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Left-right twin Higgs model confronted with the latest LHC Higgs data
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Motivated by the latest LHC Higgs data, we calculate the new physics contributions to the Higgs decay
channels of h — yy, Zy, tr, WW*, and ZZ* in the left-right twin Higgs (LRTH) model, induced by the
loops involving the heavy T quark, the W, and ¢* bosons that appeared in the LRTH model. We find that
(a) for a standard-model-like Higgs boson around 125.5 GeV, the signal rates normalized to the
corresponding standard model (SM) predictions are always suppressed when new physics contributions
are taken into account and approach the SM predictions for a large scalar parameter f; and (b) the LRTH
prediction for R,, agrees well with the CMS measurement R,, = 0.77 4= 0.27 at 1o level but differs from
the ATLAS result. The forthcoming precision measurement of the diphoton signal at the LHC can be a

sensitive probe for the LRTH model.
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I. INTRODUCTION

Very recently, the discovery of a neutral Higgs boson at
CERN’s Large Hadron Collider (LHC) experiment has been
confirmed by the ATLAS and CMS Collaborations [1-6].
This discovery is based on the Higgs boson search with a
variety of Higgs boson decay modes. Among the majordecay
modes of a standard model (SM) Higgs boson studied
intensively at ATLAS and CMS experiments, the diphoton
channel is one of the most important channels for Higgs
searches and studies of its properties at the LHC experiments
due to its high resolution, small background, and a clear
discrepancy between the measured signal strength as
reported by ATLAS [5,6] and CMS Collaborations [4]:

R,, = 1.5540.23 (stat) & 0.15 (syst) (ATLAS), (1)

R, =0.77£027 (CMS). 2)
Both measurements are still consistent with the SM predic-
tion (R,, = 1) in the 20 range at present due to still large
errors. If the excess (deficit) seen by ATLAS (CMS) is
eventually confirmed by the near future LHC measurements,
the extra contributions from various new physics (NP)
models beyond the SM may help to understand such an
excess or deficit. Of course, all extensions of the SM have to
abide by the existence of a Higgs boson with a mass of about
125 GeV and with SM-like properties.

The twin Higgs mechanism has been proposed as an
alternative solution to the little hierarchy problem [7,8].
The idea of the twin Higgs shares the same origin with that
of the little Higgs in that the SM-like Higgs emerges as a
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pseudo-Goldstone boson [9]. But rather than using collec-
tive symmetry breaking, the twin Higgs mechanism takes
an additional discrete symmetry to stabilize the Higgs
mass. The twin Higgs mechanism can be implemented in
the left-right Higgs (LRTH) model with the discrete
symmetry being identified with left-right symmetry [8].
The phenomenology of the LRTH model has been exten-
sively studied, for example, in Refs. [10-12].

The LHC diphoton signal has been studied in various
new physics models, such as some popular supersymmetry
models [13], the two Higgs doublet model [14], the Higgs
triplet model [15], the models with extra dimensions [16],
the little Higgs models [17], and the other extensions of
Higgs models [18,19]. In the LRTH model, the diphoton
decay of the SM-like Higgs boson was studied even before
the LHC Higgs data [20]. In this work, motivated by the
latest LHC discrepancy of R,,, we will assume a SM-like
Higgs boson with 125.5 GeV mass and study its implica-
tion in the LRTH model. Also, we will study some
exclusive signal rates compared with the Higgs data as
well as the SM predictions. Besides, we will perform a
global fit to the latest LHC Higgs data to figure out if the
LRTH model can provide a better fit than the SM.

This paper is organized as follows. In the next section,
we recapitulate the LRTH model and lay out the couplings
of the particles relevant to our calculation. In Sec. III, we
investigate the LRTH model predictions for the Higgs
signal rates in light of the latest LHC experimental data.
Finally, we give our conclusion in Sec. IV.

II. RELEVANT HIGGS COUPLINGS
IN THE LRTH MODEL

The LRTH model is based on the global symmetry U(4) x
U(4) with a locally gauged SU(2);, X SU2)p x U(1)p_,
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subgroup. The twin symmetry is identified as the left-right
symmetry which interchanges L and R, implying that the
gauge couplings of SU(2); and SU(2); are identical
(go1. = gor). Two Higgs fields, H and H, are introduced,
and each transforms as (4, 1) and (1, 4), respectively, under the
global symmetry, which can be written as

H:<HL>, ﬁz:(f’L), 3)
Hy iy

where H; » and H L.r are two component objects which are
charged under the SU(2), x SU(2)g x U(1)y_, as

H, and H,:(2,1,1),  Hg and Hg: (1,2,1).

“

The global U(4),(U(4),) symmetry is spontaneously broken
down to its subgroup U(3),(U(3),) with nonzero vacuum
expectation values (VEVs) as

(H) = . ()=

0
0 (&)
0

o o O

~

f

The Higgs VEVs also break SU(2) x U(1)g_, down to the
SM U(1)y. The details of the LRTH model as well as the
gauge sector, the fermion sector, and the Higgs sector have
been given in Ref. [ 10]. Here we will focus on the new particles
and the couplings relevant to our work.

In the LRTH model, the heavy new gauge bosons
(W%, Zy), heavy top quark partner (7)), and other Higgs
particles (¢*%) are introduced to cancel the Higgs boson
one-loop quadratic divergence contributed by the gauge
bosons, top quark, and Higgs boson of the SM. The masses
of the particles that run in the triangle loop diagrams are
given in Ref. [10]. The relevant Higgs couplings and the
mixing angles for left-handed and right-handed fermions
are the following [10]:

2
L= tn T TR 4 2T W W R
v v v

MG g

s = \% \/1 — (y*f? cos 2x + M?*)/N,, (7)

Sr :\%\/1 — (2f2 cos 2x — MA)/N,,  (8)
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where N, = \/(M? 4+ y?f2)> —y*f*sin®2x with x =
v/ V2 f and v = 246 GeV is the electroweak scale, while
M is the mass parameter essential to the mixing between
the SM-like top quark and the heavy top quark. The explicit
expressions of the relevant couplings y;, yr, yw, Yw,. and
¥4 can be found easily in Ref. [10].

In the LRTH model, the relation between G5 and v is
modified from its SM form, introducing an additional cor-
rection yg, as 1/v>=+v2Gpyg with y§ =1-v7/(6f7).
This correction must also be taken into account when
comparing SM-like Higgs boson decay rates (i.e., h — XX)
in the LRTH model to the SM predictions with G as input.

III. HIGGS DECAYS IN THE LRTH MODEL
A. The rates of 6(gg —» h — XX) at the LHC
The Higgs production rates in the LRTH model nor-
malized to the SM values are generally defined as
~ o(pp = h)Br(h > XX)
o osm(pp — h)Brsy(h — XX)’

Ry €))

where XX denotes yy, Zy, ZZ*, WW*, or the SM
fermion pairs.

At the LHC, the Higgs single production is dominated by
the gluon-gluon fusion process. The hadronic cross section
6(gg — h) at leading order can be written as

27 Ldx T
o(gg — h) = Wgr(h - 99) / ng(x,ﬂ%)fg (;O,ﬂ%>,
70

h
(10)

where 7, = m? /s with /s being the center-of-mass energy
of the LHC and f,(x,u7) is the parton distribution of
gluon. Thus, one can see that the o(gg — &) has a strong
correlation with the decay width T'(h — gg). Other main
production processes of the Higgs boson include vector-
boson fusion (VBF) and associated production with SM
gauge bosons (VH) and top pair t7h. For m;, = 125.5 GeV,
the uncertainty on Higgs production has been studied
systematically by the LHC Higgs Cross Section Working
Group for the various channels and can be found easily in
Ref. [21]. The major decay modes of the Higgs boson are
h— ff(f =b,c,7), VVX(V =W,Z), gg, vy, and Zy,
where W*/Z* denote the off-shell charged or neutral
electroweak gauge bosons. The corresponding expressions
are given in the Appendix.

The SM input parameters relevant in our study are taken
from Ref. [22]. The free LRTH model parameters involved
are f, M, and the masses of the charged Higgs bosons. The
indirect constraints on f come from the Z-pole precision
measurements, the low energy neutral current process, and
high energy precision measurements off the Z pole,
requiring approximately f > 500 GeV. On the other hand,
it cannot be too large, since the fine-tuning is more severe
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TABLE 1. The relative strength of the contributions to the decay amplitude from various sources for 7 — yy and 7 — gg (numbers in
the brackets) in the SM and the LRTH model, assuming m, = 200 GeV, M = 150 GeV and f = 500,700,900, 1100, 1500 GeV,
respectively.

my, = 125.5 GeV SM top w* T quark Wy Pt Total

SM —1.84 (0.69) 8.34 (0) 0 0 0 6.50 (0.69)

f =500 GeV —1.68 (0.63) 7.84 (0) 0.18 (—0.07) —0.031 —0.009 6.31 (0.56)

f =700 GeV —1.77 (0.66) 8.08 (0) 0.10 (—0.04) —0.016 —0.004 6.40 (0.62)

f =900 GeV —1.79 (0.67) 8.19 (0) 0.06 (—0.024) —0.01 —0.003 6.44 (0.65)
f=1100 GeV —1.81 (0.68) 8.24 (0) 0.04 (-0.016) —0.007 —0.002 6.46 (0.66)

f =1500 GeV —1.82 (0.68) 8.28 (0) 0.02 (-0.01) —0.004 —0.001 6.48 (0.67)

for large f. The mixing parameter M is constrained by the
Z — bb branching ratio and oblique parameters. Following
Ref. [10], we take the typical parameter space as
500 GeV < f <1500 GeV, 0<M <150 GeV, (11)
while the mass m,, of the charged Higgs boson ¢ is in the
range of a few hundred GeV.

For the considered 7 — XX decays, one can write the
decay amplitude A(h — XX) as the summation of the
pieces A; from different sources:

N
Alh = XX) =3 Ai(h > XX).
i=1

(12)

In Table I, we list all possible contributions to the decay
amplitude A(h — yy) and A(h - gg) coming from various
sources; here we show the relative strength of different
pieces only.

For the h — yy decay, for example, the SM contribution
includes two parts: one comes from the top quark loop with
Ap = —1.84 and another from the W* boson with
Ay = 8.34. These two contributions have different signs
and therefore interfere destructively. In the LRTH model,
however, the Feynman diagrams involving the T’ quark, Wy
boson, and ¢* boson also provide the additional contri-
butions to the decay h — yy, respectively, as illustrated
explicitly in columns 4—6 of Table I. From Table I, we have
the following observations:

(1) Inthe SM, the decay &7 — gg is dominated by the top
quark loop, while the contributions to & — yy arise
from both the top quark and W boson loops
simultaneously. The total decay amplitude of & —
yy is clearly dominated by the large positive con-
tribution from the SM W+ bosons loop.

In the LRTH model, the additional new physics
contributions are indeed much smaller in size than
the SM part and therefore play a minor role for the
considered decay modes.

Among the three NP sources, the contribution from
the T quark is the largest piece of the NP contribu-
tions, but it is still too small to counteract with the

(@)

3

positive SM part; this is because the coupling y; is
much smaller than y,. The NP contributions from
Wy and ¢* are even much smaller than the small
T-quark piece and can be neglected safely.

The NP contributions become smaller rapidly when
f becomes larger. For i — yy decay, for example,
the contribution from the 7" quark is changing from
0.18 to 0.02 when the parameter f increases from
500 to 1500 GeV.

In Fig. 1, we show the f dependence of the ratios Cj,,, =
Tirru(h = 99)/Tsm(h = gg) for two typical values of M:
M = 0,150 GeV. Here I'sy(h — gg) denotes the decay
width of & — gg in the SM. One can see that the NP
correction becomes smaller rapidly along with the increase
of the parameter f but becomes larger when M is increas-
ing. This is because the parameter M is introduced to
generate the mass mixing term Mg, qg, and the LRTH
model can give corrections via the coupling of A7 and the
heavy T-quark loop. For the special case of M = 0, there is
no mixing between the SM top quark and the heavy T
quark. By assuming f = 500 GeV and varying M in the
range of 0 < M <150 GeV, the NP correction can be
changed from 17% to 34% to the SM value.

We know that the large experimental and theoretical
uncertainties may prevent the detection of the deviation of
the LRTH model prediction of C,, from the SM one for

“
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FIG. 1 (color online). f dependence of the ratio Cj,y, for two
typical values of M as indicated.
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FIG. 2 (color online).
CMS result: R, = 0.77 £ 0.27.

large values of scale f. The QCD corrections to the total
cross section of & — gg have been computed at next-to-
next-to-leading order (NNLO) in Ref. [23]. The remaining
renormalization or factorization scale dependence of the
cross section gives a lower bound on the size of the
theoretical uncertainty due to uncalculated higher-order
QCD radiative corrections of about 15% [24], which can be
further reduced with the inclusion of recently known
NNNLO results as described in Ref. [25].

In Fig. 2, we plot the ratio R,, and Ry, versus f for two
typical values of M in the LRTH model. It can be seen from
Fig. 2 that the ratios R,, and Ry, in the LRTH model are
always smaller than a unit and will approach one for a large
f- On the other hand, for a small value of parameter f, the
deviation from the SM prediction is sensitive to the mixing
parameter M.

For the diphoton signal, the measured value of R, =
0.77 £ 0.27 as reported by the CMS Collaboration can be
understood in the LRTH model. Of course, the LRTH
prediction for R,, is always outside the 26 range of the
ATLAS result. The key point here is the large difference
between the central values of the measured R,, as reported
by the ATLAS and CMS Collaborations. Further improve-
ment of the R,, measurements for both the ATLAS and CMS

---M=0
——M =150 GeV
13
CMS + 1o
11 ATLAS - 16
né“
CMS central value _ _ = =
09F o=
- ATLAS - 26
0.7 p~ .
L oms-te
05 1 1 1 1
500 700 900 1100 1300 1500

f(GeV)

FIG. 3 (color online).
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f dependence of R, (left) and Ry, (right) for two typical values of M as indicated. The shaded area shows the

Collaborations is greatly welcome and will play the key role
in constraining the new physics models beyond the SM.

For the 7 — Zy channel there are not enough data to
draw any conclusion about the LRTH. For the ratios R,
and Ryy+, the ATLAS and CMS measurements are
consistent with each other within one standard deviation.
In Fig. 3, we plot the f dependence of the ratios R;- and
Ry for two typical values of M. It can be seen from Fig. 3
that the ratios R;7+ and Ry~ in the LRTH model are
always smaller than a unit and sensitive to the value of
parameter f and M.

In Table II, we list the LRTH predictions for the Higgs
boson production rates R,,, Ryw+, Rzz, R, and Ry,
assuming M =150GeV, m;=200GeV, and 500 < f <
1500 GeV. From the numerical results as listed in
Table II, one can see that the five signal rates are always
suppressed when the new physics contributions are taken
into account, which is similar with the situation in the little
Higgs models [26]. This is mainly due to the following
common reasons in these kinds of new physics models:

(1) The couplings of top quark partner 7 and new heavy

gauge bosons Wy with the Higgs boson have the
opposite sign with respect to the Higgs couplings
with SM top quark and gauge bosons, respectively.

1.5

-—-M=0
—M =150 GeV
ATLAS + 16
1.3
1
g ATLAS central value
3 1t
09l CMS+16 - --—===—
07f T ATEAS e
CMS central value
05 1 1 1 1
500 700 900 1100 1300 1500
f(GeV)

f dependence of R, (left) and Ry~ (right) for two typical values of M as indicated.
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TABLE 1I.
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The theoretical predictions for the Higgs production rates Ryx in the LRTH model, assuming m, = 200 GeV,

M = 150 GeV, and f = 500, 800, 1200, and 1500 GeV. The corresponding measured values reported by ATLAS and CMS [4-6] are

listed as comparison.

S (GeV) R, Rzz+ Ryw R Rz,

500 0.659 0.674 0.674 0.674 0.619
800 0.858 0.866 0.866 0.866 0.833
1200 0.936 0.939 0.939 0.939 0.92

1500 0.959 0.961 0.961 0.961 0.946
ATLAS 1.55+£0.23 +0.15 1.43 +£0.33 +0.17 0.99 £0.21 +0.21 0.74+0.7 <135
CMS 0.77 £0.27 0.92 +£0.28 0.68 0.2 1.1 £041 <93

(2) The new physics part of the Higgs couplings to the
SM top quark and gauge bosons are suppressed by
the ratio »?/f%> and will become zero in the
limit f — oo.

It is well known that the production and decays of the
Higgs boson are largely affected by high order corrections.
In order to reduce the errors of theoretical predictions, we
defined Ryy as the ratios of the theoretical predictions in
the SM and in the LRTH model. In this way, the theoretical
errors will be largely canceled.

In many cases, the higher order corrections to the
relevant cross sections or the branching ratios could be
factorized out approximately as simple factors (NLO, or
NNLO, etc.) of the leading order results as discussed in
Ref. [27]. For instance, one can see that the NLO QCD
corrections to both hgg and hyy vertexes can give a simple
multiplicative factor. We assume that the QCD corrections
in the LRTH model are similar as those in the SM top loop
for simplicity, and thus the QCD corrections cancel to a
large extent in these ratios, provided that a single produc-
tion mechanism dominates. This certainly applies to yu,,,
uyy, and p.+.-, which are governed by the dominant
production channel through gluon fusion [28].

B. Global fit of the LRTH model to current
LHC Higgs data

By using the latest LHC Higgs data of 17 channels from
both ATLAS and CMS as given in Refs. [29,30], we now
perform a global fit to the LRTH model with the method
proposed in Refs. [28,31]. When fitting the various
observables, we consider the correlation coefficients given
in Ref. [32] due to the independent data for different
exclusive search channels by two collaborations.

The global y? function is defined as usual:

7= Z(ﬂi —ﬁi)(f’z)i_jl(ﬂj — 1), (13)

ij

where index i, j runs over all the different production or
decay channels considered in this paper and (u;,u;) and
(f;, f1;) are the corresponding theoretical signal strengths in
the LRTH model and the measured Higgs signal strengths
as reported by both the ATLAS and CMS Collaborations,

respectively. a?j = o,p;jcj, o is the experimental error
extracted from the data at 1o, and p;; is the correlation
matrix. By taking two correlated observables, for instance,
the correlation coefficient p is applicable to the following
formula:

1 [y =] | o — )
2 _ .
= (l—pz)[ R
_2p[/41—/41]'[/42—/42]} (14)
010)

Note that the errors on the reported Higgs signal strengths
fi; are symmetrized by the relation

5p; = /(6. + (37212 (15)

where Jji,. are the one-sided errors given by the exper-
imental collaborations. For plotting distributions of a
function of one variable, the 68% (lo) and 95% (20)
confidence level (C.L.) intervals are obtained by y? =
)(Iznin + 1 and +4, respectively. For a more detailed descrip-
tion of the fit procedure, see Refs. [28,31,32].

In Fig. 4, we project the samples on the global fit values
of y? versus parameter f for M = 0 and 150 GeV. One can
see that the value of y? is larger than that for SM for most of

21 T T T T

2c

~—— M =150 GeV

SM, i* = 14.89

14
500 700 900 1100 1300 1500
f (GeV)

FIG. 4 (color online).
M =0 and 150 GeV.

The global fit values of y> versus f for
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FIG. 5 (color online). The LRTH predictions for the various
Higgs signal rates Ryy at the LHC, assuming M = 150 GeV and
f =500, 800, and 1200 GeV, respectively. The error bars show
the ATLAS and CMS measurements of 17 channels as given in
Refs. [29,30].

parameter space of f and approaches the SM value for a
sufficiently large f. For large values of scale f (about
1100 GeV), it is slightly smaller than the SM value
(r* = 14.88 for M = 150 GeV while y%,; = 14.89). So
we can see that the good points favored by the current LHC
Higgs data are at the region of f > 1100 GeV. For M =
150 GeV and f < 550 GeV, the value of )(2 is larger than
18.9, which implies that f < 550 GeV is excluded at 95%
confidence level from the experimental viewpoint.

In Fig. 5, we present the LRTH predictions of different
Higgs signal rates Ryy and a comparison with the corre-
sponding experimental measurements at the LHC, assuming
M = 150 GeV and the scalar parameter f = 500, 800, and
1200 GeV, respectively. In our fit, we select 17 sets of data
from Refs. [29,30]. From Fig. 5, one can see that all the
signal rates are suppressed due to the inclusion of new
physics corrections in the LRTH model, when compared
with the SM values. In the LRTH model, we find
7> =20.29, 1539, and 14.82 for f =500, 800, and
1200 GeV, respectively. The LRTH prediction for R, agrees
well with the CMS measurement: RSMS = 0.77 +0.27.

For given values of the LRTH parameter M and f, the
masses My and My, and the relevant couplings y,, yr, and
yw will be determined consequently. In Table III, we
present the numerical results of the LRTH predictions
for some ratios and various Higgs signal rates, as illustrated
explicitly in Fig. 5.

In the near future, the improved measurement of the
diphoton signal at the LHC will play a decisive role for these
models. For example, if the future well-measured diphoton
rate is still clearly larger than a unit, the LRTH model and
other little Higgs models will be strongly disfavored or ruled
out. Otherwise, if the deficit signal rate permits, these models
will be favored. However, it is difficult for the LHC to clearly

PHYSICAL REVIEW D 89, 015013 (2014)

TABLE III.  The numerical results of the LRTH predictions for
some ratios and various Higgs signal rates, assuming M = 0, 150
and f = 500, 800 GeV, respectively.

M (GeV) 0 150
f (GeV) 500 800 500 800
my (GeV) 4649 7744 4885  788.8
my, (GeV) 1175.6 18837 11756  1883.9
y? 1.0 1.0 0871  0.959
2 0017 0002 0011  0.002
2, 0921 0969 0921  0.969
Chag 0728 0892  0.664  0.861
v 0919 0966 0939  0.976
Cizy 0871 0944 0881  0.947
Chyy- 0921 0969 0921  0.969
ggF+ttH, 77 0705  0.882  0.663  0.858
VBF+VH, 7y 0931 0971 0953  0.982
geF+tH, ZZ 0736 0896  0.674  0.866
VBF+VH, ZZ 0971 0989 0974  0.989
ggF+tH, WW 0736 0896  0.674  0.866
VBF+VH, WW 0971 0989 0974  0.989
VH tag, bb 0971 0989 0974  0.989
ggPF+ttH, 77 0736 0896  0.674  0.866
VBF+VH, 7z 0971 0989 0974  0.989
0/1 jet, WW 0973 0897  0.674  0.866
0/1 jet, 7t 0941 0898  0.681  0.868
VBF tag, 77 0998 0999  1.000  1.001
VH tag, 77 0971 0989 0974  0.989
e 1855 1519 203 15.39

discriminate these new physics models due to the different
free parameters for each model. The high energy and high
luminosity linear electron positron collider experiments,
such as CLIC or the ILC, will provide a rather clean
environment for new physics discovery [33].

IV. CONCLUSIONS

In this work, we studied the Higgs production and decay
in the LRTH model in the light of the latest LHC Higgs data
from the ATLAS and CMS Collaborations. From the
numerical results we obtain the following observations:

(1) The signal rates normalized to the SM prediction for
the five Higgs search channels are always sup-
pressed when new physics contributions are taken
into account and approach the SM predictions for a
large scale parameter f.

(2) The LRTH prediction for R,, agrees well with the
CMS measurement at 1o level but differs from the
ATLAS result. The LRTH model could be further
tested by the improved measurement of R, at LHC.
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APPENDIX: THE HIGGS DECAYS IN
THE LRTH MODEL

In the LRTH model, the decays h — gg,yy,Zy all
receive contributions from the modified couplings hXX
and the new heavy particles. The LO decay widths of
h — ggq,yy,Zy are given by

V2GpaZmi| 1
[(h — gg) = T30 | EFI/Z(Tt)yIYGF
1 2
- EFI/Z(TT)yT ) (A1)
V2Gra2m?| 4 4
L(h—yy) = 252 3 . §F1/2(Tt))’tycF +§F1/2(TT)yT

2
+ Fi(zw)yw + Fi(tw,)yw, + Fo(t4)ye

(A2)
azm, 2 7,,2\3
I'(h— Zy) = m(l — mz/my)
8
: ‘2)7]'(] —§S%4/>A1/2(Tf7/1f)
2
+Ywei AL (Tws Aw)| (A3)
with
Fi=2+43t+312—1)f (7).
Fip==2t[1+(1-1)f(7)],
Fo =]l —zf(7)],
Ay = 4(3 — tan®0y) I, (7, ) + (1 +277") tan?6y,
—(5+ 2 Y1, (,2),
A]/z :I](T,ﬂ)—lz('l',ﬂ), (A4)
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where
T ’1'2 2
(0.0) = 5 5 ) = £
o) — () (a5
A i A A6
(0) = =g = 1) 46
with
£(@) = lsin” (1/ V)P,
g(z) = Ve — Tsin™ (1//2), (A7)

for 7; = 4m,2/m%l > 1.
The partial decay widths into single off-shell gauge
bosons & — VV* are given in Ref. [34]:

. 3GEimyymy, _(m}
L(h—» WW*) = —fQF—F&ﬁj, (A8)
h
7 10 0 Grmim m>
I'h—>272z2")=|-—— — JFTzThp (2
(h=22") <4 S+9s> 167° (m%,

(A9)
with the form factor F(x) formulated as

Flx) ="

1
(2 — 13x + 47x?) —%(1 —6x +4x%) In x

3(1 — 8x + 20x?) 3x—1
=+ arccos W .

= (A10)
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