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We discuss the charged pion condensation phenomenon in the linear sigma model, in the presence of an
external uniform magnetic field. The critical temperature is obtained as a function of the external magnetic
field, assuming the transition is of second order, by considering a dilute gas at low temperature. As a result
we found magnetic catalysis for high values of the external magnetic field. This behavior confirms previous
results with a single charged scalar field.
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I. INTRODUCTION

In a recent article the occurrence ofmagnetic catalysis for
the formation of a charged Bose-Einstein condensate was
discussed in the frame of a self-interacting complex scalar
field [1]. It was shown that—contrary to what was argued
previously in the literature [2–8]—the realization of a
chargedBose-Einstein condensate is possible in three spatial
dimensions in the presence of a uniform external magnetic
field when screening effects are considered. The effects of
external magnetic fields on charged-boson systems has been
amatter of discussion in several articles studying chiral sym-
metry restoration through the effective potential, including
resummation in the high-temperature region [9,10].
In the present article we concentrate on the formation of

the charged pion condensate in the frame of the linear
sigma mode, taking into account effects of a uniform exter-
nal magnetic filed. Pion condensation could play a relevant
role in the cooling process of compact stars [11–14] and it
has been extensively studied in different contexts such as,
for example, chiral perturbation theory [15–19], the
Nambu-Jona-Lasinio model [20–23] and other QCD effec-
tive models [24–31].
The linear sigma model exhibits many of the global sym-

metries of QCD. The model was originally introduced by
Gell-Mann and Levy [32] with the purpose of describing
pion-nucleon interactions. During the last few years an
impressive amount of work has been done with this model.
The idea is to consider it as an effective low-energy
approach for QCD. Its simplicity and beautiful realization,
explicit as well as implicit, of chiral symmetry breaking has
motivated people to consider it as a valuable tool for study-
ing phase transitions. Actually, there are not many contri-
butions in the literature about the linear sigma model in the
presence of magnetic fields or when a pion superfluid con-
densate is taken into account. Shu and Li [33] have studied
Bose-Einstein condensation and the chiral transition, in the

chiral limit, within the linear sigma model. In Ref. [34], a
discussion of the structure of the phase diagram in the pres-
ence of a magnetic background, in the framework of the
linear sigma model, coupled to quarks and=or a
Polyakov loop has been presented. The effects of CP vio-
lation on the nature of the chiral transition within the linear
sigma model with two flavors of quarks in a strong mag-
netic background was discussed in Ref. [35]. In Ref. [36]
the occurrence of pion superfluidity at finite temperature
and isospin chemical potential was considered in the frame-
work of the linear sigma model.
The main idea of the present article is to consider the

effective potential at the one-loop level, taking the isospin
chemical potential near the effective pion mass, and then
varying the intensity of the magnetic field in order to obtain
the critical temperature. Essentially we have followed the
same procedures performed in Ref. [1], but this time in a
more realistic model.
This article is organized as follows. In Sec. II we present

our model in the presence of an external magnetic field with
a finite isospin chemical potential. We search for the lowest
energy state where the pion condensate occurs, defining
then our order parameter for the phase transition. In
Sec. III we proceed to calculate the effective potential at
the one-loop level. In Sec. IV we calculate the relevant dia-
grams as well as the charge number density. In Sec. V we
explain the prescription adopted in order to fix the different
parameters. In Sec. VI, we present and explain our results
which include the critical temperature for the charged pion
condensation as a function of the magnetic field and the
superfluid density as a function of the temperature.
Finally we present our conclusions and outlook.

II. THE MODEL

In Euclidean space, the Lagrangian of the linear sigma
model, without a fermionic sector, but including the isospin
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chemical potential and an external magnetic field is
given by

S ¼
Z
β
dx

�
ð∂4 − μIÞπþð∂4 þ μIÞπ−

þ ð∂i − ieAiÞπþð∂i þ ieAiÞπ−
þ 1

2
½ð∂σÞ2 þ ð∂π0Þ2 þ μ20ðσ2 þ π20 þ 2πþπ−Þ�

þ λ

4
ðσ2 þ π̄2Þ2 − cσ

�
; (1)

where μI is the isospin chemical potential. πþ and π−
represent charged pion fields, π0 is the neutral pion
field and σ is the field associated to the sigma meson.
The integral is defined as

Z
β
dx≡

Z
β

0

dx4

Z
d3x; (2)

where β ¼ 1=T, with T the temperature of the system. The
term cσ corresponds to the explicit chiral-symmetry-
breaking term, with c¼fπm2

π and where fπ ¼ 93:5 MeV
is the pion decay constant. In the symmetric gauge, the
external gauge field which produces a uniform magnetic
field in the z direction can be written as

A⃗ ¼ 1

2
B⃗ × r⃗ ¼ 1

2
Bð−x2; x1; 0Þ: (3)

The symmetry is spontaneously and explicitly broken and,
therefore, we assume that the expectation value of the
sigma field σ̄ has a nonvanishing value. If we consider that
the isospin symmetry is also broken due to the formation of
the charged pion condensate, we can then expand the fields
as quantum fluctuations around the classical fields. In the
case of the σ field, we will apply the mean-field approxi-
mation. In the case of the pion fields, we take the classical
field oriented in one isospin direction, conventionally in the
π1 direction,

σðxÞ ¼ σ̄ þ ~σðxÞ; π�ðxÞ ¼
1ffiffiffi
2

p φcðxÞ þ ~π�ðxÞ: (4)

The mean-field approximation cannot be applied to the
classical pion field due to nontrivial coupling to the external
magnetic field [37]. Therefore, in order to find the mini-
mum value of the pion expectation value, a variational
analysis has to be done.
Our analysis will concentrate on a region close to the

formation of the superfluid pion phase. The effective action
up to tree level is

Scl ¼ β

Z
d3x

�
1

2
μ20σ̄

2 þ λ

4
σ̄4 − cσ̄ þ 1

2
ð∂iφcÞ2

þ 1

2
ðm2

π − μ2I þ e2A2
i Þφ2

c þ
λ

4
φ4
c

�
; (5)

where

m2
π ¼ μ20 þ λσ̄2: (6)

Minimizing with respect to φc the free part of the classical
action, and then looking for eigenstates, we find that the
classical field φc satisfies a kind of nonrelativistic
Schrödinger equation,

½−∇2 þ ðeBÞ2ðx21 þ x22Þ=4þm2
π − μ2I �φc ¼ E2φc: (7)

We immediately recognize in the previous equation the
two-dimensional harmonic oscillator whose eigenvalues
are

E2
l ðpzÞ ¼ p2

z þm2
π þ ð2lþ 1ÞeB − μ2I : (8)

Since we are looking for the ground state of the classical
pion-field eigenvalues, we will consider the eigenfunction
associated to pz ¼ 0 and l ¼ 0. In this way we obtain [38]

φc ¼ v0e−eBðx
2
1
þx2

2
Þ=4; (9)

where v0 is a constant which happens to be the order
parameter when B ¼ 0. We define the order parameter
for the formation of the pion condensate as

v̄≡
�
1

V

Z
d3xφ2

c

�
1=2

; (10)

where V is the volume of the system. In terms of v̄ the
classical field reads

φc ¼ v̄

�
1 − e−Φ=2Φ0

Φ=2Φ0

�
1=2

e−eBðx21þx2
2
Þ=4; (11)

where Φ≡ BA is the magnetic flux, A is the area transverse
to the external magnetic field and Φ0 ≡ π=q is the quantum
magnetic flux. With this definition of the order parameter v̄
it turns out that the tree-level effective mass is independent
of the magnetic flux. A different prescription will produce a
global flux-dependent term.
If higher Landau levels are included in the classical

description, or if for some reason the true ground state is
suppressed, then the formation of the superfluid phase will
be more difficult and the critical chemical potential must be
increased. However, since the true ground state is present,
we may expect the appearance of quasiparticles in the spec-
trum associated to the interaction between pions in the
superfluid phase and pions in the normal phase with higher
Landau levels, according to Bogoliubov’s description [39].

III. EFFECTIVE POTENTIAL UP TO ONE-LOOP

Starting from our action in Eq. (1), we proceed to cal-
culate the effective potential at the one-loop order, which
is given by
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Ω ¼ 1

βV

�
Scl þ

1

2
Tr ln D−1

�
; (12)

where Scl is the classical action in Eq. (5), and the inverse propagator matrix operator is given by

D−1 ¼

2
6664
−∂2 þm2

σ þ λφ2
c 0

ffiffiffi
2

p
λσ̄φc

ffiffiffi
2

p
λσ̄φc

0 −∂2 þm2
π þ λφ2

c 0 0ffiffiffi
2

p
λσ̄φc 0 −D2− þm2

π þ 2λφ2
c λφ2

cffiffiffi
2

p
λσ̄φc 0 λφ2

c −D2þ þm2
π þ 2λφ2

c

3
7775: (13)

m2
σ ¼ μ20 þ 3λσ̄2, mπ is defined in Eq. (6), and

D2
� ¼ ð∂4 � μIÞ2 þ ð∂i � ieAiÞ2: (14)

As we have said, we want to explore the condensation phe-
nomenon close to the phase transition, assuming this is of
second order. This means that the order-parameter value
will be close to the value in the normal phase, i.e. near
v̄ ¼ 0. Therefore, we can expand the effective potential
around the order parameter v̄ ¼ 0,

Ω ¼ Ω0 þ
1

2
Ω2v̄2 þ

1

4!
Ω4v̄4 þ � � � ; (15)

where

Ωn ¼
∂nΩ
∂v̄n

����
v̄¼0

: (16)

This assumption does not exclude the fact that a first-order
phase transition or a crossover may occur. However, here
we will deal only with second-order phase transitions
which is actually the case at zero external magnetic field.
In this scenario the value of σ̄ that minimizes the effective
potential will be

∂Ω0

∂σ̄ ¼ 0. (17)

On the other hand, one of the observables is the charge
number density which remains constant in the normal
phase as well as in the superfluid phase. Therefore,

ρ ¼ −∂Ω0

∂μI : (18)

For μI ≤ μc, with μc(Tc, ρ, B) being the critical chemical
potential where the condensation begins. The second-order
phase transition occurs when the effective pion mass term
in the effective potential vanishes, i.e., when Ω2 → 0, and
whenever Ω4 > 0. The symmetric phase corresponds to
Ω2 > 0 and the broken phase corresponds to Ω2 < 0. So
the condition for the second-order phase transition that
fixes μc will be

Ω2 ¼ 0. (19)

This means that we only need to calculate the quantities Ω0

and Ω2 in the normal phase near the phase transition.
All the diagrams involved are shown and described in

Fig. 1, where the first line shows the contributions to the
effective potential in the normal phase Ω0 and the second
line the contributions to the effective mass Ω2.
The contributions to the normal-phase effective poten-

tial, Ω0, are,

Ω0a ¼
1

2
μ20σ̄

2 þ λ

4
σ̄4 − cσ̄; (20)

Ω0b=0c ¼ −
1

βV

Z
β
dx ln Dσ=π0ð0Þ; (21)

Ω0d ¼ −
1

βV

Z
β
dx ln Dπ�ðx; xÞ; (22)

where Eq. (20) is the tree-level contribution, and the other
diagrams correspond to the σ, π0 and π� one-loop
contributions.

FIG. 1. Relevant diagrams for the second derivative of the effec-
tive potential with respect to the order parameter v̄ at v̄ ¼ 0. The
dashed line in the loop denotes the sigma propagator, the continu-
ous line is the charged pion propagator, the double line represents
the neutral pion propagator, and the external lines represent φc.
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The σ and π0 propagators at finite temperature are

Dσ=π0 ¼ ⨋p

eip·ðx−yÞ
p2 þm2

σ=π

; (23)

where −p4 ¼ ωn ¼ 2πn are the Matsubara frequencies
[40–43], and with the integral defined as

⨋p ≡ T
X
n

Z
d3p
ð2πÞ3 : (24)

The charged pion propagator at finite temperature corre-
sponds to the Schwinger propagator [44], defined as

Dπ�ðx; yÞ ¼ e−iϕðx;yÞ⨋pe
ip·ðx−yÞ ~Dπ�ðpÞ; (25)

where

ϕðx; yÞ ¼
Z

x

y
dξμ

�
eAμðξÞ − 1

2
eFμνðξν − yνÞ

�
(26)

is a phase factor, and where

~Dπ�ðpÞ ¼
Z

∞

0

ds
e−s½ðωn−iμIÞ2þp2

3
þm2

πþp2⊥
tanhðeBsÞ

eBs �

coshðeBsÞ : (27)

The term p2⊥ represents the square of the transverse com-
ponents of p⃗ with respect to the magnetic field direction.
The contributions to the effective pion mass, Ω2, are

Ω2a ¼ ðm2
B − μ2I Þ

1

βV

Z
β
dx hðxÞ2; (28)

Ω2b=2c ¼
λ

βV

Z
β
dx hðxÞ2Dσ=π0ð0Þ; (29)

Ω2d ¼
4λ

βV

Z
β
dx hðxÞ2Dπ�ðx; xÞ; (30)

Ω2e¼−
4λ2σ̄2

βV

Z
β
dxdyhðxÞhðyÞDσðx−yÞDπ�ðx;yÞ; (31)

where Eq. (28) is the tree-level effective pion mass, and
mB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
p

corresponds to the charged pion mass
corrected with the lowest Landau level. The function h
denoting the external legs is defined as h ¼ φc=v̄, with
the classical pion field defined in Eq. (11). Because of
the definition of the order parameter v̄, the integralR
β dx h

2 ¼ βV, and therefore the only nontrivial contribu-
tion from the h function comes from Eq. (31).

IV. CALCULATING THE RELEVANT DIAGRAMS

As we mentioned in the previous section, the relevant
terms in the expansion of the thermodynamical potential
in Eq. (15) are Ω0 and Ω2. We do not need to find the full
expression for Ω0, but rather the derivative with respect to
μI in order to find the charge number density, and the
derivative with respect to σ̄ in order to find the value of
σ̄ that minimizes the thermodynamical potential.
The relevant diagrams are those corresponding to Ω2,

since, as we said previously, we assumed the existence
of a second-order phase transition. The explicit calculation
of these diagrams will be presented below. We will use
dimensional regularization in the MS scheme for the tem-
perature-independent divergent terms. Let us start with the
contributions to ∂Ω0=∂σ̄,

∂Ω0a

∂σ̄ ¼ μ20σ̄ þ λσ̄3 − c; (32)

∂Ω0b

∂σ̄ ¼ 3λσ̄m2
σ

16π2

�
ln

�
m2

σ

Λ2

�
− 1

�
þ 3λσ̄

Z
d3k
ð2πÞ3

nBðωσÞ
ωσ

;

(33)

∂Ω0c

∂σ̄ ¼ λσ̄m2
π

16π2

�
ln

�
m2

π

Λ2

�
− 1

�
þ λσ̄

Z
d3k
ð2πÞ3

nBðωπÞ
ωπ

;

(34)

where ωσ=π ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

σ=π0

q
and nBðωÞ ¼ 1=ðeβω − 1Þ,

and Λ is the renormalization scale. For the diagram
Ω0d we use a treatment based on Jacobi’s θ function.
Since we are interested in the sector T≪mB we can use
the steepest descent approximation for the temperature-
dependent part (see the Appendix). In this way we get

∂Ω0d

∂σ̄ ≈
2λσ̄m2

π

ð4πÞ2
�
ln

�
2eB
Λ2

�
þ 2eB

m2
π
ζ0
�
0;
1

2
þ m2

π

2eB

��

þ λσ̄m2
Bτ

3=2

�
γLi1=2ðzÞ þ

X∞
n¼1

zn

n3=2
nγ

ðenγ − 1Þ
�
;

(35)

where the polylogarithm function is defined as

LisðzÞ≡
X∞
n¼1

zn

ns
; (36)

and the fugacity z, the scaled temperature τ and the scaled
magnetic field γ are defined as
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z≡ eðμI−mBÞ=T; (37)

τ≡ T
2πmB

; (38)

γ ≡ eB
mBT

: (39)

The function ζðs; uÞ corresponds to the Hurwitz function,
with ζ0ðs; uÞ≡ ∂ζðs; uÞ=∂s.
The only contribution needed for the charge number den-

sity comes from the one-loop diagram with charged pions,
Ω0d, since the other diagrams do not involve the chemical
potential. Therefore, from Eq. (18), and using the low-
temperature approximation, the charge number density is

ρ ≈ m3
Bτ

3=2

�
γLi1=2ðzÞ þ

X∞
n¼1

zn

n3=2
nγ

ðenγ − 1Þ
�
: (40)

Now, for the Ω2 contributions we proceed in the same way.
The expressions for diagrams 2a, 2b, and 2c are

Ω2a ¼ m2
B − μ2I ; (41)

Ω2b=2c ¼
λm2

σ=π

16π2

�
ln

�
m2

σ=π

Λ2

�
− 1

�
þ λ

Z
d3k
ð2πÞ3

nBðωσ=πÞ
ωσ=π

:

(42)

Diagram 2d was also calculated in the low-temperature
approximation,

Ω2d ≈
λm2

π

ð4πÞ2
�
ln

�
2eB
Λ2

�
þ2eB

m2
π
ζ0
�
0;
1

2
þ m2

π

2eB

��

þ λ

2
m2

Bτ
3=2

�
γLi1=2ðzÞþ

X∞
n¼1

zn

n3=2
nγ

ðenγ −1Þ
�
: (43)

Diagram 2e has a more cumbersome expression than the
previous cases, due to the mixture between the charged
pions and the sigma-meson propagators. Nevertheless,
since mσ ≫ mπ , it is possible to approximate the sigma
propagator as a nondynamical object. Thus, in this case
we may replace the propagator by Dσ ≈ 1=m2

σ. This turns
out to be in fact a very good approximation according to
numerical comparisons we have done. For the pion propa-
gator Dπ� we use Eq. (27). The phase in this case is
φðx; yÞ ¼ exp ½ieB=2ð−x1y2 þ y1x2Þ�. In this way we find

Ω2e ≈ − λσ̄2

m2
σ
Ω2d: (44)

In Eqs. (35), (40), (43), and (44) we neglect the contribution
with μI → −μI since, as the transition occurs when μ ∼mB,
those terms are of order e−2βmB.

V. FIXING THE DIFFERENT PARAMETERS AT
ZERO TEMPERATURE

Before proceeding with the calculation of the phase tran-
sition line, we need to fix the different parameters at zero
temperature. To do this, we first set the different contribu-
tions at zero temperature in Euclidean space by setting

−ωn → p4; (45)

T
X
n

→
Z

dp4

2π
: (46)

We need to find the appropriate physical values in order to
fix λ, μ0, Λ, and σ̄0, with the last one being the value of the
order parameter σ̄ that minimizes the effective potential at
zero temperature and zero chemical potential. In all these
cases, the pion condensate is zero since we are in the nor-
mal phase.
Following Ref. [37], we construct a set of three equations

with physical conditions for the parameters given by

∂Ω
∂σ̄

����
v̄¼0;σ̄¼σ̄0

¼ 0; (47)

∂2Ω
∂σ̄2

����
v̄¼0;σ̄¼σ̄0

¼ M2
σ; (48)

∂2Ω
∂v̄2

����
v̄¼0;σ̄¼σ̄0

¼ M2
π; (49)

where the first equation provides us with the minimum
sigma value, i.e. σ̄0, and the other two expressions give
us the physical masses of the sigma field and pions, respec-
tively, which we will take as Mσ ¼ 550 MeV and
Mπ ¼ 140 MeV. The derivatives are done considering Λ
as an independent parameter
We need one extra condition in order to fix the renorm-

alization constant Λ. We choose that, at zero temperature
and chemical potential, the full effective potential (in this
case up to the one-loop level) must be the same as the tree-
level effective potential,

Ωjv̄¼0;σ̄¼σ̄0
¼ μ20σ̄

2
0

2
þ λσ̄40

4
− cσ̄0; (50)

which leads to the relation

0¼ m4
σ

64π2

�
ln

�
m2

σ

Λ2

�
−3

2

�
σ̄¼σ̄0

þ 3m4
π

64π2

�
ln

�
m2

π

Λ2

�
−3

2

�
σ̄¼σ̄0

:

(51)
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In this way we can express the renormalization constant as

Λ2 ¼
�
m4

σðlnðm2
σÞ − 3=2Þ þ 3m4

πðlnðm2
πÞ − 3=2Þ

m4
σ þ 3m4

π

�����
σ̄¼σ̄0

:

(52)

With the set of Eqs. (47), (48), (49) evaluated with Λ
according to Eq. (52) we obtain

μ ¼ −162:6 MeV;

λ ¼ 20:24;

σ̄0 ¼ 47:67 MeV;

Λ ¼ 146:5 MeV: (53)

Now we can proceed to calculate the phase transition line
obtaining the critical temperature as a function of the exter-
nal magnetic field for a fixed charge number density.

VI. CRITICAL TEMPERATURE

In order to find the critical temperature for the occur-
rence of the superfluid phase transition, we will proceed
according to the following steps. In general, the thermody-
namical potential depends on Ω ¼ Ω(T, μI, B, σ̄, v̄). Our
thermodynamical parameters are the temperature, the
charge number density and the external magnetic field.
As we will be in the vicinity of the transition line, where
v̄ ≈ 0, we need one equation to find the value of σ̄ that min-
imizes the thermodynamical potential, another equation
that relates the isospin chemical potential with the charge
density and, finally, an equation indicating where the sec-
ond-order phase transition occurs. The corresponding set of
equations is

∂Ω
∂σ̄

����
v̄¼0

¼ 0;
∂Ω
∂μI

����
v̄¼0

¼ −ρ; ∂2Ω
∂v̄2

����
v̄¼0

¼ 0; (54)

which, in terms of Ωn, corresponds to Eqs. (17), (18) and
(19). The equations can be simplified by noticing that the
thermal contribution of Eqs. (35), (43) and (44) are propor-
tional to Eq. (40), and can be replaced by the charge num-
ber density. In particular, the condition Ω2 ¼ 0 directly
provides the critical chemical potential,

μ2c ¼ m2
B þ Π0 þ ΠB þ ΠT þ gρ

mB
; (55)

where

Π0 ¼
λm2

σ

16π2

�
ln

�
m2

σ

Λ2

�
− 1

�
þ 5λm2

π

16π2
ln

�
m2

π

Λ2

�

−
4λ2σ̄2m2

π

16π2m2
σ

ln

�
m2

π

Λ2

�
þ ln

�
m2

σ

Λ2

��
3 − 4λσ̄

m2
σ

�
; (56)

ΠB ¼ 4λm2
π

16π2

�
ln

�
eBþm2

π

m2
π

�
− eB
m2

π

��
1 − λσ̄2

m2
σ

�
; (57)

ΠT ¼ λ

Z
d3k
ð2πÞ3

�
nBðωσÞ
ωσ

þ nBðωπÞ
ωπ

�
; (58)

g ¼ 2λ

�
1 − λσ̄2

m2
σ

�
: (59)

Our set of three equations reduces to Eqs. (17) and (18)
evaluated at μI ¼ μc obtained in Eq. (55).
Here we will concentrate on the case of a strong external

magnetic field, eB ≫ MπT acting on a dilute charged gas.
Figure 2 shows the critical temperature as a function of the
magnetic field, for three different values of the charge num-
ber density. The critical temperature is scaled by the critical
temperature at zero magnetic field, which can be approxi-
mated as

Tc0 ≈
2π

Mπ

�
ρ

ζð3=2Þ
�

2=3
: (60)

Similar to what happens in the single charged-boson case
[1], the critical temperature also shows the catalysis effect
through the presence of the magnetic field. Figure 3 shows
the charge number density in the superfluid state as a func-
tion of the temperature, where ρS ¼ ρ − ρN , with the
charge number density in the normal phase, ρN(ρ, T, B),
defined as the expression of the charge density evaluated
at the critical chemical potential. We can see the magnetic

FIG. 2. The critical temperature Tc scaled with the critical tem-
perature in the absence of a magnetic field is shown as a function
of the magnetic field scaled with M2

π .
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catalysis phenomenon in a very clear way. Coming from the
right to the left in the temperature, a fraction of the system
enters the superfluid state for values below some critical
temperature. When the magnetic field increases, the forma-
tion of superfluid matter occurs for higher values of the
temperature. As expected, at zero temperature, the whole
system is in the superfluid state.
We would like to emphasize that we can infer an anti-

catalysis in the region eB < 0.3M2
π since we have a critical

temperature TcðBÞ < Tcð0Þ.
In the chiral limit where c → 0, in principle we have

massless pions. However, the magnetic field and the tem-
perature contribute to the generation of mass, with the criti-
cal chemical potential being smaller than in the case with an
explicitly broken chiral phase. It will cost less energy to
remove a pion from the condensed phase. We expect the
critical temperature to be higher than in the explicitly bro-
ken chiral symmetry case, and similarly when it is a func-
tion of the external magnetic field.

VII. CONCLUSIONS

In this article we have studied the pion condensation phe-
nomenon in the linear sigma model keeping the isospin
chemical potential close to the effective pion mass at finite
temperature and in the presence of an external magnetic
field. In order to find a critical temperature for the forma-
tion of the charged pion condensate, we assumed a second-
order phase transition and looked for the minimum
of the thermodynamical potential. Here we concentrated
on values of the magnetic field greater than 0.3M2

π .
Confirming previous results with a single charged scalar
field [1], the magnetic field catalyzes the formation of a
pion superfluid if it is strong enough.

Although the pion condensation is a different phenome-
non, it is expected to be at some point related with chiral
restoration [16]. However, the behavior of the critical tem-
perature in this work does not agree entirely with either the
traditional scenario of magnetic catalysis in chiral restora-
tion or with recent lattice simulations [45]. A recent work
suggests that the pion condensate decreases with the
magnetic field, also coinciding partially with both
scenarios [46].
The Bose-Einstein condensation can be calculated in our

case for a dilute gas but this does not mean that it should be
absent for a dense gas. In fact, the assumption we have
made about the second-order phase transition could be
relaxed, also allowing for the possibility of having a
first-order phase transition, a crossover or even the impos-
sibility of a superfluid state to be formed.
It is interesting to see what happens in a more complex

environment, appropriate for the scenario of compact stars,
when baryons and leptons at high density are included. We
will discuss this problem elsewhere.
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APPENDIX

The sum over Matsubara frequencies of Eq. (25) can be
expressed in terms of Jacobi’s theta function [47],

X∞
n¼−∞

e−πxn2þ2πzn¼ eπz
2=xffiffiffi
x

p θ3ð−πz=x;e−π=xÞ

¼ eπz
2=xffiffiffi
x

p
�
1þ2

X∞
n¼1

e−πn2=x cos
�
2nπz
x

��
:

(A1)

We identify z ¼ 2iμsT and x ¼ 4πT2s, and in this way
the sum over Matsubara frequencies of Eq. (25) can be
written as

1

β

X∞
n¼−∞

~Dπ�ðpÞ ¼
Z

∞

0

dsffiffiffi
π

p e−sðm2
π−μ2þp2

zþp2⊥
tanhðeBsÞ

eBs Þ

coshðeBsÞ

×

�
1

2
þ
X∞
n¼1

e
−n2β2

4s coshðnμβÞ
�
: (A2)

The first term inside the square bracket is independent of
temperature as it is ultraviolet divergent and can be handled
by means of dimensional regularization in the MS scheme.
For the temperature-dependent part, after the integration in
p⊥ and pz, we get

FIG. 3. The superfluid charge density ρS scaled with the charge
density is shown as a function of temperature scaled with the criti-
cal temperature Tc0. Here we use ρ ¼ 10−7M3

π .
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4λeB
4π2

X∞
n¼1

coshðβμnÞ
Z

∞

0

ds
s
e−sm2

B−β2n2=ð4sÞ
1 − e−2eBs

: (A3)

In the limit T ≪ mB the integrand in Eq. (A3) can be dis-
cussed in terms of the steepest-descent method [48]. By
introducing s → s0=ðmBTÞ, the integral can be expressed as

I ¼
Z

ds0eβmBfðs0Þgðs0Þ ≈
ffiffiffiffiffiffi
2π

p
gðs0ÞeβmBfðs0Þ

jβmBf0ðs0Þj1=2
; (A4)

where fðsÞ ¼ −ðsþ n2=ð4sÞÞ and s0 ¼ n=2 is the saddle
point. With this approximation we arrive Eqs. (35), (40),
(43), and (44).

[1] A. Ayala, M. Loewe, J. C. Rojas, and C. Villavicencio, Phys.
Rev. D 86, 076006 (2012).

[2] M. R. Schafroth, Phys. Rev. 100, 463 (1955).
[3] R. M. May, J. Math. Phys. (N.Y.) 6, 1462 (1965).
[4] D. J. Toms, Phys. Rev. Lett. 69, 1152 (1992).
[5] J. Daicic, N. E. Frankel, and V. Kowalenko, Phys. Rev. Lett.

71, 1779 (1993).
[6] D. J. Toms, Phys. Rev. D 47, 2483 (1993).
[7] D. J. Toms, Phys. Lett. B 343, 259 (1995).
[8] P. Elmfors, P. Liljenberg, D. Persson, and B.-S. Skagerstam,

Phys. Lett. B 348, 462 (1995).
[9] A. Ayala, A. Bashir, A. Raya, and A. Sanchez, Phys. Rev. D

80, 036005 (2009).
[10] A. Ayala, L. A. Hernandez, J. Lopez, A. J. Mizher, J. C.

Rojas, and C. Villavicencio, Phys. Rev. D 88 036010
(2013).

[11] G. Baym and E. Flowers, Nucl. Phys. A222, 29 (1974).
[12] G. Baym and C. K. Au, Nucl. Phys. A236, 500 (1974).
[13] G. Baym and C. K. Au, Phys. Lett. 51B, 1 (1974).
[14] N. K. Glendenning, Compact Stars: Nuclear Physics, Par-

ticle Physics and General Relativity (Springer-Verlag, New
York, 2000).

[15] See, for example, J. B. Kogut and M. A. Stephanov, The
Phases of Quantum Chromodynamics: From Confinement
to Extreme Environments (Cambridge University Press,
Cambridge, England, 2004).

[16] M. Loewe and C. Villavicencio, Phys. Rev. D 67, 074034
(2003); Phys. Rev. D70, 074005 (2004); Phys. Rev. D71,
094001 (2005).

[17] K. Splittorff, D. Toublan, and J. J. M. Verbaarschot, Nucl.
Phys. B639, 524 (2002).

[18] D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592
(2001).

[19] J. B. Kogut and D. Toublan, Phys. Rev. D 64, 034007
(2001).

[20] Z. Zhang and Y.-X. Liu, Phys. Rev. C 75, 064910
(2007).

[21] S. Mukherjee, M. G. Mustafa, and R. Ray, Phys. Rev. D 75,
094015 (2007).

[22] D. Ebert and K. G. Klimenko, Eur. Phys. J. C 46, 771
(2006).

[23] D. Ebert and K. G. Klimenko, J. Phys. G 32, 599 (2006).
[24] K. Splittorff, D. T. Son, and M. A. Stephanov, Phys. Rev. D

64, 016003 (2001).
[25] B. Klein, D. Toublan, and J. J. M. Verbaarschot, Phys. Rev.

D 68, 014009 (2003).

[26] D. Toublan and J. B. Kogut, Phys. Lett. B 564, 212
(2003).

[27] A. Barducci, G. Pettini, L. Ravagli, and R. Casalbuoni,
Phys. Lett. B 564, 217 (2003).

[28] A. Barducci, R. Casalbuoni, G. Pettini, and L. Ravagli Phys.
Rev. D 69, 096004 (2004).

[29] D. T. Son and M. A. Stephanov, Phys. At. Nucl. 64, 834
(2001).

[30] K. Splittdorff, D. Toublan, and J. I. M. Verbaarshot, Nucl.
Phys. B620, 290 (2002).

[31] T. Herpay and P. Kovacs, Phys. Rev. D 78, 116008 (2008).
[32] M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705

(1960).
[33] S. Shu and J. R. Li, J. Phys. G 31, 459 (2005).
[34] A. J. Mizher, M. N. Chernodub, and E. S. Fraga, Phys. Rev.

D 82, 105016 (2010).
[35] A. J. Mizher and E. S. Fraga, Nucl. Phys. A831, 91 (2009).
[36] L. He, M. Jin, and P. Zhuang, Phys. Rev. D 71, 116001

(2005).
[37] B. J. Harrington and H. K. Shepard, Phys. Rev. D 16, 3437

(1977).
[38] P. E. de Brito and H. N. Nazareno, Eur. J. Phys. 28, 9

(2007).
[39] See for example P. A. Martin and F. Rothen, Many Body

Problems and Quantum Field Theory: An Introduction
(Springer, Berlin, 2002).

[40] L. Dolan and R.Jackiw, Phys. Rev. D 9 3320 (1974).
[41] M. Le Bellac, Thermal Field Theory (Cambridge University

Press, Cambridge, England, 1996).
[42] A. Das, Finite Temperature Field Theory (World Scientific,

Singapore, 1997).
[43] J. I. Kapusta, Finite-Temperature Field Theory, (Cambridge

University Press, Cambridge, England, 1989).
[44] J. Schwinger, Phys. Rev. 82, 664 (1951).
[45] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz,

S. Krieg, A. Schafer, and K. K. Szabo, J. High Energy Phys.
02 (2012) 044; G. S. Bali, F. Bruckmann, G. Endrodi, Z.
Fodor, S. D. Katz, and A. Schafer, Phys. Rev. D 86,
071502 (2012).

[46] X. Kang, M. Jin, J. Xiong, and J. Li, arXiv:1310.3012.
[47] See, for example: N. Temme, Special Functions: An Intro-

duction to the Classical Functions of Mathematical Physics
(Wiley-Interscience, Hoboken, NJ, 1992).

[48] George B. Arfken, Hans J. Weber, and Frank E. Harris,
Mathematical Methods for Physicists (Academic Press,
Waltham, MA, 2005).

M. LOEWE, C. VILLAVICENCIO, AND R. ZAMORA PHYSICAL REVIEW D 89, 016004 (2014)

016004-8

http://dx.doi.org/10.1103/PhysRevD.86.076006
http://dx.doi.org/10.1103/PhysRevD.86.076006
http://dx.doi.org/10.1103/PhysRev.100.463
http://dx.doi.org/10.1063/1.1704682
http://dx.doi.org/10.1103/PhysRevLett.69.1152
http://dx.doi.org/10.1103/PhysRevLett.71.1779
http://dx.doi.org/10.1103/PhysRevLett.71.1779
http://dx.doi.org/10.1103/PhysRevD.47.2483
http://dx.doi.org/10.1016/0370-2693(94)01453-J
http://dx.doi.org/10.1016/0370-2693(95)00187-P
http://dx.doi.org/10.1103/PhysRevD.80.036005
http://dx.doi.org/10.1103/PhysRevD.80.036005
http://dx.doi.org/10.1103/PhysRevD.88.036010
http://dx.doi.org/10.1103/PhysRevD.88.036010
http://dx.doi.org/10.1016/0375-9474(74)90583-1
http://dx.doi.org/10.1016/0375-9474(74)90270-X
http://dx.doi.org/10.1016/0370-2693(74)90135-X
http://dx.doi.org/10.1103/PhysRevD.67.074034
http://dx.doi.org/10.1103/PhysRevD.67.074034
http://dx.doi.org/10.1103/PhysRevD.70.074005
http://dx.doi.org/10.1103/PhysRevD.71.094001
http://dx.doi.org/10.1103/PhysRevD.71.094001
http://dx.doi.org/10.1016/S0550-3213(02)00440-6
http://dx.doi.org/10.1016/S0550-3213(02)00440-6
http://dx.doi.org/10.1103/PhysRevLett.86.592
http://dx.doi.org/10.1103/PhysRevLett.86.592
http://dx.doi.org/10.1103/PhysRevD.64.034007
http://dx.doi.org/10.1103/PhysRevD.64.034007
http://dx.doi.org/10.1103/PhysRevC.75.064910
http://dx.doi.org/10.1103/PhysRevC.75.064910
http://dx.doi.org/10.1103/PhysRevD.75.094015
http://dx.doi.org/10.1103/PhysRevD.75.094015
http://dx.doi.org/10.1140/epjc/s2006-02527-5
http://dx.doi.org/10.1140/epjc/s2006-02527-5
http://dx.doi.org/10.1088/0954-3899/32/5/001
http://dx.doi.org/10.1103/PhysRevD.64.016003
http://dx.doi.org/10.1103/PhysRevD.64.016003
http://dx.doi.org/10.1103/PhysRevD.68.014009
http://dx.doi.org/10.1103/PhysRevD.68.014009
http://dx.doi.org/10.1016/S0370-2693(03)00701-9
http://dx.doi.org/10.1016/S0370-2693(03)00701-9
http://dx.doi.org/10.1016/S0370-2693(03)00705-6
http://dx.doi.org/10.1103/PhysRevD.69.096004
http://dx.doi.org/10.1103/PhysRevD.69.096004
http://dx.doi.org/10.1134/1.1378872
http://dx.doi.org/10.1134/1.1378872
http://dx.doi.org/10.1016/S0550-3213(01)00536-3
http://dx.doi.org/10.1016/S0550-3213(01)00536-3
http://dx.doi.org/10.1103/PhysRevD.78.116008
http://dx.doi.org/10.1007/BF02859738
http://dx.doi.org/10.1007/BF02859738
http://dx.doi.org/10.1088/0954-3899/31/5/015
http://dx.doi.org/10.1103/PhysRevD.82.105016
http://dx.doi.org/10.1103/PhysRevD.82.105016
http://dx.doi.org/10.1016/j.nuclphysa.2009.09.004
http://dx.doi.org/10.1103/PhysRevD.71.116001
http://dx.doi.org/10.1103/PhysRevD.71.116001
http://dx.doi.org/10.1103/PhysRevD.16.3437
http://dx.doi.org/10.1103/PhysRevD.16.3437
http://dx.doi.org/10.1088/0143-0807/28/1/002
http://dx.doi.org/10.1088/0143-0807/28/1/002
http://dx.doi.org/10.1103/PhysRevD.9.3320
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1007/JHEP02(2012)044
http://dx.doi.org/10.1007/JHEP02(2012)044
http://dx.doi.org/10.1103/PhysRevD.86.071502
http://dx.doi.org/10.1103/PhysRevD.86.071502
http://arXiv.org/abs/1310.3012

