this work.
The dressed quark propagator, SiðkiÞ (with the factor of

�i removed), is given by

SiðkiÞ ¼ 1

m0i � 6ki þ�ið6kiÞ � i�
; (5)

with m0i being the bare mass and �i the self-energy of the
ith quark, of the form

�ið6kiÞ ¼ Aiðk2i Þ þ 6kiBiðk2i Þ: (6)

If the quark and antiquark have the same bare mass and
identical self-interactions, the particle label on S can be
dropped:

S1ðkiÞ ¼ S2ðkiÞ ¼ SðkiÞ: (7)

Charge conjugation, denoted by the operator C, trans-
forms quarks into antiquarks and vice versa, accomplished
by taking the transpose of the vertex function and changing
p1 $ �p2. The amplitude is invariant under charge
conjugation if it remains unchanged up to a phase �,
with �2 ¼ 1. The required condition is therefore

C �1�T
BSðp1; p2ÞC ¼ ��BSð�p2;�p1Þ: (8)

FIG. 1 (color online). The diagrammatic representation of the
Bethe-Salpeter equation for the q �q vertex function. The solid
lines are the dressed propagators, and the dots indicate the place
where the Dirac-space matrices Oi

j act.
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Performing this operation on Eq. (1), and using
C�1��TC ¼ ��� and the charge-conjugation-invariant
conditions,

C�1V Tðp; k;PÞC ¼ V ð�p;�k;PÞ;
C�1STðkÞC ¼ Sð�kÞ; (9)

where p1 ¼ p þ 1
2 P $ �p2 ¼ �p þ 1

2 P implies

p $ �p. This gives

C�1�T
BSð�p2;�p1ÞC

¼ i
Z d4k

ð2�Þ4 V ðp;�k;PÞSð�k2Þ½C�1�T
BSðk1; k2ÞC�Sð�k1Þ

¼ i
Z d4k

ð2�Þ4 V ðp; k;PÞSðk1Þ½C�1�T
BSð�k2;�k1ÞC�Sðk2Þ;

(10)

which shows that C�1�T
BSð�p2;�p1ÞC satisfies the same

equation as �BSðp1; p2Þ (and hence the two are equal up to
a phase), provided conditions for the propagators and
kernel, Eqs. (7) and (9), are satisfied. We will always
choose kernels that satisfy Eq. (9).

Note that a crucial step in the derivation was our
ability to change the four-dimensional integration variable
k ! �k. This condition must be preserved when we
specialize to the covariant spectator theory.

C. Charge-conjugation-invariant CST equations

Next, we introduce a charge-conjugation-invariant form
of the bound-state CST equations. For cases when we want
the correct limit as P ! 0, these are the ‘‘four-channel’’
equations previously discussed [39].

To motivate the structure of these equations, we
begin with the BS equation [Eq. (1)] and consider the k0
integration. The dressed propagator of quark iwith dressed
mass m and renormalization constant Z0 can be written

SðkiÞ ’ Z0ðmþ 6kiÞ
m2 � k2i � i�

(11)

near its poles at ki0 ¼ �Eki , where Eki �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

i

q
. Here

we ignore the running of the dressed quark mass m for the
time being, but it will be included later. Figure 2 shows the
positions of the four propagator poles in the complex k0
plane in the bound-state rest frame. (Note that here k0 is the
zero component of the relative momentum k, not of the
individual particle momenta ki.) In the rest frame, the total
momentum is Pr ¼ ð�; 0Þ, the quark and antiquark three-
momenta ki are equal to the relative three-momentum k,

and therefore Eki ¼ Ek, with Ek �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
. However,

in the following we will continue working in an arbitrary
frame with total momentum P in order to emphasize the
manifest covariance of our framework.

To perform the k0 integration, we can close the contour
in the lower or upper half plane. In the CST framework,
only poles of propagators are included, whereas the poles
of the kernel are moved to higher-order kernels, which are
usually neglected. As one can see in Fig. 2, in either half
plane the respective two poles are separated by the bound-
state mass �. If � is large, the pole closer to the origin
dominates the integral, and the more distant pole can be
neglected. However, in the limit P ! 0, the two poles
move close together and the contributions of both must
be taken into account.
First, we close the k0 contour in the lower half plane.

Introducing the on-shell momenta k̂i ¼ ðEki ;kiÞ permits

the two propagator pole contributions to the right-hand side
of Eq. (1) to be written

�ðp1;p2Þ
¼�Z0

Z
k1

V ðp;k̂1�P=2;PÞ�ðk̂1Þ�ðk̂1;k̂1�PÞSðk̂1�PÞ

�Z0

Z
k2

V ðp;k̂2þP=2;PÞSðk̂2þPÞ�ðk̂2þP;k̂2Þ�ðk̂2Þ;

(12)

where SðkiÞ is the dressed propagator including the self-
energy, and the positive-energy projection operator is

�ðk̂Þ ¼ ðmþ ^6kÞ
2m

; (13)

and, for any k, the integral is abbreviated as

Z
k
�

Z d3k

ð2�Þ3
m

Ek

: (14)

FIG. 2 (color online). The positive-energy poles (colored
crosses with positive Ek) and negative-energy (white crosses
with negative Ek) poles of the propagators of quark 1 (red with
��=2) and quark 2 (cyan with þ�=2) in the complex k0 plane
in the bound-state rest frame.
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Note that the notation used here for SðkiÞ with the
self-energy �ðkiÞ is the same as in the previous section,
but these are now CST objects and are not identical to
their BS analogues. For the remainder of the paper, they
will always refer to CST quantities, unless otherwise
stated.

Equation (12) can be simplified by renaming the
integration variables ki ! k and using the shorthand

notation k̂ ¼ ðEk;kÞ to denote the four-momentum of
whichever particle is on shell (so that, from this point
on, k now denotes the three-momentum of the on-shell
particle):

�ðp1; p2Þ ¼ �Z0

Z
k

�
V ðp; k̂� P=2;PÞ�ðk̂Þ

� �ðk̂; k̂� PÞSðk̂� PÞ þV ðp; k̂þ P=2;PÞ
� Sðk̂þ PÞ�ðk̂þ P; k̂Þ�ðk̂Þ

�
: (15)

We will now address the issue of charge-conjugation
symmetry of the CST bound-state equation. The equation
just obtained is not charge-conjugation invariant, because
it includes no poles from the upper half complex k0 plane,
necessary for the k0 $ �k0 symmetry used in the proof.
To correct this, we symmetrize the contributions from the
contour in the lower half plane and the upper half plane, as
illustrated in Fig. 2, which effectively amounts to taking
their average.

In the upper half plane, the sign for the energies Ek is
reversed. Guided by the argument used for the BS
equation, we will also change the sign of the integration

three-momentum k, so that k̂ ! �k̂. The right-hand side
of the CST equation for the BS vertex now contains four
terms (which will lead to the four-channel CST equation).
To simplify the notation, the kernel will be written
V ðp; k;PÞ ! V ðp; kÞ, with the dependence on the total
momentum P understood, and we use the following
abbreviations for the four amplitudes:

�1þðkÞ � �ðk̂; k̂� PÞ;
�2þðkÞ � �ðk̂þ P; k̂Þ;
�1�ðkÞ � �ð�k̂;�k̂� PÞ;
�2�ðkÞ � �ð�k̂þ P;�k̂Þ:

(16)

With this simplification, the equation becomes

�ðp1;p2Þ¼�1

2
Z0

Z
k

�
V ðp;k̂�P=2Þ�ðk̂Þ�1þðkÞSðk̂�PÞ

þV ðp;k̂þP=2ÞSðk̂þPÞ�2þðkÞ�ðk̂Þ
þV ðp;�k̂�P=2Þ�ð�k̂Þ�1�ðkÞSð�k̂�PÞ
þV ðp;�k̂þP=2ÞSð�k̂þPÞ�2�ðkÞ�ð�k̂Þ

�
;

(17)

where we have replaced k with �k in the last two terms
under the integral such that the negative-energy on-shell

four-vector ð�Ek;kÞ becomes equal to �k̂. Note that the
first and third, and the second and fourth terms differ only

by k̂ ! �k̂, preserving the symmetry required for charge-
conjugation invariance. Equation (17) is diagrammatically
depicted in Fig. 3, and we will refer to it as the CST-BS
equation. It expresses an approximate BS vertex function
in terms of the CST vertex functions. Once the latter are
known, it can be used to define a CST vertex function for
states in which both the quark and antiquark are off mass
shell. But in order to determine the CST vertex functions in
the first place, Eq. (17) needs to be converted into a closed
set of four coupled equations, which is achieved by writing
Eq. (17) for each of the four values of the relative momen-
tum p ! fp̂� 1

2P; p̂þ 1
2P;�p̂� 1

2P;�p̂þ 1
2Pg, where

p̂ ¼ ðEp;pÞ is a individual quark on-shell momentum.

Introducing the 16 kernels

V 1�;1�0 ðp; kÞ � V ð�p̂� P=2; �0k̂� P=2Þ;
V 1�;2�0 ðp; kÞ � V ð�p̂� P=2; �0k̂þ P=2Þ;
V 2�;1�0 ðp; kÞ � V ð�p̂þ P=2; �0k̂� P=2Þ;
V 2�;2�0 ðp; kÞ � V ð�p̂þ P=2; �0k̂þ P=2Þ;

(18)

where a subscript i� (with � ¼ �) indicates that quark i is
on its positive or negative energy shell. Note that a
negative-energy quark should be interpreted as the corre-
sponding physical positive-energy antiquark. With this
notation, the four equations become

FIG. 3 (color online). The BS vertex function expressed in terms of the CST vertex functions. Note that here the antiquark of four-
momentum P� p̂ that propagates forward in time (as in Fig. 1) has been interpreted as a quark of opposite four-momentum moving
backward in time.
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�1þðpÞ ¼ � 1

2

Z
k
½V 1þ;1þðp; kÞ�ðk̂Þ�1þðkÞSðk̂� PÞ þV 1þ;2þðp; kÞSðk̂þ PÞ�2þðkÞ�ðk̂Þ

þV 1þ;1�ðp; kÞ�ð�k̂Þ�1�ðkÞSð�k̂� PÞ þV 1þ;2�ðp; kÞSð�k̂þ PÞ�2�ðkÞ�ð�k̂Þ�;
�2þðpÞ ¼ � 1

2

Z
k
½V 2þ;1þðp; kÞ�ðk̂Þ�1þðkÞSðk̂� PÞ þV 2þ;2þðp; kÞSðk̂þ PÞ�2þðkÞ�ðk̂Þ

þV 2þ;1�ðp; kÞ�ð�k̂Þ�1�ðkÞSð�k̂� PÞ þV 2þ;2�ðp; kÞSð�k̂þ PÞ�2�ðkÞ�ð�k̂Þ�;
�1�ðpÞ ¼ � 1

2

Z
k
½V 1�;1þðp; kÞ�ðk̂Þ�1þðkÞSðk̂� PÞ þV 1�;2þðp; kÞSðk̂þ PÞ�2þðkÞ�ðk̂Þ

þV 1�;1�ðp; kÞ�ð�k̂Þ�1�ðkÞSð�k̂� PÞ þV 1�;2�ðp; kÞSð�k̂þ PÞ�2þðkÞ�ð�k̂Þ�;
�2�ðpÞ ¼ � 1

2

Z
k
½V 2�;1þðp; kÞ�ðk̂Þ�1þðkÞSðk̂� PÞ þV 2�;2þðp; kÞSðk̂þ PÞ�2þðkÞ�ðk̂Þ

þV 2�;1�ðp; kÞ�ð�k̂Þ�1�ðkÞSð�k̂� PÞ þV 2�;2�ðp; kÞSð�k̂þ PÞ�2�ðkÞ�ð�k̂Þ�: (19)

The system of equations in Eq. (19) is the four-channel
CST equation.

The charge conjugation conditions [Eq. (8)] are
converted into connections between these amplitudes,
namely

�1þðpÞ ¼ �C�1�T
2�ðpÞC; �2þðpÞ ¼ �C�1�T

1�ðpÞC;
�1�ðpÞ ¼ �C�1�T

2þðpÞC; �2�ðpÞ ¼ �C�1�T
1þðpÞC:

(20)

The relations in Eq. (20) are consistent only if � ¼ �1.
The invariance of the four coupled-channel CST equations
[Eq. (19)] under the substitutions in Eq. (20) is shown
explicitly in the Appendix.

III. EQUATIONS FOR THE PSEUDOSCALAR
BOUND STATE

The pion, as the lightest of the mesons, requires
a treatment consistent with chiral symmetry. In particular,
we will show that, in the chiral limit of vanishing
bare quark mass m0, the pion bound-state mass � also
tends to zero, while the constituent quark mass acquires
a finite value due to its dressing through the inter-
action kernel. Our demonstration will be done in
two steps:

In this section, we apply the four-channel CST
equations [Eq. (19)] to the case of a pseudoscalar bound
state and perform the � ! 0 limit. Then, in the next
section, the resulting equation is shown to be consistent

with the one-body CST-Dyson equation (i.e., the equa-
tion for the quark self-energy) in the chiral limit. This
property is essential for the existence of a zero-mass
pion solution, which plays the role of the Goldstone
boson associated with the spontaneous breaking of chiral
symmetry.

A. General results

The most general form for the BS vertex function for a
pseudoscalar bound state can be written

�BSðp1; p2Þ ¼ G1ðp2
1; p

2
2Þ�5 þGþðp2

1; p
2
2Þð6p1�

5 þ �5 6p2Þ
þG�ðp2

1; p
2
2Þð6p1�

5 � �5 6p2Þ
þG3ðp2

1; p
2
2Þ6p1�

5 6p2; (21)

where G1, G�, and G3 are scalar functions. If the state
is invariant under charge conjugation with a phase �, then
the relation in Eq. (8), together with ½C; �5� ¼ 0,
C�1��TC ¼ ���, and �5T ¼ �5, leads immediately to
the conditions

G1ðp2
1; p

2
2Þ ¼ �G1ðp2

2; p
2
1Þ;

G�ðp2
1; p

2
2Þ ¼ ��G�ðp2

2; p
2
1Þ;

G3ðp2
1; p

2
2Þ ¼ �G3ðp2

2; p
2
1Þ:

(22)

Using the decomposition in Eq. (21), the CST amplitudes
[Eq. (16)] are

�1þðpÞ ¼ G1ðm2; p2�Þ�5 �Gþðm2; p2�Þ�5 6P�G�ðm2; p2�Þ�5ð2 ^6p� 6PÞ �G3ðm2; p2�Þðm2�5 þ ^6p�5 6PÞ;
�2þðpÞ ¼ G1ðp2þ; m2Þ�5 �Gþðp2þ; m2Þ�5 6PþG�ðp2þ; m2Þð2 ^6pþ 6PÞ�5 �G3ðp2þ; m2Þðm2�5 � 6P�5 ^6pÞ;
�1�ðpÞ ¼ G1ðm2; p2þÞ�5 �Gþðm2; p2þÞ�5 6P�G�ðm2; p2þÞð2 ^6pþ 6PÞ�5 �G3ðm2; p2þÞðm2�5 � ^6p�5 6PÞ;
�2�ðpÞ ¼ G1ðp2�; m2Þ�5 �Gþðp2�; m2Þ�5 6PþG�ðp2�; m2Þ�5ð2 ^6p� 6PÞ �G3ðp2�; m2Þðm2�5 þ 6P�5 ^6pÞ;

(23)
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wherep� � P� p̂. The vertex functions in Eq. (23) satisfy
the charge-conjugation conditions [Eq. (20)]. Substituting
the definitions in Eq. (23) into Eq. (17) andwriting the result
in the form of Eq. (21) gives four equations for the scalar BS
vertex functions of the pion in terms of the CST vertex
functions, which can be computed by substituting Eq. (23)
into Eq. (19). We will not pursue these general relations at
this time; instead, we look at the mass zero limit of the pion
bound-state equation.

B. Zero-mass limit

For this case, it is advantageous to go first to the bound-
state rest frame where P ¼ Pr, and then perform the limit
� ! 0. In the rest frame, the vertex functions [Eq. (23)]
become

�1þðpÞ ¼ G1ðm2; p2�Þ�5 ��Gþðm2; p2�Þ�5�0

�G�ðm2; p2�Þ�5ð2 ^6p���0Þ
�G3ðm2; p2�Þðm2�5 þ� ^6p�5�0Þ;

�2þðpÞ ¼ G1ðp2þ; m2Þ�5 ��Gþðp2þ; m2Þ�5�0

þG�ðp2þ; m2Þð2 ^6pþ��0Þ�5

�G3ðp2þ; m2Þðm2�5 ���0�5 ^6pÞ;
�1�ðpÞ ¼ G1ðm2; p2þÞ�5 ��Gþðm2; p2þÞ�5�0

�G�ðm2; p2þÞð2 ^6pþ��0Þ�5

�G3ðm2; p2þÞðm2�5 �� ^6p�5�0Þ;
�2�ðpÞ ¼ G1ðp2�; m2Þ�5 ��Gþðp2�; m2Þ�5�0

þG�ðp2�; m2Þ�5ð2 ^6p���0Þ
�G3ðp2�; m2Þðm2�5 þ��0�5 ^6pÞ: (24)

It will be shown shortly that the zero-mass limit of the BS
vertex function for the pion can be obtained from the zero-
mass limit of the pion CST vertex functions [Eq. (24)].
Since the pion is even under charge conjugation (� ¼ 1),
G� ¼ 0when� ! 0, and all of the vertex functions reduce
to a single function, which will be denoted �0, with

�0 � G0�
5 ¼ ðG10 �m2G30Þ�5; (25)

whereGiðm2; m2Þ � Gi0. Substituting this into Eq. (17) for
the BS vertex function gives

�ðp;pÞ¼ ½G1ðp2;p2Þ�p2G3ðp2;p2Þ��5 �Gðp2Þ�5

¼�1

2
G0Z0

Z
k
fV ðp;k̂Þ�ðk̂ÞþV ðp;�k̂Þ�ð�k̂Þg;

(26)

where

�ðk̂Þ � �ðk̂Þ�5Sðk̂��Þ þ Sðk̂þ�Þ�5�ðk̂Þ: (27)

Here the� ! 0 limit has been taken everywhere but in the
propagators, where the numerators and denominators

are both of order �, canceling to give a finite result in the
� ! 0 limit.
To work out this limit and to evaluate �ðp; pÞ, we use the

general form [Eq. (5)] of the dressed propagator, which can
be written

SðkÞ ¼
�

1

1� B

�
Mþ 6k

M2 � k2 � i�
¼ ZðMþ 6kÞ

M2 � k2 � i�
; (28)

where the mass function is

M ¼ m0 þ A

1� B
(29)

and Z is the wave function renormalization, and A, B, and
M are functions of k2. The dressed massm is defined by the
condition

Mðm2Þ ¼ m ¼ m0 þ A0 þmB0; (30)

with A0 ¼ Aðm2Þ and B0 ¼ Bðm2Þ. Similarly, we define
Z0 ¼ Zðm2Þ. With our application in mind, we expand the

propagators about the energy of the four-vector k̂, with

k̂2 ¼ m2 and

k� ¼ k̂� P ¼ fEk ��;kg: (31)

Expanding B and the mass function about k̂ (to order � is
sufficient) gives

k2� ’m2�2�Ek; M’m�2�EkM
0; B’B0�2�EkB

0;

(32)

where

M0 � dMðk2Þ
dk2

��������k2¼m2
¼ A0 þmB0

ð1� B0Þ (33)

(with A0 and B0 defined similarly). To order�0, the dressed
quark propagator becomes [with � ¼ 1 for use with the
first two terms in Eq. (26) and�1 for use with the last two]

Sð�k�Þ ’ 1

1� B0

�
ðmþ �^6kÞ 1� 4�EkB

0=ð1� B0Þ
�2�Ekð2mM0 � 1Þ

þ 2�EkM
0 þ � 6P

2�Ekð2mM0 � 1Þ þOð�Þ
�

’ Z0ðmþ �^6kÞ
m2 � k2� � i�

þ ðmþ �^6kÞ 2Z0B
0

ð1� B0Þ
þ Z0

2Ek

ð2EkM
0 þ ��0Þ; (34)

where Z�1
0 ¼ ð1� B0Þð2mM0 � 1Þ is the renormalization

constant. The singular term and the B0 correction cancel

when inserted into � [because ðmþ�^6kÞ�5ðmþ�^6kÞ¼0],
leaving finite terms
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�ð�k̂Þ ! �ð�k̂Þ�5Sð�k�Þ þ Sð�kþÞ�5�ð�k̂Þ
! Z0

2Ek

f�ð�k̂Þ�5ð2EkM
0 þ ��0Þ

þ ð2EkM
0 þ ��0Þ�5�ð�k̂Þg

¼ Z0

2Ek

�5

�
2EkM

0 � Ek

m

�
¼ �5

2mð1� B0Þ : (35)

Inserting this into Eq. (26) gives, finally,

�ðp; pÞ ¼ � G0Z0

4mð1� B0Þ
Z
k
fV ðp; k̂Þ�5 þV ðp;�k̂Þ�5g:

(36)

Using the representation in Eq. (2) for a particular kernel
with Lorentz scalar and vector couplings,

V ðp;kÞ¼VSðp;kÞ11�12þ1

4
VVðp;kÞg�	�

�
1 ��	

2 (37)

shows that

Gðp2Þ ¼ G0Z0

4mð1� B0Þ
Z
k
½VVðp; k̂Þ þ VVðp;�k̂Þ

� VSðp; k̂Þ � VSðp;�k̂Þ�: (38)

Since Gðm2Þ ¼ G0, this equation has a nonzero solution
only if

1 ¼ Z0

4mð1� B0Þ
Z
k
½VVðp̂; k̂Þ þ VVðp̂;�k̂Þ � VSðp̂; k̂Þ

� VSðp̂;�k̂Þ�: (39)

This equation is the condition for the existence of a mass-
less solution of the pion bound-state equation and will be
referred to as the massless pion condition.

IV. CHIRAL SYMMETRY BREAKING IN THE CST

In the GMS model, the spontaneous breaking of chiral
symmetry is realized through the famous NJL mechanism:
In the chiral limit of vanishing bare quark mass, chiral
symmetry is dynamically broken by a finite dressed
quark mass that is spontaneously generated by the self-
interactions of the quark through the interaction kernel.

This symmetry breaking is accompanied by the existence
of a zero-mass pseudoscalar bound state, the Goldstone
pion: It can be shown analytically that the one-body CST-
Dyson equation for the scalar self-energy becomes identi-
cal to the two-body CST-BS equation for a massless pion
as m0 ! 0. Therefore, the existence of the solution for one
implies a solution for the other. On the other hand, away
from the chiral limit, the existence of a solution of the one-
body equation ensures that there cannot exist a massless-
pion solution of the two-body equation at the same time.
In this section, we derive the condition for the scalar part

of the CSTone-body equation to have a nontrivial solution,
and therefore to generate a contribution to the dressed
quark mass. In the chiral limit, this condition reduces to
Eq. (39), which guarantees the existence of a massless
pion, and at the same time ensures that the pion is not
massless for finite bare quark masses. It will be seen that
for this mechanism to work, the interaction kernel must
satisfy certain conditions. In particular, for the case of the
kernel of Eq. (37), VS must not contribute to either the one-
body equation for the scalar self-energy or the two-body
equation for a massless pion.

A. Mass functions

Using the kernel in Eq. (2), the BS self-energy

�ðpÞ ¼ �i
Z d4k

ð2�Þ4 V ðp; kÞSðkÞ

¼ �i
Z d4k

ð2�Þ4
V ðp; kÞ½Mþ 6k�

ð1� BÞðM2 � k2 � i�Þ (40)

is given from the four-dimensional one-body Dyson
equation diagrammatically depicted in Fig. 4. (Here, since
P ¼ 0, the p and k are individual quark off-shell four-
momenta.)
In the CST, we are instructed to take an average of the

contributions from the quark pole in the lower half plane,
where the singularity is at k0 ¼ Ek, and the upper half
plane, where the singularity is at k0 ¼ �Ek; see Fig. 2.
The corresponding one-body CST-Dyson equation is dia-
grammatically depicted in Fig. 5.
Calculating these pole contributions from the singular

(first) term in the expansion [Eq. (34)], and changing k !
�k in the negative energy term (so that k̂ ! �k̂) gives

�ðpÞ ¼ 1

2
Z0

Z
k
fV ðp; k̂Þ�ðk̂Þ þV ðp;�k̂Þ�ð�k̂Þg: (41)

Inserting the kernel [Eq. (37)], we obtain

FIG. 4 (color online). The diagrammatic representation of the
one-body Dyson equation for the self-energy. The thick line
denotes the dressed propagator; the thin line denotes the bare
propagator.

FIG. 5 (color online). The diagrammatic representation of the one-body CST-Dyson equation for the self-energy.
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�ðpÞ ¼ Z0

4m

Z
k

�
m½VSðp; k̂Þ þ VSðp;�k̂Þ þ VVðp; k̂Þ

þ VVðp;�k̂Þ� þ 6k½VSðp; k̂Þ � VSðp;�k̂Þ
� 1

2
VVðp; k̂Þ þ 1

2
VVðp;�k̂Þ�

�
: (42)

For simplicity, evaluate this in the rest frame (p ¼ 0),

where the integral over d3k ensures that ^6k ! �0Ek, and
extract the self-energy functions A and B:

Aðp2
0Þ ¼

Z0

4

Z
k
½VSðp; k̂Þ þ VSðp;�k̂Þ þ VVðp; k̂Þ

þ VVðp;�k̂Þ�;
Bðp2

0Þ ¼
Z0

4p0

Z
k

Ek

m

�
VSðp; k̂Þ � VSðp;�k̂Þ � 1

2
VVðp; k̂Þ

þ 1

2
VVðp;�k̂Þ

�
: (43)

Note that, since p ¼ 0, A and B are functions of p2 ¼ p2
0,

as required by Lorentz covariance.
At p ¼ p̂ (so that p0 ¼ m), the constraint in Eq. (30)

gives

mð1� B0Þ ¼ m0 þ A0: (44)

Using this reduces the equation for A at p0 ¼ m to the
constraint

1 ¼ 1þm0=A0

4mð1� B0ÞZ0

Z
k
½VSðp̂; k̂Þ þ VSðp̂;�k̂Þ þ VVðp̂; k̂Þ

þ VVðp̂;�k̂Þ�: (45)

Comparing Eqs. (39) and (45) shows that they are identical
if m0 ¼ 0 and if the integral over the scalar interaction
vanishes:

Z
k
½VSðp; k̂Þ þ VSðp;�k̂Þ� ¼ 0: (46)

This condition is satisfied by the models discussed in this
paper.
Unless m0 ¼ 0, constraint (39) will not be satisfied,

insuring that there is no pion bound state with zero mass.
This means that the same constraint that makes it possible
that m � 0 [Eq. (45)] also ensures that there exists a pion
with zero mass [Eq. (39)] in the chiral limit. These con-
sistency conditions link the spontaneous generation of a
dressed quark mass in the chiral limit, and hence the
spontaneous breaking of chiral symmetry, to the existence
of a massless Goldstone pion.
The equivalence between the zero-mass pion equation

and the self-energy equation in the chiral limit can also
easily be demonstrated in terms of Feynman diagrams, as
shown in Fig. 6: The scalar self-energy Aðp2Þ becomes
equal to the scalar part of the inverse dressed propagator in
the chiral limit. Multiplying with a �5 and attaching two
off-shell quark lines of momentum p and one pion line of
zero momentum yields a ‘‘spacelike’’ Yukawa vertex.

FIG. 6 (color online). The equivalence between the BS bound-state vertex function for a zero-mass pion and the scalar part (s.p.) of
the CST self-energy in the chiral limit.
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Then, crossing symmetry allows us to switch to the
‘‘timelike’’ creation/annihilation channel, which is equiva-
lent to the (approximated) BS pion vertex function
(expressed in terms of CST functions) in the chiral limit.
This shows that in the chiral limit, the scalar part of the
quark self-energy, Aðp2Þ, is equivalent to Gðp2Þ, the BS
vertex function for an off-shell outgoing quark and anti-
quark with momenta p and �p, respectively.

Aword of caution about the interpretation of Fig. 6 is in
order: while the drawing shows that the two internal quarks
are both on shell at the same time, this contribution does
not correspond to quark-antiquark scattering. As already
shown in Eq. (35), the singular part of the dressed propa-
gator, which is the only part that would contribute to true
scattering and deconfinement [39], cancels. Hence, the
contribution to the diagram is the finite, nonsingular part,
not associated with any propagation of the quarks.

V. GENERAL DEFINITION OF THE KERNEL

Our discussion so far on charge conjugation and chiral
symmetry breaking applies to all covariant interaction
kernels of the form in Eq. (37) that satisfy the symmetry
property [Eq. (9)] together with the condition on the scalar
part VS, Eq. (46). In this section, we specify the
momentum-dependent parts of the kernel. They include
confinement, and they are manifestly covariant expressions
with the correct nonrelativistic limit, a property crucial for
a unified description of all mesons.

A. The relativistic kernel

The kernel we use is a relativistic generalization of the
nonrelativistic potential,

VnrðrÞ ¼ Vnr
L ðrÞ þ Vnr

C ¼ 
r� C; (47)

which is the superposition of a linear confining interaction,
Vnr
L , and a constant interaction, V

nr
C . For a particular choice

of the parameters 
 and C, this potential is similar to the
very successful Cornell potential [5–7] used for the
description of the charmonium spectrum. The constant
interaction is used for simplicity. It can be replaced by a
color-Coulomb potential if needed.

A proper CST generalization of Eq. (47), in order to be
applicable to the four-channel equations [Eq. (17)], must
include the condition that either the quark or the antiquark
is on shell in the initial state. The kinematics for these two
terms is illustrated in Fig. 7. The covariant kernels in
momentum space will be denoted as VL and VC. In the
rest frame of the bound state, where k1 ¼ k2 ¼ k, the
operation of the confining part VL on any regular function
�ðkÞ will be defined by the result

hVL�iðpÞ ¼
Z
k
VAðp; k̂;PÞ½�ðk̂Þ ��ðp̂RÞ�; (48)

where, if the momenta are labeled as in Fig. 7, with p1 ¼ p
and p2 ¼ p� P, the kernel in the left panel is

VAðp; k̂;PÞ ¼ �hðp2
1Þhðp2

2Þhðk̂21Þhðk22Þ
8�


ðp� k̂Þ4 : (49)

The h’s are dimensionless strong quark form factors

to be discussed in Sec. VC. The two cases VAðp̂; k̂Þ and
VAðp̂; k̂þ PÞ are called ‘‘diagonal’’ and ‘‘off-diagonal’’
parts of the kernel, corresponding for on-shell p ¼ p̂ to
the left and right panels in Fig. 7, respectively. The fact that
Eq. (48) does indeed describe a linear confining interaction
in the nonrelativistic limit has been extensively discussed
[36,39].
The ‘‘constant’’ part of the kernel, VC, is defined by

hVC�iðpÞ ¼
Z
k
VCðp; k̂;PÞ�ðk̂Þ

¼ 2Chðp2
1Þhðp2

2Þhðk̂21Þhðk22Þ�ðp̂Þ; (50)

where

VCðp;k̂;PÞ¼ 2Chðp2
1Þhðp2

2Þhðk̂21Þhðk22Þð2�Þ3
Ek

m
�3ðp�kÞ

(51)

and m is the dressed quark mass. Note that the sign in
Eq. (51) is consistent with the sign in the nonrelativistic
limit [Eq. (47)] because a vector interaction changes sign
when taking the nonrelativistic limit [50].
The factor of m=Ek contained in the volume integrals

used in Eqs. (48) and (50) ensures that the three-
dimensional volume integrals are covariant (because k is
the three-momentum of an on-shell quark of mass m), so
that the whole expression is covariant if the �’s are cova-
riant. They also ensure a smooth transition to the nonrela-
tivistic limit whenm ! 1. The subtraction term,�ðp̂RÞ, is
an improved version of the one proposed in Ref. [36], with
the subtraction generalized to properly regulate both the

‘‘diagonal’’ singularities of VA at ðk̂� p̂Þ2 ¼ 0 and the

‘‘off-diagonal’’ singularities at ðk̂þ P� p̂Þ2 ¼ 0. The ar-
gument of the subtraction term is p̂R ¼ ðEpR

;pRÞ, with
pR ¼ pRðp0;pÞ the value for k at which VAðp; k̂Þ becomes
singular. For instance, for p ¼ 0 and P ¼ 0 (which occurs
in the evaluation of the quark self-energy in the quark rest
frame—see Sec. VI), we have

FIG. 7 (color online). Two possible relativistic generalizations
of the interaction kernel. For the particular case when p is an
on-shell momentum, i.e. p ¼ p̂, the left panel describes the
diagonal and the right panel describes the off-diagonal part of
the kernel. The orange blobs on the quark lines denote strong
quark form factors.
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p2
R ¼ 1

4p2
0

ðm2 � p2
0Þ2: (52)

The subtraction term has two important functions:
(i) it regularizes the singular confining kernel VA, reducing
it to a unique and well-defined Cauchy principal value
integral, and (ii) it ensures that the relativistic generaliza-
tion of the nonrelativistic conditionVnr

L ðr ¼ 0Þ ¼ 0, written
in momentum space,

hVLi ¼
Z
k
VLðp; k̂Þ ¼ 0; (53)

is satisfied.
Although the covariant interaction kernel has been con-

structed in such a way that it reduces to the linear confining
potential in the nonrelativistic limit, it is a priori not ob-
vious that it actually confines. As already mentioned in the
Introduction, there are, in principle, two ways confinement
can be realized: (1) the dressed propagators have no real
quark mass poles, or (2) the bound-state vertex function
vanishes as two or more quarks are simultaneously on mass
shell. It has been proven in Ref. [39] that the latter realiza-
tion of confinement applies to the CSTapproach. For this to
work out, the subtraction term in Eq. (48) is crucial, as it
becomes singular when both quarks are on shell, which
forces the vertex function to vanish, for consistency.

This concludes our discussion of the momentum-
dependent parts of the kernel, and we turn now to its
Lorentz structure.

B. Lorentz structure of the kernel

An appealing feature of the GMS model is the property
that the linear confining interaction VL does not contribute
to the CST equation for a massless pseudoscalar bound
state [37]. This can immediately be seen from Eq. (38)
by inserting VL for VS and VV in the kernel and using
condition (53). The same applies to the CST equation for
the scalar self-energy Aðp2

0Þ, Eq. (43). Therefore,
ALðp2

0Þ ¼ 0; (54)

and hence the linear confining interaction does not con-
tribute to the generation of a dressed quark mass. This
decoupling of confinement from chiral symmetry breaking

permits our confining potential to have a Lorentz structure
that includes, e.g., a Lorentz scalar coupling part as sug-
gested from phenomenological approaches [29–31] and
LQCD calculations [32–35]. Specifically, we employ a
mixture of scalar and vector coupling, where � is the
mixing parameter:

V Lðp;k̂Þ¼ ½�11�12�ð1��Þ��
1 ���2�VLðp;k̂Þ: (55)

The relative minus sign between scalar and vector parts
guarantees that the kernel evaluated between on-mass-shell
spinors for the quarks and antiquarks yields the correct
potential [Eq. (47)] in the nonrelativistic limit, without
renormalizing its strength 
.
Unlike the confining interaction, the constant interaction

does contribute to the equation for a zero-mass pseudosca-
lar bound state. This constrains its Lorentz structure to be
chirally symmetric. There are several possible choices;
however, not all of them also yield a zero-mass pion in
the chiral limit [36]. In particular, if one allows only
Lorentz scalar and vector structures as in Eq. (37), then
condition (46), which must be satisfied in order to have
dynamical chiral symmetry breaking, requires the scalar
part to vanish. Therefore, we assume a pure vector struc-
ture for the constant interaction, which, in arbitrary color
gauge and using the conventions of Eq. (37), is written

V Cðp; k̂Þ ¼ ��
1 � �	

2VCðp; k̂Þ 14
�

�
g�	 � ð1� �Þ ðp� kÞ�ðp� kÞ	

ðp� kÞ2
�
; (56)

where VC is as defined in Eq. (51). Here, � is the gauge
parameter. The choice � ¼ 1 corresponds to the Feynman
gauge and � ¼ 0 to the Landau gauge. The constant C
included in VC will be chosen to be consistent with chiral
symmetry and to give a reasonable description of the quark
structure.

C. Strong quark form factors

The kernels given in Eqs. (48) and (50) include (strong)
phenomenological form factors [38,46,51,52]. Their pur-
pose is twofold: they can be regarded as describing some
gluonic corrections to the vertices that would otherwise
be overlooked, and they provide convergence in loop

FIG. 8 (color online). The strong quark form factors can be viewed as gluon loop corrections to the quark vertices (shown here at the
two-loop level).
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integrals. The form factors are expressed as products of
individual quark form factors hðp2Þ, one for each quark
line associated with momentum p.

The idea that these form factors serve as an effective
description of the infinite sum of overlapping gluon loop
corrections to the interaction vertices is illustrated in Fig. 8
(shown only for the two-loop level). This raises the possi-
bility that they could be calculated from first principles at a
later date.

The explicit form of hðp2Þ will be specified later. Our
quark form factors differ from those used in previous
approaches by their normalization at the on-shell point
p2 ¼ m2. They will be normalized to 1 only in the chiral
limit, hðm2

Þ ¼ 1, and therefore hðm2Þ � 1. With this nor-

malization, all free parameters of the quark mass function
are fixed in the chiral limit, and the constituent quark mass
m for finite m0 is then uniquely determined from the mass
constraint, Eq. (30).

The use of factorized form factors [where the form
factor at a vertex, Hðp; p0Þ, is separated into a product of
separate form factors, hðp2Þhðp02Þ] is an advantage when
calculating electromagnetic current matrix elements in the
presence of strong form factors. If they are moved from the
vertices to the quark propagators (leaving the vertices bare)
as illustrated in Fig. 9, and reinterpreted as an additional
correction to the quark propagator, then a dressed quark
current can be constructed that includes them and also
satisfies the Ward-Takahashi identity [51]. This is dis-
cussed in Ref. [47].

VI. QUARK MASS FUNCTION

In this section, we apply the interaction kernel defined in
the previous section to calculate the CST self-energy given
in Eq. (43), and consequently the dynamical quark mass
function Mðp2Þ from Eq. (29). Our Minkowski-space re-
sults are then compared with LQCD calculations per-
formed in Euclidean space. This comparison requires the
computation of our mass function at negative values of p2.

A. Self-energy from the linear confining potential

The discussion on the decoupling of confinement from
chiral symmetry breaking revealed that the linear confining
potential does not contribute to the dynamical quark mass
generation because the corresponding contribution to the
scalar self-energy vanishes, as expressed in Eq. (54). For
the remaining vector part of the self-energy, we insert the
confining kernel [Eq. (48)] into Eq. (43) and get

BLðp2
0Þ¼

ð��2Þ
2p0

h2ðm2Þh2ðp2
0Þ
Z d3kZ0

ð2�Þ3 ½VLðp;k̂;PÞ

�VLðp;�k̂;PÞ�

¼�ð��2Þ2�
 ðp2
0þm2Þ
p4
0

h2ðm2Þh2ðp2
0Þ

�
Z d3k

ð2�Þ3
Z0

E2
k�E2

pR

; (57)

where the form factors hðp2Þ discussed in Sec. VC have
been introduced at each vertex. Equation (57) shows
that BL is a function of p2

0, as it should be. Note that this

would not be the case if we had not included the negative-
energy propagator-pole contribution from the upper half
complex k0 plane. Furthermore, Eq. (57) displays the
simple dependence of BL on the adjustable mixing parame-
ter �. For the particular choice � ¼ 2, BL is zero, and the
confining potential does not contribute at all to the quark
self-energy, i.e.

�Lðp0Þ ¼ 0 for � ¼ 2: (58)

This choice corresponds to a 2:1 ratio between scalar
and vector coupling in the Lorentz structure of the confin-
ing kernel.
The case � ¼ 2 is appealing because of its simplicity, as

it avoids the computation of the UV-divergent integral in
Eq. (57), and therefore we will explore this case in the
remainder of this work. However, in future work we will
compute the integral in Eq. (57) using Pauli-Villars regu-
larization, and � will be determined through a fit to the
meson spectrum. It appears unlikely that � ¼ 2 should
emerge automatically from such a fit, and we expect that
the confining interaction will then actually contribute to the
quark self-energy.

B. Self-energy and mass function from the
constant interaction

Next, we look at the self-energy contribution �C

from the constant potential V C of Eq. (56). Returning
to Eq. (41), in the rest frame of the quark, where its four-
momentum is ðp0; 0Þ, we find

�Cðp0Þ ¼ 1

2
Z0

Z
k
½V Cðp0; k̂Þ�ðk̂Þ þV Cðp0;�k̂Þ�ð�k̂Þ�

¼
�
3

4
þ 1

4
�

�
Ch2ðp2

0Þh2ðm2Þ � ACðp2
0Þ; (59)

where V C has been evaluated using Eqs. (50) and (56),
Z0 ¼ 1 (see below), and � is the gauge parameter taken
from Eq. (56). Equation (59) also shows that

BCðp2
0Þ ¼ 0; (60)

because the two pole contributions cancel. This result
implies that a wave function renormalization factor

FIG. 9 (color online). The strong quark form factors at the
interaction vertices (left) or equivalently multiplied with the
propagator (right).
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Zðp2Þ � 1 can only originate from the confining interac-
tion. However, since we chose � ¼ 2, the confining inter-
action does not contribute to the self-energy at all, and
Zðp2Þ ¼ 1, as assumed above. This fact has to be kept in
mind when our mass function for � ¼ 2 is compared to
LQCD calculations, such as the ones of Ref. [53], where
the mass function contains an overall factor Zðp2Þ substan-
tially smaller than 1 at low p2.

The mass function is not a physical observable and
depends on the choice of the color gauge. In our
case, this is explicit in Eq. (59) through the term contain-
ing the gauge parameter �. The gauge dependence is very
simple, and any change in the gauge parameter can be
absorbed into the coupling constant C through the
redefinition

C0 ¼ C

�
3

4
þ 1

4
�

�
: (61)

In the Feynman gauge we have C ¼ C0, whereas in the
Landau gauge C ¼ 4

3C
0. We will work in the Feynman

gauge, so the mass function [Eq. (29)] becomes

Mðp2Þ ¼ Aðp2Þ þm0 ¼ Ch2ðm2Þh2ðp2Þ þm0: (62)

The coupling constant C is not a free parameter but is
constrained by the mass condition [Eq. (30)]. In the chiral
limit (m0 ¼ 0), which we indicate by a subscript , the
constraint is

Mðm2
Þ ¼ Ch

4ðm2
Þ ¼ m: (63)

We choose hðm2
Þ ¼ 1, fixing the constant at

C ¼ m: (64)

Away from the chiral limit (m0 > 0), we expand C around
C:

C ¼ m þ c1m0 þOðm2
0Þ; (65)

where c1 is a constant. For sufficient small m0=m, we keep
the first-order term only. Then the mass condition becomes

Mðm2Þ ¼ ðm þ c1m0Þh4ðm2Þ þm0 ¼ m; (66)

which determines the dressed massm in terms of the quark
form factor h. The coefficient c1 will be chosen in Sec. VII
in order to give a reasonable fit to the existing LQCD data.

The final result for the dressed quark mass function is

Mðp2Þ ¼ ðm þ c1m0Þh2ðm2Þh2ðp2Þ þm0; (67)

which reduces in the chiral limit to

Mðp2Þ ¼ mh
2ðp2Þ: (68)

This mass function Mðp2Þ incorporates asymptotic free-
dom correctly: in the ultraviolet limit, the quark mass
approaches the bare quark mass m0; i.e.,

lim
p2!1

Mðp2Þ ¼ m0: (69)

On the other hand, in the infrared region, the constituent
quark mass is generated from the dressing through the
interaction kernel. Even in the chiral limit of vanishing
bare quark mass, a finite constituent quark mass is gener-
ated dynamically. In the present simple model for the
interaction kernel, where the Lorentz scalar-vector mixing
in the confining interaction has been chosen such that there
is no contribution to the self-energy, the dressing of the
quark is entirely determined in terms of the quark form
factors at the interaction vertices.
To counter any impression that the mass function is

purely phenomenological, we point out that it acquires
the simple form in Eq. (67) only in the present special
case of a 2:1 Lorentz scalar-vector mixing for the confining
interaction. If � � 2, there is a nontrivial influence from
the confining interaction on the mass function, reflected in
a wave function renormalization Z � 1. Furthermore, the
mass function [Eq. (67)] is the solution of the one-body
CST-Dyson equation of Eq. (42) when the simple interac-
tion kernels discussed in Secs. VB and VC are used. In this
model, it is the kernel that is phenomenological,
with parameters fixed by data and lattice calculations as
discussed below.

VII. RESULTS AND DISCUSSION

We take a simple form for the strong quark form factors
hðp2Þ:

hðp2Þ ¼
�
�2

 �m2


�2 � p2

�
n
; (70)

with � ¼ mþMg and � ¼ m þMg, where Mg is an

adjustable mass parameter. This form for hðp2Þ guarantees
that there will always be one and only one mass solution of
the gap equation. n has to be chosen such that the pion form
factor calculation described in Ref. [47] converges, which
requires n > 1. In this, work we choose n ¼ 2.
Note that hðp2Þ has a pole at p2 ¼ �2. This point lies

far outside of the region of interest, but it may still be
worthwhile to point out briefly how this result could
be improved. One possibility is to choose a function of
the form

hðp2Þ ¼

8>>><
>>>:

�
�2

�m2


�2�p2

�
2

if p2 < sþ�
�2

�m2


�2þp2�2sþ

�
2

if p2 > sþ
(71)

and sþ <�2. This function is symmetric about p2 ¼ sþ,
and the pole at p2 ¼ �2 is removed. We leave further
discussion of this for another time.
The mass function in the chiral limit, Eq. (68), involves

two free parameters, the chiral constituent quark mass m
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and Mg. The constituent quark mass m is obtained by

solving the mass condition, Eq. (66), for finite bare quark
masses m0. We fix our mass function parameters using the
LQCD data [53], with four data sets for the bare quark
masses m0 ¼ 0:016, 0.032, 0.047, and 0.063 GeV. Since
the lattice data are calculated in Euclidean space, they must

be compared with the Minkowski-space calculation at nega-
tive p2. To carry out the fit, the four sets of lattice data are
extrapolated to zero bare quark mass by a linear fit, and then
Mg and m are determined from a 2 fit of the chiral mass

function [Eq. (68)] to these (extrapolated) chiral-limit lattice
data. Only the lattice data points at small values of�p2 (in
particular, the first 50 points between p2 ¼ 0 and p2 ¼
�1:94 GeV2) are used in the fit. The reason for not using
all available lattice data is that the ultraviolet tails of the data
do not approach the corresponding values of the bare quark
mass, a deviation from the correct asymptotic behavior
attributed to an insufficiently small lattice spacing [54],
whereas the finite lattice spacing effects are expected to
be small for the lower 50 points. This procedure gives a
chiral constituent mass of m ¼ 0:308 GeV and a mass

parameter Mg ¼ 1:734 GeV. The corresponding mass

function is plotted in Fig. 10.
To test our parameter-fixing procedure, the mass func-

tions for the bare quark mass values m0 ¼ 0:016, 0.032,
0.047, and 0.063 GeV have been determined by finding the
dressed masses for these values of m0 using the gap equa-
tion [Eq. (67)] and comparing the results with the corre-
sponding lattice data. With a value c1 ¼ 12 for the
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FIG. 10. The quark mass function in the chiral limit fitted
to the chiral-limit extrapolation of the LQCD data [53]. Data
points up to �p2 ¼ 1:94 GeV2 have been fitted with a
2=d:o:f: ¼ 0:61.
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FIG. 11. The quark mass function with parameters obtained
from the fit to the chiral-limit extrapolation of the LQCD data
[53] up to �p2 ¼ 1:94 GeV2. The top figure shows the mass
function for m0 ¼ 0:016 GeV with m ¼ 0:363 GeV and the
corresponding lattice data, comparing with data points up to
�p2 ¼ 1:94 GeV2 with a 2=datum ¼ 0:35. The bottom figure
shows the mass function for m0 ¼ 0:032 GeV with m ¼
0:403 GeV and the corresponding lattice data, comparing with
data points up to �p2 ¼ 1:94 GeV2 with a 2=datum ¼ 0:48.
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FIG. 12. The quark mass function with parameters obtained
from the fit to the chiral-limit extrapolation of the LQCD data
[53] up to �p2 ¼ 1:94 GeV2. The top figure shows the mass
function for m0 ¼ 0:047 GeV with m ¼ 0:434 GeV and the
corresponding lattice data, comparing with data points up to
�p2 ¼ 1:94 GeV2 with a 2=datum ¼ 2:83. The bottom figure
shows the mass function for m0 ¼ 0:063 GeV with m ¼
0:462 GeV and the corresponding lattice data, comparing with
data points up to �p2 ¼ 1:94 GeV2 with a 2=datum ¼ 2:15.
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expansion coefficient in C, a good fit to the lattice data at
small negative p2 is achieved (fitting the data points up to
�p2 ¼ 1:94 GeV2 with an overall 2=d:o:f: ¼ 1:46), as
shown in Figs. 11 and 12.

For smallm0 near the chiral limit and for small�p2, our
results are in good agreement with the lattice data. As m0

becomes larger, a deviation from the lattice data is ob-
served not only in the perturbative region of large �p2

(due to finite lattice-spacing effects as mentioned above),
but also at small �p2. The fits using only 50 lattice data
points seem to give slightly better agreement with the data
for large m0 than a fit of more points up to larger values of
�p2. In particular, it is interesting to observe in Fig. 12 that
for large m0, the lattice data at small �p2 seem to lie
slightly above our results. This might be attributed to the
fact that with � ¼ 2 we have Z ¼ 1, which does not agree
with the lattice data at small values of �p2.

Certainly, there exist various functional choices for the
form factor hðp2Þ that would give a better fit to the lattice
data than the simple choice of Eq. (70). For instance,
Ref. [54] gives a functional form suggesting that n� 1=2
would be favored. However, the aim of the present work is
not to provide the most accurate description of the quark
mass function possible, but rather to show that our model is
capable of giving sensible results for both the quark and
the pion structure at the same time. In Ref. [47], the pion
charge form factor is calculated using the same strong
quark form factors and mass functions obtained from the
lattice data, and good agreement is obtained.

VIII. SUMMARYAND CONCLUSIONS

The present work is a Minkowski-space study of the
dressed quark mass function using the covariant spectator
theory (CST).We propose a manifestly covariant model for
the interquark interaction based on previous work by GMS
that incorporates both spontaneous chiral symmetry break-
ing and confinement. For the treatment of the light q �q
mesons such as the pion, we employ a four-channel CST
equation that is invariant under charge conjugation. In the
nonrelativistic limit, the CST equations reduce to the
Schrödinger equation. This makes our approach suitable
for a unified description of all q �q mesons.

Spontaneous chiral symmetry breaking is included via a
Nambu–Jona-Lasinio–type mechanism: It is shown analyti-
cally that in the chiral limit of a vanishing current quark
massm0, the two-body CST-BS equation for a pseudoscalar
bound state becomes identical to the scalar part of the one-
body CST-Dyson equation for the self-energy. This property
ensures the existence of a zero-mass solution (a Goldstone
pion) in the chiral limit. A finite dressed quark mass is then
generated dynamically through the self-interactions of the
quark with the q �q interaction kernel. The present approach
differs from previous CST models in the sense that the mass
function is calculated directly from the kernel, which makes
this model completely self-consistent.

Our interaction kernel is a covariant generalization of the
nonrelativistic linear confining potential plus a constant po-
tential shift that defines the energy scale. The confinement
part of the kernel has the property that it does not contribute
to the CST equation for a pseudoscalar bound state in the
chiral limit. This decoupling of confinement from chiral
symmetry breaking permits our confining part to include,
e.g. a Lorentz scalar coupling, as suggested from phenome-
nological approaches and LQCD studies. In particular,
we employ a mixed scalar-vector Lorentz structure for the
confining part and a pure Lorentz vector structure for the
constant part of our kernel. Furthermore, we introduce
(strong) quark form factors at the interaction vertices in order
to include, approximately, additional gluonic corrections and
to ensure the necessary convergence in loop integrations.
Using this kernel, we have calculated the quark mass

function from the CST-Dyson equation. We have chosen a
particular Lorentz scalar-vector mixing in the confinement
part, for which the mass function is solely determined by
the constant part of the kernel and by the quark form
factors. Our mass function involves three free parameters
which have been determined by a 2 fit to LQCD data
extrapolated to the chiral limit. For small m0 and for small
negative Minkowski-space quark momenta squared, p2,
our results are in good agreement with the lattice data.
As m0 becomes larger, a deviation from the lattice data is
observed, not only in the perturbative region, where finite
spacing effects influence the lattice results, but also at very
small negative p2, where the lattice results for Z do not
agree with our predictions. Applications of this work to the
pion form factor is discussed in the accompanying paper,
Ref. [47].
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APPENDIX: PROOF OF CHARGE CONJUGATION
INVARIANCE FOR THE CST EQUATIONS

Here we prove the invariance of the four coupled-
channel CST equations [Eq. (19)] under the substitutions
in Eq. (20). To do this, simplify Eq. (19) by using the
assumption that the kernel can be written as a sum of
Lorentz-invariant functions that depend on momentum
transfer only. With this assumption, we can define six
independent kernels:
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Vd�V 1þ;1þ¼V 1�;1�¼V 2þ;2þ¼V 2�;2�¼V ðp̂� k̂Þ; Vs�V 2þ;2�¼V 2�;2þ¼V 1þ;1�¼V 1�;1þ¼V ðp̂þ k̂Þ;
Vd�P�V 1þ;2þ¼V 2�;1�¼V ðp̂� k̂�PÞ; Vs�P�V 1þ;2�¼V 2�;1þ¼V ðp̂þ k̂�PÞ;
VdþP�V 2þ;1þ¼V 1�;2�¼V ðp̂� k̂þPÞ; VsþP�V 2þ;1�¼V 1�;2þ¼V ðp̂þ k̂þPÞ: (A1)

With this notation, the equations become

�1þðpÞ ¼ � 1

2

Z
k
½Vd�ðk̂Þ�1þðkÞSðk̂� PÞ þ Vd�PSðk̂þ PÞ�2þðkÞ�ðk̂Þ

þ Vs�ð�k̂Þ�1�ðkÞSð�k̂� PÞ þ Vs�PSð�k̂þ PÞ�2�ðkÞ�ð�k̂Þ�;
�2þðpÞ ¼ � 1

2

Z
k
½VdþP�ðk̂Þ�1þðkÞSðk̂� PÞ þ VdSðk̂þ PÞ�2þðkÞ�ðk̂Þ

þ VsþP�ð�k̂Þ�1�ðkÞSð�k̂� PÞ þ VsSð�k̂þ PÞ�2�ðkÞ�ð�k̂Þ�;
�1�ðpÞ ¼ � 1

2

Z
k
½Vs�ðk̂Þ�1þðkÞSðk̂� PÞ þ VsþPSðk̂þ PÞ�2þðkÞ�ðk̂Þ

þ Vd�ð�k̂Þ�1�ðkÞSð�k̂� PÞ þ VdþPSð�k̂þ PÞ�2�ðkÞ�ð�k̂Þ�;
�2�ðpÞ ¼ � 1

2

Z
k
½Vs�P�ðk̂Þ�1þðkÞSðk̂� PÞ þ VsSðk̂þ PÞ�2þðkÞ�ðk̂Þ

þ Vd�P�ð�k̂Þ�1�ðkÞSð�k̂� PÞ þ VdSð�k̂þ PÞ�2�ðkÞ�ð�k̂Þ�: (A2)

If the solution of these equations is charge-conjugation invariant, then we expect the conditions in Eq. (20) to hold.
Transforming the equations for �1� (using � ¼ 1 and dropping the arguments) gives

C�1�T
1þC ¼ � 1

2

Z
k
½VdSð�k̂þ PÞC�1�T

1þC�ð�k̂Þ þ Vd�P�ð�k̂ÞC�1�T
2þCSð�k̂� PÞ

þ VsSðk̂þ PÞC�1�T
1�C�ðk̂Þ þ Vs�P�ðk̂ÞC�1�T

2�CSðk̂� PÞ�;
! �2� ¼ � 1

2

Z
k
½VdSð�k̂þ PÞ�2��ð�k̂Þ þ Vd�P�ð�k̂Þ�1�Sð�k̂� PÞ

þ VsSðk̂þ PÞ�2þ�ðk̂Þ þ Vs�P�ðk̂Þ�1þSðk̂� PÞ�;
C�1�T

2þC ¼ � 1

2

Z
k
½VdþPSð�k̂þ PÞC�1�T

1þC�ð�k̂Þ þ Vd�ð�k̂ÞC�1�T
2þCSð�k̂� PÞ

þ VsþPSðk̂þ PÞC�1�T
1�C�ðk̂Þ þ Vs�ðk̂ÞC�1�T

2�CSðk̂� PÞ�;
! �1� ¼ � 1

2

Z
k
½VdþPSð�k̂þ PÞ�2��ð�k̂Þ þ Vd�ð�k̂Þ�1�Sð�k̂� PÞ

þ VsþPSðk̂þ PÞ�2þ�ðk̂Þ þ Vs�ðk̂Þ�1þSðk̂� PÞ�: (A3)

This shows that the transformations in Eq. (20) transform the �1 equations into the �2 equations, proving they are equal.
Similarly, the �2 equations can be transformed into the �1 equations, completing the argument.
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