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We propose a new paradigm for generating exponentially spread standard model Yukawa couplings from
a new Uð1ÞF gauge symmetry in the dark sector. Chiral symmetry is spontaneously broken among dark
fermions that obtain nonvanishing masses from a nonperturbative solution to the mass gap equation. The
necessary ingredient for this mechanism to work is the existence of higher-derivative terms in the dark
Uð1ÞF theory, or equivalently the existence of Lee–Wick ghosts, that (i) allow for a nonperturbative
solution to the mass gap equation in the weak coupling regime of the Abelian theory and (ii) induce
exponential dependence of the generated masses on dark fermion Uð1ÞF quantum numbers. The generated
flavor and chiral symmetry breaking in the dark sector is transferred to the standard model Yukawa
couplings at the one-loop level via Higgs portal-type scalar messenger fields. The latter carry quantum
numbers of squarks and sleptons. A new intriguing phenomenology is predicted that could be potentially
tested at the LHC, provided the characteristic mass scale of the messenger sector is accessible at the LHC as
is suggested by naturalness arguments.
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I. INTRODUCTION

After the discovery [1] of the Higgs boson [2] at the
LHC, the only unexplained sector in the standard model
(SM) is the flavour sector. While gauge couplings, such as
the electric charge, are fundamental constants of nature
following from the gauge symmetry principle, the SM
Yukawa couplings seem not to be connected to any known
local or global symmetry. Instead, they resemble arbitrary
dimensionless numbers spanning over 6 orders of magni-
tude for charged fermions and at least 12 orders of
magnitude if the SM neutrinos are Dirac particles. All
quark flavor and CP-violation experiments over the last
40 years have confirmed the correctness of the SM
description of flavor observables via the Yukawa inter-
actions [3]. Lepton flavor observables may indicate new
physics [4], such as the seesaw mechanism [5], but
neutrinos can also be Dirac particles, exactly as the quarks
and charged leptons. Despite the huge amount of exper-
imental information, constructing the theory of flavor is one
of the biggest challenges in modern physics since the
physics principles behind it are not known.
There are only two generic classes of attempts to address

the huge spread of the SM Yukawa couplings, each
consisting of hundreds of concrete models. The first class
is based on the Froggat–Nielsen mechanism [6], which
introduces Uð1ÞF flavor symmetric nonrenormalizable

operators involving a large number of scalar flavon fields
that are suppressed by a large cutoff scale Λ. When the
flavon ϕ obtains a vacuum expectation value (VEV) hϕi,
effective Yukawa couplings Y are induced as powers of the
expansion parameter λ ∼ hϕi=Λ as Y ∼ λn, depending on
the particle quantum numbers under Uð1ÞF. Since λ ∼ 0.2
to explain the Cabibbo angle, explaining Yukawa couplings
within 6 or 12 orders of magnitude requires constructing
operators with very high dimensionality. It is not clear what
underlying physics is responsible for those operators and
whether this paradigm is testable.
The second attempt is based on confining different

fermions in different branes that are located in different
places in extra dimensions [7]. The Yukawa couplings are
induced due to overlaps of the fermion wave functions with
the Higgs wave function in extra dimensions. This scenario
allows for exponential parametrization of the measured
Yukawa couplings, but does not explain why their values
are what they are. Neither of the attempts is completely
satisfactory theoretically, and none have any experimental
support at present.
In this work we propose a new, predictive paradigm for

generating exponentially spread SMYukawa couplings from
gauge quantum numbers in the dark sector. We assume that
in addition to the globallyUð1ÞN flavor symmetric SM there
exists a dark sector with complicated internal dynamics
manifested today by the existence of dark matter [8]. The
origin of flavor symmetry breaking is the chiral symmetry
breaking (ChSB) due to nonperturbative dynamics in the
dark sector. We present a concrete model with new Uð1ÞF
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gauge symmetry in the dark sector that generates masses
for dark fermions (singlets under the SM gauge group)
nonperturbatively à la the Nambu–Jona-Lasinio (NJL)
mechanism [9,10]. While the original NJL mechanism
operates in the strong coupling regime of the theory, our
mechanism operates in the weak coupling regime. This is
achieved by assuming the existence of Lee–Wick-type
[11,12] higher-derivative terms in the dark Uð1ÞF theory
that are equivalent to the existence of negative norm Lee–
Wick ghosts [11–15]. Because of the existence of a
massless (or light) dark photon, the generated masses
depend exponentially on the Uð1ÞF quantum numbers
[16]. As an additional bonus, when the Lee–Wick theory
is generalized to the scalar fields, the Lee–Wick ghosts
cancel the quadratic divergences, providing a natural
solution to the SM hierarchy problem [17–21]. Thus,
the dynamics and spectacular new features of our mass
generating mechanism rely on the Lee–Wick proposal.
The generated dark fermion mass spectrum is the source

of chiral and flavor symmetry breaking. In our proposal this
spectrum is transferred to the SM Yukawa couplings at
one-loop level via Higgs portal-type messenger fields by
requiring the spontaneous symmetry breaking (SSB) of the
discrete Higgs parity symmetry. Then, the SM Yukawa cou-
plings will be dynamically generated in perturbation theory
as finite quantities at one loop. In addition to dark quantum
numbers, the messenger fields must also carry SM quantum
numbers that are similar to the ones of supersymmetric
squarks and sleptons. As a result, we obtain effective and
finite SM Yukawa couplings of the schematic form

Yi ∼ exp
�
− γ

αq2i

�
; (1)

where α is the strength of the dark Uð1ÞF interaction, qi are
the Uð1ÞF quantum numbers of the fermions fi, γ is some
universal constant related to the anomalous dimension of the
fermion mass operator, and i denotes flavor. Then, the
nonuniversality of the quark and lepton Yukawa couplings
results from the nonuniversality of the Uð1ÞF fermion
charges qi in the dark sector.
By means of Eq. (1), we are able to explain the

exponential spread of SM Yukawa couplings with order
1 generation-dependent Uð1ÞF charges. Interesting sum
rules are predicted for the mass spectrum as a consequence
of Eq. (1), which are directly related to the Uð1ÞF charges.
Incidentally, as we will show numerically, this framework
can actually explain the observed charged fermions mass
hierarchies within a few percent level accuracy by using a
simple integer sequence for the Uð1ÞF charges. It can also
accommodate the observed patterns of particle mixing.
The proposed framework predicts rich collider phenom-

enology that can be potentially tested at the LHC and
in future colliders. As already stated, the messengers
themselves must carry SM quantum numbers similarly to

those of squarks and sleptons of supersymmetric theories. If
kinematically accessible, those new particles can be pro-
duced and discovered at the LHC. Since they couple to the
Higgs boson and contribute to the Higgs mass at one loop,
naturalness arguments require the messenger mass scale to
be below 10 TeV. An exact replica of a rescaled SM fermion
spectrum is also expected in the dark sector, as a conse-
quence of the flavor universality of the messenger fields and
their couplings to SM fields. The important message to stress
is that our scenario is, in principle, directly testable.
We are aware that there is a long way to go toward a

more complete understanding of the theory of flavor in this
approach. In general, there might be different realizations
of both the chiral symmetry breaking mechanism in the
dark sector as well as the messenger mechanism presented
in this paper. However, we believe that the general features
of our proposal are new and could motivate further studies
of the dynamical flavor breaking mechanism in the pre-
sented framework.
The paper is organized as follows. In next section we

present details of nonperturbative chiral symmetry breaking
in Lee–Wick-type models with Uð1ÞF gauge symmetry.
The model for generating the SM Yukawa couplings
dynamically is presented in Sec. III. In Sec. IV, we present
the analysis of the naturalness and vacuum stability bounds.
Phenomenology and direct tests of our proposal are
discussed in Sec. V. We conclude in section VI.

II. NONPERTURBATIVE CHSB MECHANISM
FROM Uð1ÞF GAUGE INTERACTION

In the seminal papers [11,12], Lee and Wick proposed a
new approach to quantum field theories that prompted the
construction of more general theories in which the S matrix
is fully unitary, although the Lagrangian is not Hermitian.
This required the introduction of negative norm states that
are associated with massive unstable particles. However,
despite the presence of an indefinite metric, unitarity can be
recovered, provided the negative norm states are massive
and have a finite decay width [11,12,15]. As an advantage,
ultraviolet divergences may indeed cancel out in the loops
due to the indefinite metric of the Hilbert space. In
principle, problems related to the microscopic violation
of Lorentz invariance, which could also arise due to the
presence of an indefinite metric in the Hilbert space [13],
can be circumvented, too [14]. Indeed, as shown by
Cutkosky et al. [15], a relativistic and unitary S matrix
can be defined provided a new prescription for the
deformed energy contour in the Feynman integrals is
implemented. Although this prescription is not derived
from the first principles of the field theory approach, it is
well defined in perturbation theory [12,15]. There is no
rigorous proof yet that the Lee–Wick extensions could also
work at the nonperturbative level. Nevertheless, there are
studies in this direction leading to a consistent nonpertur-
bative approach on the lattice [22–24].
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The original model, satisfying all these requirements,
was the one proposed by Lee and Wick in the framework of
QED [12]. In particular, if one replaces the standard photon
field Aμ by a complex gauge field ϕμ ¼ Aμ þ iBμ, where
Bμ is a massive boson field with negative norm, it is
possible to remove all infinities in QED from the electro-
magnetic mass differences between charged particles. This
procedure is equivalent to the introduction of a higher
(gauge-invariant) derivative term in the Lagrangian of a
primary Uð1ÞF gauge field. Then, the mass of the ghost
field turns out to be proportional to the new physics scale Λ
connected to the higher-derivative term. To render charge
renormalization finite, new higher-derivative terms should
be introduced for the fermion fields as well. Although this
procedure shares some similarities with the Pauli–Villars
regularization scheme, in the Lee–Wick approach, the
massive ghosts are not fictitious artifacts of the regulari-
zation scheme but are physical objects associated with
observable particle resonances.
Recently, the Lee–Wick approach to a finite theory of

QED has been reconsidered in view of its generalization to
the SM. This approach leads to a new SM theory, which is
naturally free of quadratic divergencies, thus providing an
alternative way to the solution of the hierarchy problem
[17–20].
A new interesting feature of the Lee–Wick theories was

recently noticed in Ref. [16]. In particular, if we add to a
massless Dirac field ψ , minimally coupled to a Uð1ÞF
gauge theory, a higher-derivative term in the pure gauge
sector of the Uð1ÞF Lagrangian L as

L ¼ − 1

4
FμνFμν þ iψ̄γμDμψ þ 1

Λ2
∂αFαμ∂βF μ

β ; (2)

it can be shown that this term can trigger spontaneous chiral
symmetry breaking at low energy in the weak coupling
regime [16]. In the above equation, Fμν ¼ ∂μAν − ∂νAμ

and Dμ ¼ ∂μ þ igAμ are the Uð1ÞF field strength and
corresponding covariant derivative, respectively. This result
has been derived by following the approach of the NJL
mechanism [9,10]. In the NJL approach, the fermion mass
term arises as a nontrivial solution of the self-consistent
mass gap equation, namely,

m ¼ Σðp̂; mÞjp̂¼m; (3)

where Σ stands for the fermion self-energy induced by the
interaction. Now, due to the presence of the indefinite
metric and Uð1ÞF gauge symmetry for the Lagrangian in
Eq. (2), the self-energy Σ turns out to be finite at one loop
and gauge invariant [16]. By computing the Feynman
diagrams in Fig. 1 for the self-energy, and implementing
the mass-gap equation in Eq. (3), we obtain

m¼−
αm
2π

Z
1

0

dxð2−xÞ log
�
m2

Λ2

ð1−xÞ2
x

�
þO

�
m2

Λ2

�
: (4)

In the above equation, we neglected terms of order
Oðm2=Λ2Þ since we are interested to see if there is a
nontrivial mass-gap solution corresponding to the case in
which m ≪ Λ. As we can see, this equation admits two
solutions: one trivial, corresponding to m ¼ 0 and related
to the perturbative vacuum, and a nontrivial one m ≠ 0
corresponding to the nonperturbative vacuum. Following
the arguments exposed in Refs. [9,10], it can be shown that
the vacuum state associated with the minimum energy is the
one corresponding to the massive solution. Hence, the true
vacuum corresponds to the phase of ChSB and is orthogo-
nal to the perturbative vacuum.
Finally, by solving the mass-gap equation in Eq. (4) at

the leading order, we get the results [16]

m ¼ Λ exp

�
− 2π

3α
þ 1

4

�
; (5)

where Λ is the scale associated with the higher-derivative
term and α ¼ g2=4π is the effective fine-structure constant.
To include the resummation of the leading log terms
αn lognðΛ=mÞ, expected to come from higher-order con-
tributions in perturbation theory, α appearing in Eq. (5)
should be substituted with the running coupling constant
αðΛÞ evaluated at the high-energy scale Λ, namely,1

m ¼ Λ exp

�
− 2π

3αðΛÞ þ
1

4

�
: (6)

This relation can be also be expressed as a function of αðμÞ
evaluated at an arbitrary renormalization scale μ < Λ, as
follows

m ¼ Λ exp

�
− 2π

3αðμÞ þ
1

4

��
Λ
μ

�4
9

; (7)

+

(+) (−)

FIG. 1 (color online). One-loop contributions to the fermion
self-energy. The dashed and dashed-dotted lines indicate the
contributions from the positive-norm (þ) massless and negative-
norm (−) massive-ghost Uð1ÞF gauge fields respectively.

1Notice that, in Ref. [16], α has been set at the scale m in the
corresponding solution for the mass-gap equation, missing the
proper resummation of the leading log terms. This led to an
inconsistent condition, namely, that this solution was allowed
only for Nf < 2, with Nf the number of fermions charged under
Uð1ÞF, which was just a consequence of the incorrect scale at
which α inside Eq. (5) was evaluated.
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where the Uð1Þ one-loop beta-function has been used. It is
easy to check that the r.h.s. of Eq. (7) is independent on μ,
consistently with the beta-function evaluated at the leading
order in α. As we can see from the exponential dependence
of the coupling constant α, the solution in Eq. (6) is a truly
non-perturbative one. However, notice that this solution
always exists in the weak coupling regime, α ≪ 1, since its
consistency requires that α ≪ 8π=3. Remarkably, in the
original NJL solution, derived by introducing ad hoc chiral
symmetric four-fermion contact interaction, a strongly
coupled regime was required to break the chiral symmetry.
A generalization of this result for the corresponding
non-abelian SUðNÞ interaction can be found in [16].
The main difference between the solution in (5)–(6) and

the corresponding one in the NJL model is due to the fact
that in our case the fundamental interaction has a Uð1ÞF
local gauge symmetry. The fact that there exists a non-
trivial mass solution is actually peculiar to the Uð1ÞF and
SUðNÞ gauge interactions and does not hold in general.
Indeed, in the case in which the chiral invariant interaction
is replaced by a massless scalar and pseudoscalar fields
coupled to the fermion field in a chiral invariant way,
supplied by a higher derivative term in the kinetic part of
the scalar Lagrangian, the non-trivial mass solution does
not exists in the weak coupling regime [16]. Indeed, in this
case, the corresponding sign in front of the integral in
Eq. (4) turns out to be positive. This suggests that the
existence of the non-trivial solution in Eq. (5) is related to
the spin-1 nature of the field that generates the long
distance interaction in the fermion sector.
If the presence of the Lee-Wick term is a common feature

of unbroken gauge theories, then there should also be a
contribution to the SM fermion masses induced by the Lee-
Wick term of QED. However, this effect is totally negligible
in QED, assuming the corresponding scale Λ lower than the
Planck scale MPl. Indeed, for Λ ∼MPl, the corresponding
mass contribution to the charged leptons is of order of
10−97 eV. For the analogous effect in QCD, see [16].
The generalization of Eqs. (5)–(6) to Nf fermions

coupled to a Uð1ÞF gauge field with different qf charges
is straightforward. Let us consider now the same
Lagrangian as in Eq. (2), but with the fermionic term
replaced by

LF ¼ i
XNf

f¼1

ψ̄fγ
μð∂μ þ igQ̂AμÞψf; (8)

where Q̂ is the Uð1ÞF quantum charge operator satisfying
the relation Q̂ψf ¼ qfψf. The total Lagrangian is
now invariant under the generalized Uð1ÞF gauge
transformations

ψf → eiεðxÞqfψf; Aμ → − 1

g
∂μεðxÞ; (9)

where εðxÞ is the usual local gauge parameter. Then, the
result in Eq. (6) is generalized to

mf ¼ Λ exp

�
− 2π

3αðΛÞq2f
þ 1

4

�
: (10)

As we can see, the mass degeneracy in the Nf fermion
system is now removed by the splitting among the Uð1ÞF
charges. We can get an exponential mass spread, with the
exponential argument being proportional to the inverse
square of the quantum charges. The small breaking of
the global SUðNfÞ symmetry is exponentially amplified
by the mass spectrum generated by the nonperturba-
tive ChSB mechanism. However, notice that the
Lagrangian, Eq. (8), is still Uð1ÞF gauge invariant after
the spontaneous ChSB since the fermion mass matrix is a
function of the charge operator Q̂.
Notice that the solution in Eq. (6) implies a relation

between αðΛÞ and αðmÞ, which in the case of Nf
fermions with unity charge minimally coupled to
Uð1ÞF, is given by

αðΛÞ ¼ αðmÞ
�
1þ 4

9
Nf

�
; (11)

where in deriving the above expression the Uð1Þ β
function at one loop has been used and the 1=4 factor
inside the exponent of Eq. (6) has been neglected in the
weak coupling regime αðΛÞ ≪ 1.
Now, it is tempting to speculate whether this ChSB

pattern for the fermion masses could be consistent with
the observed mass spectrum of quarks and leptons. Let
us consider first the charged lepton mass spectrum. Because
of the mass hierarchy in Eq. (10), we should expect
qe > qμ > qτ. For example, we can extract the values of
α and Λ from the measured masses and assumed Uð1ÞF
charges of the electron and muon, namely,

α−1 ¼ 3

2π

q2eq2μ logðme
mμ
Þ

q2e − q2μ
;

Λ ¼ me

�
mμ

me

� q2μ

q2μ−q2e : (12)

If we assign, for example, the charges in the lepton sector as
a sequence of integer numbers as qe ¼ 4, qμ ¼ 5, and
qτ ¼ 6, we get

α−1ðΛÞ≃ 113 and Λ≃ 1.4 TeV: (13)

This will give the following prediction for the tau lepton
mass:

mτ ≃ 1.9 GeV: (14)
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Thus, this charge pattern gives the mass of the τ lepton
within 7% accuracy, without invoking any order 1 coef-
ficient that, in principle, could be present.
Similarly, assuming Dirac neutrino masses with qντ ¼ 3

as the charge of the heaviest light neutrino, and using
exactly the same values for the interaction strength and the
new physics scale as for the charged leptons given by
Eq. (13), we obtain a prediction for the neutrino mass scale:

mντ ≃ 5 eV: (15)

Although this value is just a bit too large to be consistent
with the direct neutrino mass measurements and with
cosmological constraints on the neutrino mass scale, it
might not be totally unrealistic. However, as we will show
in the following, the tree-level coupling of Uð1ÞF to SM
fermions cannot be a realistic model, and this problem
would require a different implementation of the main idea.
Incidentally, for the quark spectrum, we found that a

good fit is obtained also following the sequence of 4, 5,
and 6 integer charges separately for up- and down-quark
sectors. The corresponding mass predictions are within
20%–40% accuracy. This indicates that additional correc-
tions of order Oð1Þ are needed in the quark sector, as is the
case also for the Frogatt–Nielsen mechanism.
Clearly, this example should not be taken as a realistic

model of flavor, since there are several flaws showing that it
cannot be phenomenological acceptable. First of all, an
exact Uð1ÞF gauge interaction cannot be simply coupled at
tree level with SM fermions, unless it is extremely weak,
which is not the case here. Notice that in the above example
the effective strength at the Λ scale of this new interaction
coupled to electrons is q2eαðΛÞ ∼ 0.14, with qe ¼ 4, which
is almost twenty times stronger than electromagnetic (EM)
interactions. Second, if we require that quarks and lepton
masses arise from the SM Higgs mechanism, as is con-
firmed by the global fits to the LHC and Tevatron data [25],
this extra contribution to their masses would spoil the tree-
level relation of SM Yukawa couplings with masses and
eventually the unitarity of the SM.
However, we will see that there is actually a phenom-

enologically viable way to implement this mechanism to
generate the hierarchy of the SM fermion masses. The main
idea is to assume that this mechanism is acting on
fundamental fermions that belong to a dark sector. These
fermions must be singlet under the SM gauge group. Then,
the flavor and ChSB of the dark sector is transferred to the
SM Yukawa couplings by Higgs portal-type messenger
fields. We will see that the Yukawa couplings can be
actually generated by finite radiative corrections and be
proportional to the masses of dark fermions. The latter ones
play now the role of a primary source of flavor and ChSB in
the SM. In the next section, we shall present a model for the
messenger sector and provide predictions for the finite
one-loop SM Yukawa couplings.

III. GENERATION OF THE SM YUKAWA
COUPLINGS FROM DARK DYNAMICS

In this section, we present the Lagrangians for the dark
and messenger sectors, following the model building
guidelines of the previous section and compute the induced
SM Yukawa couplings. Let us start with the dark sector.
The dark sector is assumed to be composed by Dirac

fermions QUi;Di , which are similar to a replica of the SM
fermions, although they are singlet under the SM gauge
interactions, where i, j indicate the flavor. We will focus
here only on the quark sector; the generalization to the
leptonic sector will be straightforward. These fermions are
assumed to be massless at tree level and satisfy an exact
dark Uð1ÞF gauge symmetry. The pure gauge sector will be
supplemented by a Lee–Wick term as in Eq. (2) in order to
dynamically trigger spontaneous ChSB at low energy.
Notice that chiral symmetry is assumed to be an exact
symmetry of the Lagrangian, which is spontaneously
broken by the Uð1ÞF gauge interaction. This assumption
avoids introducing generic tree-level mass terms for the
fermions, which would explicitly break chiral symmetry
and eventually spoil the predictions of exponentially spread
mass gaps.
Then, the Lagrangian of the dark sector is given by

LDS ¼ i
X
i

ðQ̄UiDμγ
μQUi þ Q̄DiDμγ

μQDiÞ

þ 1

4
FμνFμν − 1

Λ2
∂μFμα∂νFνα; (16)

where Dμ ¼ ∂μ þ igQ̂Aμ is the covariant derivative asso-
ciated with the Uð1ÞF gauge field, with Q̂ the charge
operator acting on the fermion fields QUi , QDi , and Fμα is
the corresponding Uð1ÞF field strength tensor. To explain
the large mass splitting, we assume that theUð1ÞF quantum
charges are not degenerate and indicate them with qUi

, qDi

corresponding to the fields QUi , QDi , respectively. The
Lagrangian Eq. (16) is invariant under the corresponding
Uð1ÞF gauge transformations given in Eq. (9). Therefore,
the flavor symmetry is explicitly broken by the nonun-
iversality of Uð1ÞF quantum charges.
Given the particle content and the Uð1ÞF gauge inter-

action in the dark sector, the dark fermions obtain masses
as described in the previous section. Those generation-
dependent masses are exponentially spread according to
their gauge quantum numbers. We assume that this is the
origin of chiral and flavor symmetry breaking in nature that
is communicated to the SM. As we will see, this will
necessarily require us to introduce Higgs portal-type
interactions, mediated by scalar messenger fields.
Basically, the main idea is the following. We assume that

the SM structure remains the same at low energies, while
the Yukawa couplings should emerge (as finite contribu-
tions) at one-loop order due to the interaction of the SM
fields with the messenger sector. The SM fermions acquire
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mass by means of the SM Higgs mechanism, but now the
splitting between the Yukawa couplings is naturally
explained by the large mass differences of fermions in
the dark sector. Although there might be other ways to
implement the messenger sector for generating finite
Yukawa couplings, the requirements of both having finite
Yukawa couplings at one loop and renormalizable
SUð2ÞL ×Uð1ÞY × Uð1ÞF invariant interactions in the
messenger sector will strongly reduce many other potential
choices.
Before entering into the details of the structure of the

messenger sector, we would like to discuss some relevant
issues. A crucial constraint that must be imposed in order to
radiatively generate the Yukawa couplings is to avoid the
presence of SM Yukawa couplings at the tree level. This
can by simply achieved by imposing a discrete Higgs parity
symmetry, namely, H → −H, where H stands for the SM
Higgs boson doublet under SUð2ÞL. Indeed, the SM
Yukawa couplings are the only interaction terms in the
SM in which H appears linearly. Therefore, forbidding the
SM Yukawa interaction terms is technically natural.
To generate (finite) Yukawa couplings at one-loop level,

this parity symmetry must be broken. Thus, we need to
introduce a singlet scalar field S0 (under SM gauge
interactions), which is coupled to the Higgs field and
which transforms as S0 → −S0 under the Higgs parity
transformation H → −H. This implies that the Yukawa
couplings are always proportional to the VEV μ ¼ hS0i of
the scalar field associated with the SSB of this discrete
symmetry.2

In the case in which the scalar messenger masses are
much larger than the dark fermion masses, by using
dimensional analysis, the generated Yukawa couplings
are expected to be of the form

Yi ∼
MQi

μL

m̄2
; (17)

whereMQi
is the mass of the dark fermion, which plays the

role of the primary ChSB source and m̄ is an average mass
of the messenger fields. Here, L is a dimensionless
constant, expected to be L ≪ 1, which absorbs all loop
factors and products of perturbative coupling constants in
the messenger sector. While MQi

and m̄ are masses of
dynamical particles, the singlet VEV μ is an external mass
scale. The latter property allows us to have an extra free

parameter necessary for adjusting the normalization of Yi at
the right phenomenological scale. Then, we can see that the
hierarchy of fermion masses MQi

in the dark sector is
directly translated to the hierarchy of SM Yukawa cou-
plings, provided the scalar messenger sector is heavier than
the dark fermion one. A similar conclusion is achieved in
the opposite case in which MQi

≫ m̄. In this case the
scaling properties of Eq. (17) should be replaced by

Yi ∼
μL
MQi

; (18)

reversing the hierarchy of the Yukawa couplings as a
function of the dark fermion masses. As we will show
in the following, the latter realization would be phenom-
enologically disfavored since, due to the conservation of
the Uð1ÞF charge, some messenger fields that are charged
under the SM gauge group might become stable.
The total tree-level Lagrangian can be expressed as

L ¼ LY¼0
SM þ LMS þ LDS; (19)

where LY¼0
SM is the SM Lagrangian with vanishing tree-level

Higgs Yukawa couplings, LMS is the Lagrangian contain-
ing the messenger sector with its couplings to the SM and
dark fields, and LDS is the Lagrangian in Eq. (16). The LMS
Lagrangian communicates the ChSB of the dark sector to
the SM observable one through the generation of Higgs
Yukawa couplings at one loop.
To have a Higgs portal-type messenger sector, which

is invariant under the SM gauge group and under the
Uð1ÞF gauge theory, the minimum set of messenger fields
required is
(i) 2Nf complex scalar SUð2ÞL doublets, ŜUi

L and ŜDi
L ;

(ii) 2Nf complex scalar SUð2ÞL singlets, SUi
R and SDi

R ;

(iii) one real SUð2ÞL ×Uð1ÞY singlet scalar, S0,
where

ŜUi;Di
L ¼

�
SUi;Di
L1

SUi;Di
L2

�
;

Nf ¼ 3, and i ¼ 1, 2, 3 stand for the flavor index. It is
understood that the messenger and corresponding dark
fermion fields associated with the leptonic sector will
follow the same pattern as for the quark sector, assuming
that neutrinos are of Dirac type. In the following, we will
discuss only the quark sector; the extension to the leptonic
sector will be straightforward.
Notice that the messenger fields ŜUi;Di

L , SUi;Di
R carry the

SM quantum numbers of quarks, where the labels L, R
stand for the corresponding chirality structure of the SM
fermions. Therefore, they couple both to the electroweak
gauge bosons and to the gluons in the standard way. In this
respect they resemble the squarks of the supersymmetric

2The spontaneous breaking of discrete Z2 symmetry may
generate cosmological problems because of domain walls. A
solution is to break the discrete symmetry explicitly with a small
parameter so that the model features are not changed numerically
[26]. Here we assume that the Z2 symmetry is explicitly broken
by small parameters in the scalar sector of the model, like ρSH2,
with ρ ≪ MH , which does not change our results. Alternatively, if
the scale of inflation is below hS0i, the domain walls are diluted
by inflation. In the following, we assume that the domain wall
problem is solved in our model.
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extensions of the SM. Analogous conclusions hold in the
case of extensions of the messenger field content to the
lepton sector.
The quantum numbers of the messenger fields are

reported in Table I. Corresponding entries in the columns
of SUð2ÞL and SUð3Þc refer to the group representations,
namely, 1=2 and 3 for doublets and triplets, respectively,
while the entries in the Uð1ÞY andUð1ÞF columns stand for
the corresponding quantum numbers for hypercharge Y
and Uð1ÞF dark sector qf, respectively. The EM quantum
charges, in units of the electric charge e, are given by the
SM relation QEM ¼ t3 þ Y=2, with t3 the corresponding
eigenvalue of the SUð2ÞL diagonal generator, namely,
t3ðSUi;Di

L1
Þ ¼ 1=2, t3ðSUi;Di

L2
Þ ¼ −1=2, and t3ðSUi;Di

R Þ ¼ 0.
Finally, for the interaction Lagrangian LI

MS of the
messenger sector with quarks and the SM Higgs boson,
we have

LI
MS ¼ gL

�XNf

i¼1

½q̄iLQUi
R �ŜUi

L þ
XNf

i¼1

½q̄iLQDi
R �ŜDi

L

�

þ gR

�XNf

i¼1

½Ūi
RQ

Ui
L �SUi

R þ
XNf

i¼1

½D̄i
RQ

Di
L �SDi

R

�

þ λSS0ð ~H†SUi
L SUi

R þH†SDi
L SDi

R Þ þ H:c:; (20)

where contractions with color indices are understood and
S0 is a real singlet scalar field. Here, qiL, and Ui

R, D
i
R,

indicate the SM fermion fields, and H is the SM Higgs
doublet, with ~H ¼ iσ2H⋆. We do not report here the
subdominant scalar terms needed to avoid the domain wall
problem; see the discussion above. We also do not report
the expression for the interaction Lagrangian of the
messenger scalar fields with the SM gauge bosons since
the corresponding Lagrangian follows from the universal
structure of gauge interactions. Furthermore, the messenger
fields are also charged under Uð1ÞF and carry the same
Uð1ÞF charges as the correspondent dark fermions.
In principle, there is no reason why the masses of the up-

and down-scalar messenger fields should be flavor inde-
pendent. However, if one assumes that the only source of

flavor breaking comes from the quantum charge sector,
then imposing the flavor universality for the free
Lagrangians in the up- and down-scalar sectors separately
turns out to be a minimal and natural choice. Unavoidably,
the flavor breaking contained in the gauge sector is then
communicated to the scalar sector at one-loop level.
However, since this effect will be suppressed by Uð1ÞF
gauge coupling and loop effects, the flavor dependence in
the messenger mass sector should be considered as a small
deviation from flavor universality. We will neglect this
small effect in our analysis and assume, as a minimal
choice, four flavor-universal free mass parameters, ~mUL

,
~mUR

, ~mDL
, and ~mDR

, corresponding to the mass terms of the
SUL , S

U
R , S

D
L , and SDR fields, respectively.

As explained before, the discrete symmetry H → −H
and S0 → −S0 must be imposed to the whole Lagrangian in
order to avoid tree-level Yukawa couplings. However, in
order to radiatively generate the SM Yukawa couplings, we
have to require that the singlet scalar field S0 acquires a
VEV, namely, hS0i ¼ μ. There is no problem with the
unwanted massless Goldstone boson in this case since this
is a discrete symmetry.
In Fig. 2, we show the relevant Feynman diagrams that

contribute to the SM Yukawa couplings at one-loop order.
These diagrams are finite at one-loop order, and in general
at any order in perturbation theory, due to the structure of
the renormalizable interaction in Eq. (20) and the SSB of
the discrete parity symmetry H → −H and S0 → −S0.

FIG. 2 (color online). One-loop contributions to the Higgs
Yukawa couplings of down quarks (a),(b) and up quarks (c),(d).
The internal dashed and (red) continuous lines stand for the
scalar-messenger fields and dark-fermion fields, respectively,
while the dark (external) continuous lines indicate the quark
fields. Subscript L and R on the external quark fields stand for the
corresponding chirality projections. The external dashed lines
correspond to the SUð2ÞL Higgs components H0 and H�.

TABLE I. Spin and gauge quantum numbers for the messenger
fields. The group Uð1ÞF corresponds to the gauge symmetry
group of the dark sector.

Fields Spin SUð2ÞL Uð1ÞY SUð3Þc Uð1ÞF
ŜDi
L 0 1=2 1=3 3 −qDi

ŜUi
L 0 1=2 1=3 3 −qUi

SDi
R 0 0 −2=3 3 −qDi

SUi
R 0 0 4=3 3 −qUi

QDi 1/2 0 0 0 qDi

QUi 1/2 0 0 0 qUi

S0 0 0 0 0 0
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By computing the Feynman diagrams in Fig. 2, the SM
Yukawa couplings at zero transferred momenta can be
extracted by using the standard procedure as follows. We
match the results of the Feynman diagrams in Fig. 2, where
the external momenta are set to zero, with the correspond-
ing effective Yukawa operators evaluated at q2 ¼ 0. In the
calculation of the one-loop diagrams, we assume for
simplicity that the masses of the scalar fields running in
the loop are flavor independent and their masses m̄ are
degenerate between the left and right scalars. Finally, by
following the above procedure, we get

YUi ¼ λSgLgRμMQUi

16π2m̄2
C0ðxiÞ (21)

and analogously for the YDi sector, where xi ¼ M2
QUi =m̄

2

and MQUi ¼ Λ exp ð− 2π
3αq2Ui

Þ, where α stands for the fine

structure constant of Uð1ÞF gauge interaction. Here, the
function C0ðxÞ is defined as

C0ðxÞ ¼
1 − xð1 − log xÞ

ð1 − xÞ2 ; (22)

where C0ð1Þ ¼ 1=2, while for small x ≪ 1 it can be
approximated as C0ðxÞ≃ 1þ ð1þ log ðxÞÞxþOðxÞ. In
the opposite limit of large x ≫ 1, one has C0ðxÞ ∼ 1=x.
Therefore, from these results, we can see that, as expected
from the decoupling theorem, in the limit of Λ → ∞ all the
Yukawa couplings tend to zero.
Finally, after EWSB, the SM fermions get the same mass

pattern as in Eq. (10), as in the example discussed in Sec. II,
namely,

mi ¼ Λeff exp

�
− 2π

3αq2i

�
; (23)

where now qi is the corresponding Uð1ÞF charge of the
corresponding dark fermion partner and the Λeff is related
to the Lee–Wick scale Λ of Uð1ÞF by

Λeff ∼
�
vμΛ
m̄2

�
λSgLgRCðxiÞ

16π2
; (24)

with v the Higgs vev, m̄ an average mass of the associated
messengers fields and gL;R the corresponding messenger
couplings to SM left-handed and right-handed fermions.
Since there is no reason why the messenger scalar fields in
the lepton and quark sectors should have the same mass and
couplings, it is possible to choose different masses and
couplings gL;R for the messenger fields in the lepton and
quark sector, in order to set the appropriate scales Λeff for
the lepton and quark sectors.
In the case in which the messenger sector is flavor

independent, one can obtain interesting sum rules that
connect the various Yukawa couplings in the up- or

down-quark sectors. By means of Eqs. (10) and (21),
we get

YUj ¼ YUi exp

�
2πðq2Uj

− q2Ui
Þ

3αq2Ui
q2Uj

�
C0ðxjÞ
C0ðxiÞ

: (25)

Analogous results hold for the down-sector Yukawa cou-
plings YDj , with qUi

charges replaced by the corresponding
qDi

ones. Clearly, if the messenger sector is flavor universal
in both the up and down sectors, the above relations in
Eq. (25) can be generalized to mix the up- and down-sector
Yukawa couplings. As explained above, in order to avoid
stable heavy charged particles in the spectrum, messenger
masses should be always heavier than the corresponding
dark fermion ones. In the case of a large mass gap between
the messenger and dark fermion sector, the last term
multiplying the exponential in Eq. (25) can be well
approximated by C0ðxjÞ=C0ðxiÞ ∼ 1. In the following,
we will restrict our phenomenological analysis to this
particular scenario.
The next issue to address is the origin of flavor mixing.

In our framework, the generated Yukawa couplings are
proportional to the fermion masses in the dark sector. There
are two logical possibilities, either the observed flavor
mixings are present already among the dark fermions or,
alternatively, they are generated by the radiative transfer
mechanism. The first possibility requires dynamical break-
ing of the dark Uð1ÞF symmetry since the charge con-
servation requires the mixing to be either zero [different
Uð1ÞF charges for different generations] or maximal [same
Uð1ÞF charges for different generations]. As long as the
dark photon acquires a small mass, much smaller than the
generated fermion masses, the exponential dependence of
masses on the Uð1ÞF quantum numbers is not spoiled [16].
However, such a dynamical breaking requires an additional
mechanism, and we do not consider it here. Instead, we
assume that the small Cabibbo–Kobayashi–Maskawa
(CKM)-type mixings are due to a mismatch between the
dark sector masses and the SM masses. Thus, they are
generated by the scalars mediating the dark fermion masses
to the SM sector. To achieve that, we have to relax the
assumption of flavor universality of the messenger sector.
However, due to the smallness of CKM mixing angles, this
is just a small mismatch effect originating from the flavor
nondiagonal messenger couplings and from the messenger
mass nonuniversality. Thus, the CKMmatrix can always be
accommodated in our mechanism.
Finally, we would like to comment about the phenom-

enological implications of the spontaneous ChSB in the dark
sector. In the case of degenerate Uð1ÞF charges, there is a
global symmetry of the Lagrangian in the dark sector that
corresponds to UðNÞR ×UðNÞL. After the spontaneous
ChSB, induced by the higher-derivative term in the Uð1ÞF
gauge sector, this symmetry breaks down to an exact UðNÞV
global symmetry. According to the Nambu–Goldstone
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theorem, there should then appear in the spectrum N2

massless Nambu–Goldstone pseudoscalar bosons, which
in this case would correspond to the condensates of
elementary dark fermions. Some of these composite states
would be also charged under the Uð1ÞF gauge group. On
the other hand, if the Uð1ÞF charges are all nondegenerate,
the Uð1ÞF gauge interaction term will play the role of an
explicit SUðNÞL × SUðNÞR breaking term. Then, accord-
ing to general arguments, we expect that of the N2

Nambu–Goldstone particles of the degenerate case only
one will remain massless, while the other N2 − 1 ones will
acquire a mass term proportional to the splitting of the
Uð1ÞF charges. Clearly, a rigorous analysis is mandatory
in order confirm these naive expectations, and this might
be the subject for future investigations.

IV. NATURALNESS AND VACUUM
STABILITY BOUNDS

The radiative generation of the Yukawa couplings of
light quarks has already been extensively considered in the
literature in the context of supersymmetry [27–31]. In this
framework, the radiative generation of the top-quark mass
was considered to be impossible because the supersym-
metry breaking scale was believed to be below 1 TeV, and
generating a particle mass of 173 GeV at one loop seems
impossible. As already discussed above, in our case, we can
choose the singlet VEV μ and the mass scales large enough
to overcome the smallness of the loop factor. Thus, all SM
Yukawa couplings can be generated with our mechanism.
However, large values of μ, required to generate the top-

quark Yukawa coupling, can in principle spoil naturalness
in the Higgs sector. This is due to the fact that the trilinear
coupling of the Higgs and messenger sector can induce
one-loop contributions to the Higgs mass square δm2

H,
which is of order

δm2
H ∼

λ2Sμ
2

16π2
: (26)

In this expression, we have neglected the loop function
since we are just interested in a rough estimate of the
contribution to the Higgs boson mass. By using Eqs. (26)
and (21), and approximating the top Yukawa coupling by
Yt ∼ 1, the one-loop radiative contribution to the Higgs
mass square δm2

H is given by

δm2
H ∼

16π2m̄2

ðgLgRÞ2xtC2
0ðxtÞ

; (27)

where xt ¼ M2
Qt=m̄2. From these results, we can see that in

order to avoid large fine-tuning in the Higgs sector large
couplings of gL and gR are needed. Contrary to the radiative
generation of Yukawa couplings in SUSY models, in our
framework, the messenger couplings to the Higgs boson are
not constrained by any symmetry, and we can allow the gL;R

couplings to be large. If we assume that the mass of the dark
fermion partner of the top quark is of the same order as the
messenger mass scale m̄, namely, xt ∼ 1, and assume
gL;R ∼ 1, we get

δm2
H ∼ 4 × 104

�
m̄
TeV

�
2

m2
H (28)

for the Higgs mass mH ¼ 126 GeV. This implies that for
the messenger mass scale of order m̄ ∼ 1 TeV a 10−4 fine-
tuning is required in the Higgs sector.
A potential solution to the fine-tuning problem might be

provided by extending the Lee–Wick ghosts to the SM
fields, including the Higgs field, which is actually one of
the main motivations for this proposal [17–20]. Another
possibility is to consider the supersymmetric extension of
our scenario, which would necessarily require also the
supersymmetric extension of the dark sector.
Now, we derive the lower bounds on the dark fermion

masses by using vacuum stability bounds in the messenger
scalar sector. To simplify the analysis, we assume the
messenger masses to be degenerate, that is, mSL ∼mSR≡
m̄. After electroweak symmetry breaking, the interaction
term λSμHSLSR generates a mixing term in the mass-square
matrix of the SL and SR scalar fields, which is equal to
λSμvSLSR. If this mixing term is too large, one of the
eigenvalues of the scalar mass-square matrix becomes
negative and tachyons are generated, inducing vacuum in-
stability. Then, in order to avoid tachyons in the messenger
sector, we must require that

λSμv < m̄2; (29)

where v is the VEV of the Higgs field.
The SM fermion masses are generated as in the SM after

the electroweak symmetry breaking. We get from Eq. (21)

mi

v
¼ LλμMQi

m̄2
C0ðxiÞ; (30)

where mi is the SM fermion mass, xi ¼ M2
Qi
=m̄2, and for

simplicity we absorbed in the constant L all loop factors
and coupling constants, namely, L ∼ gLgR=ð16π2Þ. Now,
from Eq. (30), we get

λSμ ¼ mim̄2

vLMQi
C0ðxiÞ

: (31)

Substituting Eq. (31) into Eq. (29), we get

MQi
>

mi

LC0ðxiÞ
; (32)

which provides a lower bound on the dark fermion mass in
terms of the corresponding SM fermion partner. Notice
that, in the case of heavy messengers (xi ≪ 1), the lower
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bound depends only on the fermion masses and coupling
constants.
Some comments about Eq. (32) are in order. In the case

in which the dark fermion associated with the top quark has
a mass of the same order as the messenger ones, namely,
xt ∼ 1, we get

MQt
≳
�

55

gLgR

�
TeV: (33)

In the case of large couplings gL;R ∼ 1, but still within the
validity range of perturbation theory, the heaviest dark
fermion should have a mass not smaller than 55 TeV in
order to avoid problems with the vacuum stability. On the
other hand, for the lightest quarks, assuming their mass to
be of order 10 MeV, we get

MQu
≳
�

1.6
gLgR

�
GeV: (34)

Clearly, if the masses of the dark fermions are just a
rescaling of the the SM fermion masses, as suggested by
our scenario, the bound in Eq. (34) automatically holds
once the bound in Eq. (33) is satisfied.
These results show that the lightest dark fermions could

be relatively light for strongly coupled messenger fields and
can be produced at the LHC in the decays of (heavy)
messenger fields. However, in order for the messengers to
be kinematically accessible at collider experiments, the
bound in Eq. (33) should be relaxed. It is possible that the
messenger masses for the quarks and leptons are different.
For the lepton partners, the equivalent bound is rescaled by
the ratio of Yukawa couplings squared, allowing them to be
kinematically reachable at colliders. We will discuss the
phenomenological implications of this scenario at the LHC
in the next section.
Finally, we would like to comment on the fact that this

scenario can easily pass all the tests from electroweak
precision observables and flavor physics. For instance, due
to the fact that the messenger fields are charged under
the SUð1ÞL ×Uð1ÞY gauge group, they can contribute at
the one-loop level to the ρ parameter. However, since the
messenger masses may be as large as 50 TeV and also
degenerate, we expect them not to contribute significantly
to the ρ parameter and to the other electroweak precision
observables. The same conclusions hold for the contribu-
tion to rare processes in flavor physics induced at one loop.
Since the messenger fields enter in flavor-changing neutral
current (FCNC) loops, this will induce a tiny contribution
to the relevant FCNC operators, being suppressed by a
typical scale that should be associated with the messenger
masses. However, due to the fact that gL;R might be large,
an accurate analysis of these new contributions to the
FCNC sector is needed in order to assess this issue more
precisely.

V. PHENOMENOLOGY AND DIRECT TESTS

The dark sector of our theory contains an unbroken
Uð1ÞF gauge group. Thus, there must exist massless dark
photons that may have cosmological implications if the
dark matter of the Universe is charged under this gauge
group [32]. Recently there has been a revival of interest to
this possibility [33]. The dark matter self-interactions may
solve problems of small scale structure formation that seem
to deviate from the simple N-body simulation results.
Spectacular signatures of this scenario include the formation
of dark discs of galaxies [34] that can be observable. If the
dark photon is exactly massless, there is no kinetic mixing
with the electromagnetic photon—there are two orthogonal
states that must be identified accordingly. In our scenario, the
natural candidate for dark matter is the lightest dark fermion
that is charged under the Uð1ÞF gauge group. If, however,
the dark matter is neutral under Uð1ÞF, the dark photons are
very difficult to observe in laboratory experiments.
While probing the dark sector particles at colliders is a

very challenging task, neutrino physics may offer unex-
pected possibilities. Namely, some of the dark fermions, for
example, the ones corresponding to the lightest SM
neutrinos, may be light enough to play the role of an
additional sterile neutrino. The existence of Oð10Þ eV
sterile neutrinos may be hinted at by the LSND [35] and
Mini-BooNE [36] experiments. To mix the dark and the SM
fields, the dark gauge symmetry must be broken. Thus, the
phenomenology of our scenario may also affect neutrino
physics. However, it is not yet clear if this simple scheme,
which would assume Dirac neutrinos, could explain the
correct scales for the neutrino masses and mixing. A more
close inspection of this model in the neutrino sector is
necessary, and this is beyond the purpose of the present
paper. Perhaps extended versions could be be necessary in
the neutrino sector to make this model more realistic.
However, by far the most promising way to test our

model is to search for direct or indirect effects of this
scenario at the LHC and in future colliders. As already
stated, the messengers themselves must carry SM quantum
numbers similarly to the squarks and sleptons of super-
symmetric theories. If kinematically accessible, those new
particles can be produced and discovered at the LHC. For
example, the colored messengers can be pair produced at
the LHC by the gluon fusion mechanism

gg → SS† (35)

or by the quark fusion mechanism

qq̄ → SS†; (36)

where S stands for a generic scalar messenger. The latter
process can be enhanced by the potentially large gL;R
couplings. For colorless messengers, only the process (36)
can take place, mediated by the SM gauge bosons. This
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phenomenology would somewhat resemble the one of
supersymmetric squarks and sleptons. However, there are
many differences between those scenarios. While in super-
symmetric theories searches for squarks assume that they
are produced in gluino cascade decays, our model does not
contain colored fermions, and the scalars must be produced
directly. This implies smaller cross sections and a lower
mass reach than in supersymmetry, especially for colorless
particles like the messengers of leptons. Moreover, the
masses of messenger fields are expected to be large, as
follows from the bound in Eq. (33) coming form the very
large top Yukawa coupling. Therefore, it is likely that the
quark messenger cannot be produced on shell at the LHC
(unless the flavor universality assumption that we do not
consider in this work is relaxed). However, the lepton
messengers can be much lighter and accessible at the LHC.
Once produced, the colorless scalars decay to SM leptons
and to dark fermions. The lightest dark fermion is stable,
manifested at collider experiments by the signature of
missing energy. Thus, the experimental signature of our
scenario is a pair of SM leptons and large missing energy.
The latter can be used to trigger the events at the LHC.
Thus, the LHC searches for supersymmetry could also be
used to test our flavor model.
Because of the direct coupling of the messenger sector

with the Higgs boson, effects on the H → γγ and gluon-
decay amplitude H → gg can affect the present measure-
ments of the 126 GeV Higgs-like resonance observed at the
LHC. We study how the radiative Higgs decay rates can be
used to set direct bounds on the masses of particles in the
messenger and dark fermion sector. Since the present
measurements are in good agreement with SM predictions,
one can use these results to set indirect lower bounds on the
new particle spectra. In particular, the messenger fields
could contribute to the H → γγ amplitude at one loop,
where inside the loop the SUi;Di

L and SUi;Di
R fields are

circulating, together with their potential counterparts in
the leptonic sector. By dimensional analysis, we estimate
that this contribution is proportional to

AðH → γγÞ ¼ λSμα

m̄24π
LFF̂μνF̂

μν; (37)

where m̄ is the average messenger mass; LF is the loop
function, which is expected to be of order Oð1Þ; and F̂μν is
the Fourier transform of the EM field strength. Now, if we
extract the λSμ term from the requirement of generating the
top Yukawa coupling at the right scale by using Eq. (21),
we get that the amplitude for Hγγ will be of order

AðH → γγÞ ∼ 4πα

gLgRMQt
C0ðxtÞ

LFF̂μνF̂
μν; (38)

while the corresponding SM contribution is proportional to

AðH → γγÞSM ∼
αg

4πmW
LSM
F F̂μνF̂

μν; (39)

wheremW is the W-boson mass, g is the weak coupling, and
LSM
F is the corresponding SM loop function, which is a term

of order Oð1Þ. Since the vacuum stability bounds are
restrictive, see Eqs. (33) and (34), the messenger contri-
bution to H → γγ is expected to be suppressed with respect
to the SM one. The same conclusions hold for the new
contribution to the Higgs production mechanism by gluon-
gluon fusion. Notice that these estimates are based on pure
dimensional analysis, and the precise calculation of the
bounds from the Higgs boson analysis at the LHC would
require a dedicated study of these effects that goes beyond
the purpose of the present paper.

VI. CONCLUSIONS

We have proposed a new paradigm for the dynamical
generation of exponentially spread SM Yukawa couplings.
The new idea we advertise is that exponentially spread
fermion masses are generated nonperturbatively in the dark
sector. The resulting chiral and flavor symmetry breaking is
transferred to the SM via the messenger fields presented in
Table I. The important ingredient for our mechanism to
work is the existence of Lee–Wick negative norm ghosts in
the dark sector, allowing the NJL-type mechanism to be
operative in the weak coupling regime of the theory and
producing an exponential mass spectrum. The interaction
that generates the nonperturbative effect is the unbroken
dark Uð1ÞF gauge interaction. Since the Abelian group can
have different integer or fractional charges for different
generations, flavor symmetries are broken exponentially by
the Uð1ÞF charges. As a result, our mechanism offers a
natural explanation to the observed SM fermion mass
spectrum. If the light neutrinos will turn out to be Dirac
particles, explaining the extreme smallness of their Yukawa
couplings becomes natural in our framework.
We have presented an explicit model of flavor achieving

those tasks. It contains a scalar messenger sector consisting
of particles with the SM quark and lepton quantum numbers,
thus resembling the supersymmetric squark and slepton
sector. We have shown that, due to the large top Yukawa
coupling, quark messengers must likely be very heavy.
However, the lepton messengers can be orders of magnitude
lighter. If kinematically accessible, those particles can be
discovered at the LHC, offering direct tests of our model.
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