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Applying the domain model to the G(2) gauge group and the thick center vortex model to the SU(2) and
SU(3) subgroups of G(2), we calculate the potentials between static sources, as well as some parameters of
the vortex profile. Comparing the results obtained from G(2) and its subgroups, we argue that SU(2) and
SU(3) gauge groups have important roles in observing confinement in the G(2) gauge group.
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I. INTRODUCTION

The mechanism of color confinement is still one of the
unsolved and challenging problems in particle physics. It is
hard because it is a nonperturbative phenomenon and must
be solved by nonperturbative techniques. Lattice gauge
theory, as a numerical method, has been successful in
predicting potentials between color sources and observing
the confinement in various representations [1–9]. In addi-
tion, a variety of phenomenological models have been
proposed to explain the confinement mechanism.
According to these models, the vacuum of QCD is filled
by some special class of field configurations such as center
vortices, monopoles, instantons, etc. [10]. In this article, we
focus on the thick center vortex model. Center vortices
were introduced in the late 1970s by ’t Hooft [11]. Color
confinement has been explained based on the condensation
of center vortices in the vacuum of QCD. The center
vortices are linelike (surfacelike) objects in three (four)
dimensions which carry a quantized magnetic flux in terms
of the nontrivial center elements of the gauge group. The
interactions between Wilson loops and center vortices in
the fundamental representation lead to a linear potential but
it is not possible to reproduce the intermediate linear
potential for the color sources in higher representations
predicted by lattice calculations [1,2]. The vortices were
thickened in the thick center vortex model [12] and the
linear potentials for the higher representations, as well as
the fundamental representation, have been observed. Later,
in order to increase the length of the linear part of the
potential, Greensite et al. [8] have modified the model by
using both the trivial and nontrivial center elements.
Studying the modified thick center vortex model in a
group, using only the trivial center element seems to be
very interesting. This is because, as mentioned above, the
magnetic fluxes carried by the center vortices are quantized
in terms of the nontrivial center elements of the group.

Therefore, one does not expect confinement in a group
which does not contain any nontrivial center element. In
other words, no center element means no confinement.
However, this is in contrast with the lattice results of the G
(2) gauge group [9], as an example of a group without any
nontrivial center element. A linear potential for the inter-
mediate distances has been observed in lattice calculations.
G(2) is the simplest exceptional Lie group which has
only a trivial center element and its universal covering
group is itself. In language of homotopy group, the first
homotopy group shows that center vortices are absent in the
theory, i.e.,

π1ðGð2Þ=IÞ ¼ I: (1.1)

Thus, G(2) gauge theory is a good laboratory for studying
the role of the trivial center element for color confinement.
Recently, G(2) Yang Mills theory has attracted consid-

erable attention for the confinement problem in QCD
[8,9,13–19]. In our previous article [20], we have calcu-
lated the potentials between two G(2) heavy sources in the
fundamental, adjoint and 27 dimensional representations,
by the thick center vortex model with the idea of the
domain structure. In agreement with lattice results [9], we
have observed screening of the sources for the large
distances and linear potentials at intermediate distances
roughly proportional with the Casimir ratios. Screening is
expected, since the only center element of G(2) is trivial
and it does not have any contribution to the Wilson loop at
large distances where it is located completely inside the
loop. We have discussed the possible reasons of the
observed linear potential at intermediate distances. We
have argued that the thickness of the domains and the SU(3)
subgroup of the G(2) gauge group may be responsible for
this linear behavior.
In this paper, we discuss the role of the nontrivial centers

of the SU(2) and SU(3) subgroups of G(2) in observing
confinement in the G(2) gauge group. In the next section,
we give a brief summary on the thick center vortex model
and the domain structure model. Some general properties of
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the G(2) gauge group are studied in Sec. III. Then, in
Secs. IV and V, we investigate the reasons of the confine-
ment in G(2). First, the domain model is applied to the G(2)
gauge group and then the thick center vortex model to the
SU(2) and SU(3) subgroups of the G(2) gauge group and
then by comparing the results we discuss the reasons of
confinement in the G(2). Next, we study ReðgrÞ, a function
of the vortex profile, for the fundamental and adjoint
representations of G(2) and compare its extremums with
the ones of the SU(2) and SU(3) subgroups of G(2). By
comparing the results of these two parts, we conclude that
SU(2) and SU(3) subgroups of G(2) have important roles in
observing confinement in G(2).

II. THICK CENTERVORTEXMODEL INCLUDING
TRIVIAL DOMAINS

Postulating a kind of domain structure in the vacuum, the
thick center vortex model has been modified and the length
of the linear regime at intermediate distances has been
increased [8]. This model, sometimes called the domain
model, assumes that the vacuum of quantum chromody-
namics is filled with two types of domains called center
vortices and vacuum domains. Magnetic flux in each
domain is quantized in terms of the center elements which
are trivial for the vacuum domain and nontrivial for the
vortices. Therefore, vacuum-type domains carry a zero total
magnetic flux in contrast with the center vortex type
domains. In SUðNÞ gauge theory, there are N − 1 types
of center vortices and one type of vacuum domain. For
example for the SU(2) gauge group, with the center
elements I and −I, there are two types of domains:
I and −I. The first one corresponds to the vacuum
domain and the second one corresponds to the nontrivial
center vortex. The induced potential between static sources
is [8,12]

VðRÞ ¼
X
x

ln
�
1 −XN−1

n¼0

fnð1 − Regr½α⃗nCðxÞ�Þ
�
: (2.1)

x is the location of the center of the vortex and fn is the
probability that any given unit area is pierced by a domain
of type n. n ¼ 0 indicates the vacuum domain and n ¼
1;…; N − 1 represent the center vortices or the nontrivial
domains. gr½α⃗� gives the information about the flux dis-
tribution and the contribution that a domain with its center
in a specific plaquette may have to the Wilson loop. It is
given by

gr½α⃗nðxÞ� ¼
1

dr
Trðexp½iα⃗nðxÞ · H⃗�Þ; (2.2)

where fHi; i ¼ 1; 2;…; N − 1g are the generators span-
ning the Cartan subalgebra, dr is the dimension of the
representation r and α⃗nðxÞ shows the flux profile for the

domain of type n. If the domain is completely contained
within the Wilson loop area, then

expðiα⃗ðnÞ · H⃗Þ ¼ znI; (2.3)

where

zn ¼ e
2πin
N ∈ ZN (2.4)

and I is the unit matrix. The normalization constant α⃗nðxÞ is
obtained from the above maximum flux condition. For the
G(2) gauge group, since the center group contains only the
trivial element, all domains are of the vacuum type. We
apply the domain model to the G(2) gauge group and the
thick center vortex model to the SU(2) and SU(3) sub-
groups of G(2) and then by comparing the results we
discuss the reasons of observing confinement in the G(2)
gauge group. In the next section, we present some general
properties of the G(2) gauge group.

III. G(2) GAUGE GROUP

The G(2) exceptional Lie group may be constructed as a
subgroup of the real group SO(7) which has twenty-one
7 × 7 real orthogonal generators. The rank of G(2) is 2 and
the rank of SO(7) is 3. In addition to the usual properties of
SO(7) matrices

det U ¼ 1 U−1 ¼ UT; (3.1)

the G(2) group elements satisfy another constraint:

Tabc ¼ TdefUdaUebUfc; (3.2)

where T is a total antisymmetric tensor and its nonzero
elements are [21]

T127 ¼ T154 ¼ T163 ¼ T235 ¼ T264 ¼ T374 ¼ T576 ¼ 1.

(3.3)

Equations (3.3) and (3.2) reduce the number of generators
of G(2) to 14.
The dimensions of the fundamental and the adjoint

representations of G(2) are 7 and 14, respectively. Since
the rank of the group is 2, like the SU(3) gauge group, only
two of the generators can be diagonalized simultaneously.
It should be noted that all representations of G(2) are real
and therefore the seven-dimensional representation is
equivalent to its complex conjugate. As a result, quarks
and antiquarks in G(2) gauge theory are indistinguishable.
In G(2), the decomposition of the tensor product of three

adjoint representations contains the fundamental represen-
tation, i.e.,

f14g ⊗ f14g ⊗ f14g ¼ f7g ⊕ � � � : (3.4)

S. M. HOSSEINI NEJAD AND S. DELDAR PHYSICAL REVIEW D 89, 014510 (2014)

014510-2



As a consequence, three G(2) gluons can screen a single
G(2) quark, i.e.,

f7g ⊗ f7g ¼ f1g ⊕ � � � : (3.5)

Therefore unlike SUðNÞ, even the seven-dimensional
fundamental representation of G(2) can be screened by a
bunch of gluons.
It is interesting to look at the homotopy groups because

they tell us what kind of topological excitations can arise.
Center vortices, monopoles, and instantons are classified
according to the 1th, 2th, and 3th homotopy groups. The
first homotopy group

π1ðGð2Þ=IÞ ¼ I: (3.6)

It implies that center vortices are absent in G(2) theories,
while for SU(2) and SU(3)

π1ðSUð3Þ=Z3Þ ¼ Z3; π1ðSUð2Þ=Z2Þ ¼ Z2; (3.7)

which means that center vortices are present in these
theories. In the above homotopy groups, I, Z2, and Z3

are center groups of G(2), SU(2), and SU(3), respectively. It
is clear that the center of G(2) is trivial and that is why there
are no vortices in G(2) gauge theories.
The entire G(2) group can be covered by six SU(2)

subgroups [17]:

1. H1; H2; H3

2. H4; H5;
1

2
ð
ffiffiffi
3

p
H8 þH3Þ

3. H6; H7;
1

2
ð− ffiffiffi

3
p

H8 þH3Þ
4.

ffiffiffi
3

p
H8;

ffiffiffi
3

p
H9;

ffiffiffi
3

p
H10

5.
ffiffiffi
3

p
H11;

ffiffiffi
3

p
H12;

1

2
ð− ffiffiffi

3
p

H8 þ 3H3Þ

6.
ffiffiffi
3

p
H13;

ffiffiffi
3

p
H14;

1

2
ð
ffiffiffi
3

p
H8 þ 3H3Þ; (3.8)

where H3 and H8 are Cartan generators. The first three
SU(2) subgroups form four-dimensional real representa-
tions which are nonreducible. They generate an SU(3)
subgroup of G(2) which is seven-dimensional and reduc-
ible. The representations of the remaining three SU(2)
subgroups are seven-dimensional, but they are reducible.
The decomposed weight diagrams of the fundamental and
adjoint representations of the G(2) gauge group into the
weight diagrams of the SU(3) representations are shown in
Figs. 1 and 2, respectively. Since the weight diagram of the
SU(3) fundamental representation is two-dimensional, the
weight diagrams of the SU(3) subgroup of G(2) is also two-
dimensional and members of a multiplet correspond to
points in a plane. Therefore, under SU(3) subgroup trans-
formations, the seven-and 14-dimensional representations
decompose into

f7g ¼ f3g ⊕ f3̄g ⊕ f1g; (3.9)

f14g ¼ f8g ⊕ f3g ⊕ f3̄g: (3.10)

It means that fourteen G(2) gluons can be constructed
from eight SU(3) gluons plus six additional gluons which
are like the SU(3) fundamental quark and antiquark. One of
the differences between the six gluons and the SU(3)
quarks is that the former ones are bosons while the latter
ones are fermions. The Cartan generators of the G(2) gauge
group can be constructed by the SU(3) Cartan generators,

H7
a ¼

1ffiffiffi
2

p

0
B@

λ3a 0 0

0 0 0

0 0 −ðλ3aÞ�

1
CA;

H14
a ¼ 1ffiffiffi

8
p

0
B@

λ3a 0 0

0 −ðλ3aÞ� 0

0 0 λ8a

1
CA; (3.11)

where λ3a and λ8a (a ¼ 3, 8) are the SU(3) Cartan generators
in the fundamental and adjoint representations, respec-
tively. For all representations of G(2), we use the following
normalization condition for the generators:

Tr½TaTb� ¼
1

2
δab: (3.12)

In the SU(3) subgroup of G(2), the center elements
of G(2) can be constructed from the group Z3, the center of
SU(3):

FIG. 1. The weight diagram for the seven-dimensional repre-
sentation of the G(2) group, decomposed to the weight diagrams
of the representations of the SU(3) gauge group.

FIG. 2. The weight diagram for the 14-dimensional represen-
tation of the G(2) group, decomposed to the weight diagrams of
the representations of the SU(3) gauge group.
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Z7 ¼

0
B@

zI3×3 0 0

0 1 0

0 0 z�I3×3

1
CA;

Z14 ¼

0
B@

zI3×3 0 0

0 z�I3×3 0

0 0 I8×8

1
CA; (3.13)

where I is the unit matrix and z ∈ f1; e�2πi
3 g is an element of

Z3, the center group of SU(3).
The center element in various representations of SUðNÞ

is equal to zkr , where kr is the N-ality of r-dimensional
representation. The N-ality classifies representations of the
SUðNÞ group with respect to the center group, ZN . 3-ality
of the fundamental and adjoint representations of the SU(3)
gauge group are equal to 1 and 0, respectively. Therefore, in
Eq. (3.13), zI3×3, z�I3×3 and I8×8 are center elements of
fundamental, its complex conjugate, and adjoint represen-
tations of the SU(3) group. The number 1 corresponds to
the one-dimensional representation in Eq. (3.9).
In addition to the SU(3) subgroup, the second three

SU(2) subgroups in Eq. (3.8) are seven-dimensional but
they are reducible. The weight diagrams of the fundamental
and adjoint representations of SU(2) subgroup of G(2)
gauge group decomposed into the weight diagrams of the
SU(2) gauge group are shown in Figs. 3 and 4, respectively.
Since the weight diagram of SU(2) fundamental represen-
tation is one-dimensional, the weight diagrams of the SU(2)
subgroup are also one-dimensional and the members of a
multiplet correspond to points along a line. Therefore,
under SU(2) subgroup transformations, the seven- and 14-
dimensional representations decompose into (see the
Appendix for details)

f7g ¼ 2f2g ⊕ f3g; (3.14)

f14g ¼ 3f1g ⊕ f3g ⊕ 2f4g; (3.15)

where the two- and three-dimensional representations are
the fundamental and adjoint representations of SU(2),
respectively. The Cartan generator H8 in the SU(2) sub-
group with generators H8, H9, and H10 are given by

H7
8 ¼

1ffiffiffi
6

p

0
B@

σ23 0 0

0 σ23 0

0 0 σ33

1
CA;

H14
8 ¼ 1ffiffiffiffiffi

24
p

0
BBBBBBBB@

σ33 0 0 0 0 0

0 σ43 0 0 0 0

0 0 σ43 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCA
; (3.16)

where σ23, σ33, and σ43 are the Cartans of SU(2) in the
fundamental, adjoint, and four-dimensional representa-
tions, respectively. The center elements of the SU(2)
subgroup are given by

Z7 ¼

0
B@

zI2×2 0 0

0 zI2×2 0

0 0 I3×3

1
CA;

Z14 ¼

0
BBBBBBBB@

I3×3 0 0 0 0 0

0 zI4×4 0 0 0 0

0 0 zI4×4 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1
CCCCCCCCA
; (3.17)

where I is the unit matrix and z ∈ f1; eπig is an element of
Z2, center group of SU(2). The SU(2) representations are
labeled by a spin index j with either half-integer or integer
values. 2-ality is zero for all integer j representations of
the SU(2) gauge group and 1 for half-integer ones i.e., the
2-ality of two-dimensional (j¼1=2), three-dimensional
(j¼1), and four-dimensional (j¼3=2) representations are
1, 0, and 1, respectively. Therefore, zI2×2, I3×3 and zI4×4
are center elements in two-, three-, and four-dimensional
representations of the SU(2) gauge group, respectively, and
1 corresponds to a representation with dimension 1.

FIG. 3. The weight diagram for the seven-dimensional representation of the SU(2) subgroup of G(2), decomposed to the weight
diagrams of the representations of the SU(2) gauge group.

FIG. 4. The weight diagram for the 14-dimensional representation of the SU(2) subgroup of G(2), decomposed to the weight diagrams
of the representations of the SU(2) gauge group.
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IV. CONFINEMENT IN THE G(2) GAUGE GROUP

The center vortex model is able to describe confinement
for a gauge group with nontrivial center elements.
Confinement is obtained from random fluctuations in the
number of center vortices which link to the Wilson loops.
Therefore, no center vortices means no confinement and the
linear regime should not be observed in gauge theories,
such as G(2) without nontrivial center elements. However,
numerical lattice calculations show confinement for the
G(2) gauge theory. In our previous calculations [20], we
applied the domain model to the G(2) gauge group which
has only a trivial center element I. The potential energy,
VðRÞ, between two heavy sources in seven-dimensional
representation is plotted in Fig. 5. When the domain is
completely contained within theWilson loop area, Eq. (2.3)
for G(2) is

expðiα⃗ð0Þ · H⃗Þ ¼ I: (4.1)

At large distances where the vacuum domain is located
completely inside the Wilson loop, the string tension is
zero. This is because the total magnetic flux which is
carried by the domain is zero and it has no effect on the
loop. At intermediate distances, a linear regime is observed.
For this regime, the vacuum domain is partially located
inside the Wilson loop. Therefore a nonzero magnetic flux
of the vacuum domain is located inside the Wilson loop
which leads to a nonzero string tension. It seems that the
linear regime of G(2), from the onset of confinement to the
onset of color screening, has two different slopes. String

tension of the first one (in lower energy compared with the
second one) is proportional to the eigenvalue of the
quadratic Casimir operator of the corresponding represen-
tation. In other words, the first linear regime is qualitatively
in agreement with Casimir scaling. The result from our
previous paper is

K14

Kf
¼ 1.48

K27

Kf
¼ 1.65 (4.2)

while the Casimir ratios are

C14

Cf
¼ 2

C27

Cf
¼ 7

3
: (4.3)

The string ratios are qualitatively in rough agreement with
Casimir ratios.
To study the reasons of confinement in G(2) gauge

group, we apply the thick center vortex model to the
subgroups of G(2).

A. SU(3) subgroup of G(2)

First, we study the SU(3) subgroup of G(2). The
potential between two heavy sources is given by

VðRÞ ¼
X
x

ln f1 − f1ð1 − Regr½α⃗1CðxÞ�Þg; (4.4)

where f1 is the probability that any given unit is pierced by
a center vortex, gr has the same form as in Eq. (2.2), and we
use the flux profile:

αni ðxÞ ¼
αnðmaxÞ
i

2

�
1 − tanh

�
ayðxÞ þ b

R

��
; (4.5)

where n indicates the domain type and a, b are free
parameters of the model, and yðxÞ is

yðxÞ ¼
�−x jR − xj > x
x − R jR − xj ≤ x:

(4.6)

yðxÞ is the nearest distance of x from the timelike side
of the loop and αnðmaxÞ

i is the maximum value of the flux
profile. At large distances, where the vortex is completely
inside the Wilson loop, we normalize expðiα⃗n · H⃗Þ to the
center element of the SU(3) subgroup to study the role of
the SU(3) gauge group in observing G(2) confinement,

expðiα⃗max · H⃗fÞ ¼ expðαmax
1 Hf

3 þ αmax
2 Hf

8Þ

¼
 zI3×3 0 0

0 1 0

0 0 z�I3×3

!
; (4.7)

whereHf
a (a ¼ 3, 8) are the Cartan generators in the seven-

dimensional representation. We use the Cartan generators

FIG. 5 (color online). It seems that there are two linear regimes
for G(2) gauge group. The first one agrees qualitatively with the
Casimir scaling [20].
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of the SU(3) subgroup in the fundamental representation
from Eq. (3.11). The maximum values of flux profiles αmax

1

and αmax
2 for the fundamental representation are obtained:

2π
3
¼ αmax

1 ffiffi
8

p þ αmax
2ffiffiffiffi
24

p
2π
3
¼ −αmax

1ffiffi
8

p þ αmax
2ffiffiffiffi
24

p

)
⇒ αmax

1 ¼ 0; αmax
2 ¼ 2π

ffiffiffiffiffi
24

p

3
:

(4.8)

Now, we are ready to calculate the potential from
Eq. (4.4) by using the flux profile of Eq. (4.5). Figure 6
plots the potentials for the fundamental representation in
the SU(3) subgroup and G(2). The free parameters a, b, and
f1 are chosen to be 0.05, 4, and 0.1, respectively. f1 is
chosen to be equal to f0, the probability that any given unit
area is pierced by a vacuum domain in G(2) gauge group.
As Fig. 6 shows, the slope of the second linear regime of
the fundamental representation in the G(2) gauge group is
roughly equal to the slope of the potential between static
sources in its SU(3) subgroup in 25 < R < 33. In percent
for this interval, the difference between the slopes is not
more than 7%.

B. SU(2) subgroup of G(2)

Next, we apply the model to the SU(2) subgroup of G(2).
We use the SU(2) subgroup with the generatorsH8,H9, and
H10 which are among the second three SU(2) subgroups in
the list of the six SU(2) subgroups in Eq. (3.8) that cover
the entire G(2) group. The Cartan generator H8 is given in

Eq. (3.16). The potential between two static sources is
obtained from Eq. (4.4). This time, to investigate the role of
SU(2) in the confinement of G(2) quarks, we normalize
expðiα⃗n · H⃗Þ to the center elements of the SU(2) subgroup,

expðiα⃗max · H⃗fÞ ¼ expðαmaxHf
8Þ

¼
 zI2×2 0 0

0 zI2×2 0

0 0 I3×3

!
: (4.9)

Thus, the maximum value of the flux profile αmax for the
fundamental representation is obtained:

αmax ¼ 2π
ffiffiffi
6

p
: (4.10)

To compare the role of the SU(2) gauge group in confining
quarks in the G(2) gauge group, we plot the potential
between two G(2) fundamental heavy quarks and two
heavy quarks in its SU(2) subgroup in Fig. 7. As Fig. 7
shows, the slope of the second linear regime of the
fundamental representation in the G(2) gauge group is
roughly equal to the slope of the potential between static
sources in its SU(2) subgroup in 17 < R < 23. In this
interval, the difference between the slopes is not more
than 3%.

C. Adjoint representation

To study the role of G(2) subgroups in observing the
linear potential, we obtain the potentials for the static
sources in the adjoint representation for G(2) and its

FIG. 6 (color online). For 25 < R < 33, the slopes of the seven-
dimensional representation potentials in G(2) and its SU(3)
subgroups are roughly equal, in other words, the linear parts
of the potentials are parallel in this regime.

FIG. 7 (color online). For 17 < R < 23, the slopes of the seven-
dimensional representation potentials in G(2) and SU(2) sub-
group are roughly equal.
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subgroups. From Eqs. (3.13) and (3.17), one sees that the
adjoint G(2) contains SU(2) and SU(3) nontrivial N-alities,
hence their potentials must be nontrivial. We use Eq. (4.4)
and the flux profile of Ref. [22]. For the adjoint repre-
sentation of the G(2) gauge group, when the domain is
completely contained within the Wilson loop,

expðiα⃗ð0Þ ·→ HadjÞ ¼ I: (4.11)

Therefore, the maximum values of the flux profiles αmax
1

and αmax
2 for the adjoint representation are zero and 4π

ffiffiffiffiffi
24

p
.

Using Eqs. (3.13) and (3.17) in Eq. (2.3), the maximum
values of the flux profiles for the SU(2) and SU(3)

subgroups are 2π
ffiffiffiffiffi
24

p
and 4π

ffiffiffiffi
24

p
3

, respectively. Figure 8
plots the potentials between two color sources in the adjoint
representation of the G(2) gauge group and its subgroups.
Like the fundamental representation, there is a regime
where the potentials have roughly the same slope.
Considering the results of subsections A, B, and C, one

can argue that the SU(2) and SU(3) subgroups have
dominant roles in the second linear regime. The nonzero
flux profile of αðxÞ in the G(2), SU(3) and SU(2)
corresponds to H8.
The results are in agreement with lattice results.

Greensite et al. [8] have studied different projected loops
in lattice gauge theory. The slopes calculated from the
Wilson loops of the SU(2)-only and SU(3)-only link
variables are close to the G(2) full Wilson loops. SU(3)
and SU(2) removed loops give slopes different from the full
G(2) Wilson loops.

On the other hand, Pepe et al. [13] have studied the G(2)
gauge-Higgs theory where G(2) has been spontaneously
broken to the SU(3) gauge theory by adding the Higgs field
in the seven-dimensional representation to the Lagrangian
density of G(2). As a result, the Higgs field gives a mass to
6 of the 14 gluons (the mass of six gluons is proportional to
the expectation value of the Higgs field) while remaining
gluons, associated with the SU(3) subgroup, remain mass-
less. Therefore gauge-Higgs theory can interpolate between
the pure SU(3) subgroup of G(2) and pure G(2).

V. MORE ON SU(2) AND SU(3) SUBGROUPS

In Sec. IV we have shown that the slope of the potentials
for the G(2) and its SU(2) and SU(3) subgroups are equal
for an interval at intermediate distances. In this section, we
study the vortex profile to confirm that the subgroups of
G(2) have some important roles in confining G(2) heavy
sources at intermediate distances. In general, for SUðNÞ
gauge theory, ReðgrÞ changes from 1 to the values which
correspond to the nontrivial center elements. This is true
even if we use only the vacuum domains. Using the domain
model, ReðgrÞ ¼ 1 when either the trivial center domain is
entirely contained within the Wilson loop or the domains
are far outside the Wilson loop. For the G(2) gauge group,
ReðgrÞ changes from 1 to some values which we are going
to explain in terms of the G(2) subgroups. First, we
calculate ReðgrÞ in SU(2) gauge theory, using only the
trivial center element. From Eq. (2.2) and the Cartan of the
SU(2) gauge group, ReðgrÞ in the fundamental representa-
tion of SU(2) is obtained:

Reðgj¼1=2Þ ¼ cos

�
α

2

�
¼ sinðαÞ

2 sinðα
2
Þ : (5.1)

The flux profile is the same as Eq. (4.5) where αmax ¼ 4π.
The free parameters a and b are chosen to be 0.05 and 4,
respectively. Figure 9 plots ReðgrÞ versus x for R ¼ 100 in
the fundamental representation of SU(2). x shows the
location of the domain. The left and right legs of the
Wilson loop are located at zero and x ¼ R, respectively.
The size of each domain is proportional to the inverse of a.
With our chosen parameters, the size of the vacuum domain
is about 20. Since the domain locates completely inside the
Wilson loop, when the spatial length is equal to 100, then
ReðgrÞ is equal to 1 for the interval [20,80]. ReðgrÞ changes
between the two values: 1, when the vacuum domain is
located completely inside the loop, and −1. The value of
−1 corresponds to the value of the nontrivial center element
of SU(2) gauge group:

min½ReðgrÞ� ¼ ReðeiπÞ ¼ −1. (5.2)

eiπ comes from the nontrivial center element of the
SU(2) group.

FIG. 8 (color online). For 40 < R < 80, the slopes of the 14-
dimensional representation potentials for G(2), SU(2), and SU(3)
subgroups are roughly equal.
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G(2) does not have any nontrivial center element. The
upper limit of ReðgrÞ is 1 but the lower limits are not
known. We interpret the values of the lower limits in terms
of the SU(2) and SU(3) subgroups of the G(2) gauge group.
ReðgrÞ in the fundamental representation of G(2) can be
obtained from Eqs. (2.2) and (3.11) (left):

Reðg7Þ ¼
1

7

�
4 cos

�
α2
2
ffiffiffi
6

p
�
þ 2 cos

�
α2ffiffiffi
6

p
�
þ 1

�
; (5.3)

where the maximum flux profiles in the fundamental
representation, αmax

1 ¼ 0 and αmax
2 ¼ 2π

ffiffiffiffiffi
24

p
, are obtained

by using the Cartan generators of Eq. (3.11). Figure 10
plots ReðgrÞ versus x for R ¼ 100 for the fundamental
representation of G(2). The flux profile and its free
parameters are chosen as the same as the SU(2) gauge
group. As Fig. 10 shows, the maximum of ReðgrÞ is equal
to 1 which is expected when the vacuum domain is located
completely inside the loop. The interesting points are the
extremums at −0.28 and −0.14. We try to explain these
extremums by the SU(2) and SU(3) subgroups of G(2). If
the center vortices of the SU(2) or the SU(3) subgroup are
located completely inside the loop, then

expðiα⃗ · H⃗Þ ¼ Zs; (5.4)

where Zs represents the center elements of the subgroups of
G(2).
The minimum of the ReðgrÞ for the SU(2) subgroup of

the G(2) gauge group for the fundamental representation

when the center elements are located completely inside the
Wilson loop can be obtained from Eq. (3.17) (left) with
z ¼ eiπ:

min½RegrðαðxÞÞ�SUð2Þ ¼
1

7
ReðTrðeiα·HÞminÞ

¼ 1

7
ReTr

0
B@

eiπI2×2 0 0

0 eiπI2×2 0

0 0 I3×3

1
CA

¼ 1

7
ð−2− 2þ 3Þ ¼ −0.14: (5.5)

This value is equal with one of the extremums of ReðgrÞ of
the G(2) gauge group in Fig. 10. The second extremum,
−0.28, happens because of the SU(3) subgroup which has
been explained in our previous paper [20]. Using Eq. (3.13)
(left) with z ¼ e

i2π
3 , the minimum of ReðgrÞ of the SU(3)

subgroup of G(2) in the fundamental representation is
obtained

min½RegrðαðxÞÞ�SUð3Þ ¼
1

7
ReðTrðeiα·HÞminÞ

¼ 1

7
ReTr

0
B@e

i2π
3 I3×3 0 0

0 1 0

0 0 e−i2π
3 I3×3

1
CA

¼ 1

7
ð−1.5þ1−1.5Þ¼−0.28: (5.6)

FIG. 9. ReðgrÞ versus x is plotted for R ¼ 100 in the two-
dimensional representation (j ¼ 1=2) of the SU(2) gauge group.
min½Regr� ¼ −1 corresponds to the nontrivial center element
of SU(2).

FIG. 10. ReðgrÞ versus x is plotted for R ¼ 100 in the seven-
dimensional representation of the G(2) gauge group. ReðgrÞ has a
maximum value of 1 and two extremums −0.14 and −0.28.
When the vacuum domain locates completely inside the Wilson
loop, ReðgrÞ reaches to 1. The extremums are explained by the
SU(2) and the SU(3) subgroups of G(2).
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This value is equal to another extremum of ReðgrÞ of the
G(2) gauge group in Fig. 10. Therefore, the extremums
−0.14 and −0.28 in ReðgrÞ of the G(2) in the fundamental
representation correspond to the SU(2) and SU(3) sub-
groups. However, the absolute minimum of ReðgrÞ of G(2)
corresponds to the SU(3) subgroup.
Next, we study the behavior of ReðgrÞ for the adjoint

representation. ReðgrÞ in the adjoint representation of G(2)
can be obtained from Eqs. (2.2) and (3.11) (right):

Reðg14Þ ¼
1

14

�
4 cos

�
α2

2
ffiffiffiffiffi
24

p
�
þ 2 cos

�
α2ffiffiffiffiffi
24

p
�

þ 4 cos

�
3α2
2
ffiffiffiffiffi
24

p
�
þ 4

�
; (5.7)

where the maximum flux profiles in the adjoint represen-
tation, αmax

1 ¼ 0 and αmax
2 ¼ 4π

ffiffiffiffiffi
24

p
, are obtained by using

the Cartan generators of Eq. (3.11) (right). Figure 11 plots
ReðgrÞ versus x for R ¼ 100 for the adjoint representation
of G(2). ReðgrÞ of the SU(2) and SU(3) subgroups for the
adjoint representation using Eqs. (3.13) and (3.17) are

min ½RegrðαðxÞÞ�SUð2Þ
¼ 1

14
ReðTrðeiα·HÞminÞ

¼ 1

14
ReTr

0
BBBBBBBB@

I3×3 0 0 0 0 0

0 eiπI4×4 0 0 0 0

0 0 eiπI4×4 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1
CCCCCCCCA

¼ 1

14
ð3 − 4 − 4þ 1þ 1þ 1Þ

¼ −0.14 (5.8)

and

min ½RegrðαðxÞÞ�SUð3Þ
¼ 1

14
ReðTrðeiα·HÞminÞ

¼ 1

14
ReTr

0
B@

e
i2π
3 I3×3 0 0

0 e−i2π
3 I3×3 0

0 0 I8×8

1
CA

¼ 1

14
ð−1.5 − 1.5þ 8Þ ¼ 0.36: (5.9)

The values obtained from Eqs. (5.8) and (5.9) are equal
with the the extremums of ReðgrÞ of the G(2) gauge group
in the adjoint representation. Therefore, the extremums
−0.14 and 0.36 in ReðgrÞ of the G(2) in the adjoint

FIG. 11. ReðgrÞ versus x is plotted for R ¼ 100 in the 14-
dimensional representation of the G(2) gauge group. The ex-
tremums 0.36 and −0.14 can be interpreted by the SU(3) and SU
(2) subgroups of the G(2) gauge group. The minimum of ReðgrÞ
in the G(2) adjoint representation corresponds to the nontrivial
center element of the SU(2) subgroup but the minimum of ReðgrÞ
in the G(2) fundamental representation corresponds to the non-
trivial center element of the SU(3) subgroup.

FIG. 12 (color online). The figure schematically shows the effect
of the vacuum domain on the Wilson loop at the intermediate and
large distances. At large distances where the vacuum domain is
located completely inside the Wilson loop, it has no effect on the
loop (left plot). Therefore the potential is screened. On the other
hand, at intermediate distances where some part of the domain
locates inside the loop, one gets a linear potential, probably
because of the dominant role of the SU(2) and SU(3) subgroups
of the G(2) gauge group (right plot).
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representation correspond to the SU(2) and SU(3) sub-
groups. The absolute minimum of ReðgrÞ corresponds to
the SU(2) subgroup, though.
To summarize, the extremums of ReðgrÞ of the G(2) are

related to the subgroups of G(2). The extremums of the
fundamental and adjoint representations are the minimums of
the SU(3) and SU(2) subgroups. With these numerical
evidences along with the fact that ReðgrÞ which comes from
the vortex profile, is a factor in Eq. (2.1) that calculates the
potential between static quarks (color sources), one can
conclude that the SU(2) and SU(3) subgroups may be
responsible for the confinement of color sources in G(2)
gauge group at intermediate distances. We recall that in the
previous section, we have shown that within a good approxi-
mation the potentials of the SU(2) and SU(3) subgroups are
parallel with the G(2) potential at intermediate distances.
In the last two sections, we have discussed the possible

reasons of the observed linear regime of the G(2) gauge
group. Figure 12 schematically plots the possible behavior
of the vacuum domain at large and intermediate distances.

VI. CONCLUSION

According to the center vortex model, the nontrivial
center elements are responsible for the confinement. But
numerical lattice calculations show a linear regime for G(2)
gauge theory which does not have any nontrivial center
element. On the other hand, we have observed a linear
regime for G(2) gauge theory using a domain model, which
modifies the thick center vortex model by adding a
contribution for the trivial center element in addition to
the nontrivial center elements. In this article, we investigate
the possible reasons for the confinement in the G(2) gauge
group. In the confinement regime of G(2), we observe two
linear regimes where the first one agrees qualitatively with
the Casimir scaling.
To interpret the second linear regime, the potentials of

SU(2) and SU(3) subgroups are compared with the G(2)
potential in the confinement regime. The second linear
regime of the G(2) gauge theory is roughly parallel with the
linear regimes of SU(2) and SU(3) subgroups. Then, we
study ReðgrÞ, related to the vortex profile, for G(2) and its
subgroups. In the SUðNÞ gauge group, ReðgrÞ changes
between 1 and some values corresponding to the nontrivial
center elements. But in the G(2) gauge group, ReðgrÞ
changes between 1 and some values which are explained in
terms of the G(2) subgroup center elements. We have
learned that these values are equal with the min½Regr� of the
SU(2) and SU(3) subgroups. We have argued that SU(2)
and SU(3) subgroups of G(2) have important roles in
observing confinement in G(2) gauge group.
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APPENDIX: DECOMPOSITION OF G(2)
REPRESENTATIONS TO ITS SU(2)
AND THE WEIGHT DIAGRAMS

In this Appendix, we obtain the decomposition of 7 and
14 representations of the G(2) gauge group into their SU(2)
subgroups with the help of the generators H8, H9, and H10

group of Eq. (3.8). H8 is obtained from Eq. (3.11):

H8 ¼
1

2
ffiffiffi
6

p ð 1 1 −2 −1 −1 2 0 Þ

¼ 1ffiffiffi
6

p ð 1
2

1
2

−1 − 1
2

− 1
2

1 0 Þ; (A1)

where only the elements of the diagonal are reported.
Diagonal elements of the Cartan generators of SU(2) of
representations j ¼ 1=2; 1; 3=2;… are

σ
ðj¼1

2
Þ

3 ¼ ð 1
2

− 1
2
Þ; σðj¼1Þ

3 ¼ ð 1 0 −1 Þ;
σ
ðj¼3

2
Þ

3 ¼ ð 3
2

1
2

− 1
2

− 3
2
Þ;…:

(A2)

Comparing these Cartans with the Cartan generator H8,
one observes thatH8 is constructed from two σ

ðj¼1
2
Þ

3 and one
σðj¼1Þ
3 . Therefore, it is confirmed that the fundamental

representation of G(2) can be decomposed to its SU(2)
subgroups as the following:

f7g ¼ 2f2g ⊕ f3g: (A3)

For the adjoint representation, H8 is obtained from
Eq. (3.11):

FIG. 13 (color online). The weight diagrams of some SU(2)
representations are constructed. The circles around a point signify
the degeneracy of the states. The weight diagrams of all of the
SU(2) representations are one-dimensional because the dimen-
sion of the SU(2) fundamental representation is 1. We illustrate
the graphical construction of 2 ⊗ 2, for example. First we place a
2 (↔) at the origin. Then, we put two 2’s (↔) on the tips at the
original 2 such that the center of the 2’s sits on the tips of the
original 2. The top plot shows the resulted representations:
f3g ⊕ f1g. Similar methods can be used for other representations.
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H8 ¼
1ffiffiffi
8

p ð 1

2
ffiffi
3

p 1

2
ffiffi
3

p − 1ffiffi
3

p − 1

2
ffiffi
3

p − 1

2
ffiffi
3

p 1ffiffi
3

p 0 0 3

2
ffiffi
3

p 0 0 3

2
ffiffi
3

p − 3

2
ffiffi
3

p − 3

2
ffiffi
3

p Þ

¼ 1ffiffiffiffiffi
24

p ð 1
2

1
2

−1 − 1
2

− 1
2

1 0 0 3
2

0 0 3
2

− 3
2

− 3
2
Þ: (A4)

Comparing Eq. (A4) with the generator of SU(2) of
representations j ¼ 1; 1=2; 3=2;…, it is clear that H8 is

constructed from two σ
ðj¼3

2
Þ

3 , one σðj¼1Þ
3 , and three 0.

Therefore decomposition of the G(2) adjoint representation
into its SU(2) subgroup is given by

f14g ¼ 3f1g ⊕ f3g ⊕ 2f4g: (A5)

To obtain the weight diagram of 7 and 14 representations of

the SU(2) subgroup of G(2), we construct weight diagrams

of many SU(2) representations shown in Fig. 13. The

weight diagrams of the fundamental and the adjoint

representations of the SU(2) subgroup of G(2) are also

shown in Fig. 14.
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