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We study possibilities to define a static quark-antiquark pair in a color-adjoint orientation based on
Wilson loops with generator insertions, using both lattice QCD and leading-order perturbation theory in
various gauges. Nonperturbatively, the only way to obtain nonzero results while maintaining positivity of
the Hamiltonian is by using either temporal gauge or Coulomb gauge with some additional constraint on
the temporal links removing the residual gauge symmetry. In this case the correlator is equivalent to a gauge
invariant correlation function of a static quark-antiquark pair and a static adjoint quark; the resulting three-
point potential is attractive. Saturating open color indices with color magnetic fields instead also leads to a
gauge invariant correlator. However, this object is found to couple to the singlet sector only and results in a
hybrid potential. None of the considered lattice observables reproduces the repulsive adjoint potential
predicted by perturbation theory in Lorenz or Coulomb gauges.
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I. INTRODUCTION

Heavy quarkonium systems are most conveniently
treated by means of effective theory methods like non-
relativistic QCD (NRQCD) [1,2] or potential nonrelativistic
QCD (pNRQCD) [3,4]. In such frameworks the heavy
quark mass gets integrated out, which to leading order
results in a static quark propagator, i.e. a temporal Wilson
line. The correlation function of a quark-antiquark pair at
separation r then factorizes into a free propagator and the
Wilson loop, whose exponential falloff at large correlation
time defines the static quark-antiquark potential.
Ever since the early treatments [5–7] there has been

interest in the color-adjoint (or octet for N ¼ 3) channel,
where the quark-antiquark pair is in the adjoint of its
product representation of SUðNÞ, N ⊗ N̄ ¼ 1⊕ðN2 − 1Þ,
and hence the corresponding mesonic states carry color
charge. While these are clearly ruled out as asymptotic
states of the particle spectrum, they naturally appear as
intermediate states in the framework of NRQCD, pNRQCD
or in the presence of a medium like the quark gluon plasma
[8,9]. A perturbative definition after gauge fixing to Lorenz
or Coulomb gauge appears to be straightforward and to
leading order one finds [5]

ðN2 − 1ÞVTaðrÞ ¼ −V1ðrÞ þOðg4Þ (1)

(V1 denotes the singlet,VTa
the color-adjoint static potential),

where higher-order corrections are also known (cf. e.g.
[4,10–12]). However, the question of a nonperturbative
generalization is still open. Attempts to decompose
Polyakov loop correlators defined at finite temperature
into singlet and adjoint channels [6,7] were shown to fail

nonperturbatively, since the exponential decay of both
channels is governed by the color-singlet potential and
the difference between them due to gauge-dependent
matrix elements [13,14].
In this paper we discuss the static quark-antiquark

potential in the color-adjoint channel at zero temperature
based on the Wilson loop with generator insertions, as
defined in Sec. II. This correlator is gauge dependent,
and its nonperturbative evaluation requires gauge fixing.
Lorenz gauges, which are commonly used in perturbation
theory, are known to violate positivity and hence preclude
the definition of a transfer matrix as well as a purely
exponential decay of the correlator. Therefore, we mainly
work with a temporal gauge which preserves those
properties. We study the resulting correlation functions
by spectral analysis in terms of the transfer matrix
(Sec. III) and compute some of them numerically for
SUð2Þ (Sec. V). We also discuss the use of Coulomb
gauge, which allows for a well-defined transfer matrix
too [15]. However, nonperturbatively it requires a com-
pletion which can be implemented by a reduced form of
temporal gauge. On the other hand, saturating the open
adjoint indices with color-magnetic fields, as suggested in
the literature [4], produces a gauge invariant observable
but spectral analysis shows it to project on the color-
singlet channel only. In Sec. IV we compare with
leading-order perturbative calculations in the continuum
using various gauges.
Our main results are
(1) In temporal gauge, the Wilson loop with generator

insertions is equivalent to a gauge invariant quantity,
where the generators are connected by an adjoint
Schwinger line.
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(2) Nonperturbatively, both in temporal as well as in
“completed Coulomb gauge,” the color-adjoint static
potential corresponds to a system of three static
quarks, two fundamental and one adjoint quark,
which form a color-singlet state; this is in contrast to
perturbatively calculated color-adjoint static poten-
tials in Lorenz or Coulomb gauge, where no adjoint
quark is present.

(3) The nonperturbative color-adjoint static potential is
attractive (with even stronger binding than in the
usual singlet channel), while the perturbative color-
adjoint static potential in Lorenz or Coulomb gauge
is repulsive [cf. Eq. (1)].

(4) The repulsive color-adjoint potential obtained in per-
turbation theory cannot be reproduced by any lattice
observable considered here, not even at short distance.

Parts of this work have been presented at a
conference [16].

II. STATIC POTENTIALS BASED
ON WILSON LOOPS

The definition and calculation of the potentials between a
static quark and antiquark at distance jx − yj, each in the
fundamental representation, is usually based on the trial
states

jΦΣðx;x0; yÞi≡ Q̄ðxÞUΣðx; yÞQðyÞj0i: (2)

Here Q and Q̄ are static quark and antiquark operators that
are treated as spinless (one component) color charges, since
the spin decouples from the Hamiltonian in the static limit,

UΣðx; yÞ≡Uðx;x0ÞΣUðx0; yÞ; (3)

Σ is an N × N matrix in the fundamental color representa-
tion andUðx; yÞ is a gluonic string represented by a straight
spatial Wilson line connecting x and y. Hence,
jΦΣðx;x0; yÞi is a static meson with color transformation
properties determined by Σ. For Σ ¼ 1 it is a color singlet,
whereas for Σ ¼ Ta, the generators of the SUðNÞ gauge
group, it carries color charge and transforms in the adjoint
representation of SUðNÞ at x0.
If there exists a positive Hamiltonian, the correlation

functions of these states in Euclidean time decay exponentially
with eigenvalues of the Hamiltonian. In the static limit, i.e. for
heavy quarks of mass M → ∞, the correlators factorize in
products of free static propagators and Wilson loops,

hΦΣðt2;x;x0; yÞjΦΣðt1;x;x0; yÞi ¼ e−2MΔtNhWΣðr;ΔtÞi;

WΣðr;ΔtÞ≡ 1

N
TrðΣURΣ†ULÞ (4)

with r≡ jx − yj and Δt≡ t2 − t1 > 0 (cf. Fig. 1). The
exponential decay of the Wilson loop defines the
corresponding static potentials,

hWΣðr;ΔtÞi ¼
X∞
n¼0

cn expð−VΣ
nðrÞΔtÞ

¼ c0 expð−VΣ
0 ðrÞΔtÞ

× ð1þOðexpð−ðVΣ
1 ðrÞ − VΣ

0 ðrÞÞΔtÞÞÞ
∝Δt→∞

expð−VΣðrÞΔtÞ: (5)

From the behavior at asymptotically large time separation
the ground state potentials VΣðrÞ≡ VΣ

0 ðrÞ, Σ ∈ f1; Tag
can be extracted. This is often used to define the ground
state potentials directly through the corresponding Wilson
loops,

VΣðrÞ¼− lim
Δt→∞

d
dΔt

lnðhWΣðr;ΔtÞiÞ¼− lim
Δt→∞

hW: Σðr;ΔtÞi
hWΣðr;ΔtÞi

:

(6)

The properties and interpretation of the potentials
depend on Σ and, in case of Σ ¼ Ta, on the choice of
the gauge fixing condition. Without gauge fixing, a non-
perturbative evaluation of the correlator gives

hWTaðr;ΔtÞi ¼ 0 ðno sumover aÞ: (7)

For N ¼ 2, 3 the corresponding static potential is usually
called triplet/octet static potential and Ta ¼ σa=2, λa=2.
It has been proposed to alternatively base the definition

of the color-adjoint static potential on a gauge invariant
correlator using e.g. Σ ¼ TaBaðx0Þ, where the adjoint
transformation behavior of the color-magnetic field cancels
that of the strings at x0. This yields a nonvanishing
correlation function even without gauge fixing, from
which one can extract so-called hybrid potentials (cf. e.g.
[17–19]), which to leading and higher orders in a multipole
expansion in small jx − yj receive contributions from the

FIG. 1. The Wilson loop WΣ.
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adjoint channel [4]. However, we shall show in Sec. IIIA4
that nonperturbatively the eigenstates contributing to the
exponential decay are in the color-singlet sector (as are
hybrid potentials in general) and hence this correlator
cannot be used for a nonperturbative definition of a
color-adjoint static potential.

III. THE STATIC POTENTIALS ON THE LATTICE

A. Temporal gauge on the lattice

The implementation of temporal gauge in Yang-Mills
theory has been worked out a long time ago. The formu-
lation in the continuum based on the Feynman propagation
kernel is given in [20,21]. We follow the lattice formulation
based on the transfer matrix [22], which is by now textbook
standard [23,24].
Temporal gauge Ag

0 ¼ 0 in the continuum corresponds to
temporal links Ug

0ðt;xÞ ¼ 1 on a lattice. These links gauge
transform according to

Ug
0ðt;xÞ ¼ gðt;xÞU0ðt;xÞg†ðtþ a;xÞ; (8)

where gðt;xÞ ∈ SUðNÞ. On a lattice with finite temporal
extent T with periodic boundary conditions, it is not
possible to realize temporal gauge everywhere, since
gauge-fixed links must not form closed loops. There will,
hence, be one slice of links where U0 ≠ 1. Moreover,
integration over these unfixed links represents the
projection on the charge sectors in Eqs. (32)–(35)
below and serves to implement Gauss’s law in the path
integral formulation [25]. In the following we take
Ug

0ðt ¼ 0;xÞ ≠ 1 while Ug
0ðt ¼ a:::::T − a;xÞ ¼ 1. A pos-

sible choice for the gauge transformation gðt;xÞ imple-
menting temporal gauge is

gðt ¼ 2a;xÞ ¼ U0ðt ¼ a;xÞ;
gðt ¼ 3a;xÞ ¼ gðt ¼ 2a;xÞU0ðt ¼ 2a;xÞ

¼ U0ðt ¼ a;xÞU0ðt ¼ 2a;xÞ;
gðt ¼ 4a;xÞ ¼ gðt ¼ 3a;xÞU0ðt ¼ 3a;xÞ

¼ U0ðt ¼ a;xÞU0ðt ¼ 2a;xÞU0ðt ¼ 3a;xÞ;
… ¼ …: (9)

Note that this does not fix the gauge completely, i.e.
there are residual time-independent gauge transfor-
mations gðxÞ that preserve the gauge condition
Ug

0ðt ¼ a:::::T − a;xÞ ¼ 1.

1. The singlet correlator

The trial state jΦ1ðx;x0; yÞi is gauge invariant and so is
the corresponding observable, the standard Wilson loop
W1ðr;ΔtÞ. Therefore, its value is identical with or without
gauge fixing. For the following, however, it is instructive to
consider the gauge-dependent correlator of two spatial
strings,

hTrðUðt1;x; yÞUðt2; y;xÞÞi; (10)

which vanishes without gauge fixing. On the other hand, in
temporal gauge it is nonzero and indeed equivalent to the
manifestly gauge invariant Wilson loop, as can be seen by
writing out the gauge fixed link. In the following we
consider two cases.
In case (A) the strings are correlated within the temporal

lattice extent, i.e. a ≤ t1 < t2 < T, and we define Δt≡
t2 − t1 (cf. Fig. 2, left top),

hTrðUgðt1;x; yÞUgðt2; y;xÞÞitemporal gauge ¼ hTrðUðt1;x; yÞg†ðt1; yÞgðt2; yÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼Uðt1;t2;yÞ

× Uðt2; y;xÞg†ðt2;xÞgðt1;xÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼Uðt2;t1;xÞ

Þi ¼ NhW1ðr;ΔtÞi: (11)

In case (B) the correlation is through the periodic temporal boundary, 0 ¼ t1 < t2 < T (where we define Δt≡ t2 − t1) or
a ≤ t2 < t1 < T [where we define Δt≡ t2 − ðt1 − TÞ], cf. Fig. 2 (left bottom). The correlator now includes the unfixed
temporal links and in temporal gauge is again equivalent to the gauge invariant Wilson loop, which in this case closes
through the boundary,

hTrðUgðt1;x; yÞUg
0ðt ¼ 0; yÞUgðt2; y;xÞðUg

0Þ†ðt ¼ 0;xÞÞitemporal gauge ¼ NhW1ðr;ΔtÞi: (12)

Thus, temporal gauge turns a gauge-dependent observable into a gauge invariant observable by implicitly saturating all
color charges with static sources, thus ensuring gauge covariant time evolution of the charges. The same observation will in
the following be helpful to interpret the color-adjoint static potential.
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2. The adjoint correlator

Again we distinguish the cases (A) and (B), which this time yield different results.
Case (A): a ≤ t1 < t2 < T
In temporal gauge the correlator of two spatial strings with additional adjoint transformation behavior at x0 is equivalent

to our observable of interest, the Wilson loop hWTaðr;ΔtÞi. Moreover, in temporal gauge both are equivalent to a manifestly
gauge invariant observable, as we now show, using the identity

X
a

Ta
αβT

a
γδ ¼

1

2

�
δαδδβγ − 1

N
δαβδγδ

�
: (13)

In the following set of equations, the repeated color index a is not summed over,

hTrðUTa;gðt1;x; yÞUðTaÞ†;gðt2; y;xÞÞitemporal gauge

¼ NhWTaðr;ΔtÞitemporal gauge

¼ 1

N2 − 1

X
a

hTrðUðt1;x;x0Þg†ðt1;x0ÞTagðt1;x0ÞUðt1;x0; yÞg†ðt1; yÞgðt2; yÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼Uðt1;t2;yÞ

×Uðt2; y;x0Þg†ðt2;x0ÞðTaÞ†|fflffl{zfflffl}
¼Ta

gðt2;x0ÞUðt2;x0;xÞg†ðt2;xÞgðt1;xÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼Uðt2;t1;xÞ

Þi

¼ 1

2ðN2 − 1Þ hTrðUðt1;x;x0Þg†ðt1;x0Þgðt2;x0Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Uðt1;t2;x0Þ

Uðt2;x0;xÞUðt2; t1;xÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡NWLðjx−x0j;ΔtÞ

× TrðUðt1;x0; yÞUðt1; t2; yÞUðt2; y;x0Þg†ðt2;x0Þgðt1;x0Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Uðt2;t1;x0Þ

Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡NWRðjy−x0j;ΔtÞ

i

−
1

2NðN2 − 1Þ hTrðUðt1;x;x0Þg†ðt1;x0Þgðt1;x0Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

Uðt1;x0; yÞUðt1; t2; yÞ

×Uðt2; y;x0Þg†ðt2;x0Þgðt2;x0Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

Uðt2;x0;xÞUðt2; t1;xÞÞi

¼ 1

2ðN2 − 1Þ ðN
2hWLðjx − x0j;ΔtÞWRðjy − x0j;ΔtÞi − hW1ðr;ΔtÞiÞ: (14)

The resulting gauge invariant combination of loops (WL and WR denote the left and the right Wilson loop of half size,
respectively) is depicted in Fig. 2 [adjoint case (A)]. For an interpretation, it is better to rewrite it more compactly by using
the identity (13) twice

hWTaðr;ΔtÞitemporal gauge ¼
2

NðN2 − 1Þ
X
a

X
b

hTrðTaURTbULÞTrðTaUðt1; t2;x0ÞTbUðt2; t1;x0ÞÞi (15)

with the left and right half of the loop

UL ≡Uðt2;x0;xÞUðt2; t1;xÞUðt1;x;x0Þ (16)

UR ≡Uðt1;x0; yÞUðt1; t2; yÞUðt2; y;x0Þ: (17)

On the right side the first trace is our observable of interest, the Wilson loop with generator matrix insertions, which now
gets multiplied with the adjoint representation of a temporal Wilson line at x0 (second trace). The latter corresponds to a
propagator of a static quark in the adjoint representation. Hence, the gauge invariant expression on the right side is the
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correlation function of a gauge invariant three-quark state,
one fundamental static quark at y, one fundamental static
antiquark at x, one adjoint static quark at x0. Indeed, after
defining

jΦQQ̄Qadðx;x0; yÞi≡Qad;aðx0ÞðQ̄ðxÞUTaðx; yÞQðyÞÞj0i
(18)

hΦQQ̄Qadðt2;x;x0; yÞjΦQQ̄Qadðt1;x;x0; yÞi

≡ e−ð2MþMadÞΔt NðN2 − 1Þ
2

hWQQ̄Qadðr;ΔtÞi; (19)

where UTaðx; yÞ has been defined in (3) and Mad denotes
the mass of the adjoint static quark, it is easy to verify
explicitly that

2NhWTaðr;ΔtÞitemporal gauge ¼ hWQQ̄Qadðr;ΔtÞi: (20)

Consequently, the static potential VTaðrÞ in temporal gauge
should not be interpreted as the potential of a static quark
and a static antiquark, which form a color-adjoint state.
VTaðrÞ is rather a potential of a color-singlet three-quark
state (one fundamental static quark, one fundamental static
antiquark, one adjoint static quark). Note that the potential
does not only depend on the QQ̄ separation r ¼ jx − yj,
but also on the position x0 of the static adjoint quarkQad. If
x, y and x0 are on a straight line, the position of the static
adjoint quark can be represented by a single parameter
s≡ jx − x0j=2 − jy − x0j=2, which is the separation of
Qad from the centre of mass ðxþ yÞ=2 of the two
fundamental quarks, i.e. VTaðr; sÞ. This should be kept
in mind, while in the following we work with the
symmetric alignment s ¼ 0.
Case (B): 0 ¼ t1 < t2 < T or a ≤ t2 < t1 < T
Proceeding as in Sec. IIIA1 for case (B) and in (14) one

obtains

hTrðUTa;gðt1;x; yÞUg
0ðt ¼ 0; yÞ ~UðTaÞ†;gðt2; y;xÞðUg

0Þ†ðt ¼ 0;xÞÞitemporal gauge

¼ 1

2ðN2 − 1Þ ðN
2hPLðr=2þ s;ΔtÞPRðr=2 − s;ΔtÞi − hW1ðr;ΔtÞiÞ; (21)

which is shown and where PLðr=2þ s;ΔtÞ and
PRðr=2 − s;ΔtÞ are defined in Fig. 2 (right bottom).
This correlation function is not suitable, to determine the

potential of a static quark and antiquark, which form a

color-adjoint state. It contains information about static
color-singlet quark-antiquark states propagating through
the periodic boundary, and about gluelump states (a static
adjoint quark and gluons forming a color-singlet)

FIG. 2. Gauge invariant observables corresponding to the gauge variant correlators defined in Sec. IIIA1 and IIIA2 in temporal gauge.
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propagating within the temporal lattice extent. We will
explicitly prove this statement using the transfer matrix
formalism in Sec. IIIA5.

3. The transfer matrix formalism

A useful theoretical tool to understand which states
contribute to a correlation function is the transfer matrix
formalism (cf. e.g. [14,26]). The transfer matrix propagates
states by one lattice unit in time. In temporal gauge the
transfer matrix T̂0 is defined via

hUjðtþ aÞjT̂0jUjðtÞi≡ T0;tþa↔t;

T0;tþa↔t ≡ e−SðUjðtþaÞ;1;UjðtÞÞ; (22)

whereUjðtÞ denotes the spatial links of time slice t, jUjðtÞi
is the analogue of a position eigenstate in quantum
mechanics, i.e. a state with spatial links UjðtÞ, and

SðUjðtþ aÞ; U0ðtÞ; UjðtÞÞ

≡ 1

2
S1ðUjðtþ aÞÞ þ S2ðUjðtþ aÞ; U0ðtÞ; UjðtÞÞ

þ 1

2
S1ðUjðtÞÞ (23)

S1ðUjðtÞÞ≡− β

2

X
p∈Pt

ReðTrðUpÞÞ (24)

S2ðUjðtþ aÞ; U0ðtÞ; UjðtÞÞ≡− β

2

X
p∈Ptþa;t

ReðTrðUpÞÞ

(25)

(Pt are spacelike plaquettes on time slice t and Ptþa;t are
timelike plaquettes connecting time slices t and tþ a), i.e.
SðUjðtþ aÞ; U0ðtÞ; UjðtÞÞ is that part of the lattice Yang-
Mills action containing and connecting time slices t and
tþ a (cf. e.g. [23]).
The transfer matrix T̂0 acts on the Hilbert space of square

integrable wave functions, including ones transforming
nontrivially under the residual time-independent gauge
transformations gðxÞ. The Hilbert space splits into orthogo-
nal sectors with charges in arbitrary representations at any
lattice point. Each charge sector can be isolated by
appropriate projection operators. Let R̂½g� be an operator
to impose a gauge transformation with gauge function gðxÞ,

R̂½g�jψ ½U�i ¼ jψg½U�i ¼ jψ ½Ug�i: (26)

The transfer matrix in temporal gauge commutes with time-
independent gauge transformations, ½T̂0; R̂½g�� ¼ 0, which
implies gauge invariance of its eigenvalues. Another
consequence is that eigenstates of T̂0 can simultaneously
be chosen as eigenstates of R̂½g�, i.e. they can be classified
according to irreducible SUðNÞ color multiplets at each x.

For example, for the gauge group SUð2Þ these have the
same structure as spin/angular momentum multiplets,
which are well known from ordinary quantum mechanics.
Specifically, we list the transformation behavior of states

occurring in our analysis: (i) color singlets, (ii) states with a
fundamental charge at y and an antifundamental one at x,
(iii) states with an adjoint charge at x0 and finally (iv) states
with a fundamental charge at y, an antifundamental one at x
and an adjoint charge at x0,

ðiÞ R̂½g�jψi ¼ jψi (27)

ðiiÞ R̂½g�jψαβi ¼ gαγðxÞg†δβðyÞjψγδi (28)

ðiiiÞ R̂½g�jψai ¼ DA
abðgðx0ÞÞjψbi (29)

ðivÞ R̂½g�jψa
αβi ¼ gαγðxÞg†δβðyÞDA

abðgðx0ÞÞjψb
γδi; (30)

where DA
abðgÞ are the representation matrices of the adjoint

representation,

DA
abðgÞ ¼ 2Trðg†TagTbÞ: (31)

The projectors onto the corresponding orthogonal charge
sectors of the Hilbert space are

ðiÞ P̂ ¼
Z

DgR̂½g� (32)

ðiiÞ P̂F⊗F̄
αβμν ¼

Z
Dgg†αβðxÞgμνðyÞR̂½g� (33)

ðiiiÞ P̂A
ab ¼

Z
DgDA

abðg†ðx0ÞÞR̂½g� (34)

ðivÞ P̂F⊗F̄⊗A
αβμνab ¼

Z
Dgg†αβðxÞgμνðyÞDA

abðg†ðx0ÞÞR̂½g�: (35)

For example, (ii) maps the component jψβμi of a repre-
sentation F ⊗ F̄ to the component jψανi and annihilates all
other components and charge sectors.1 Direct calculation
shows

P̂F⊗F̄
αβμνjψγδi ¼

1

N2
δβγδμδjψανi; P̂F⊗F̄

αβμνjψβμi ¼ jψανi: (36)

Similarly, one verifies

1This is due to the fact that only group integrals over the trivial
representation are nonzero [27],

R
Dg ¼ 1,

R
Dggαβ ¼ 0,R

dggijg
†
kl ¼ ð1=NÞδilδjk;….
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P̂F⊗F̄⊗A
αβμνab jψc

γδi ¼
1

N2ðN2 − 1Þ δβγδμδδbcjψ
a
ανi;

P̂F⊗F̄⊗A
αβμνab jψb

βμi ¼ jψa
ανi: (37)

4. Spectral analysis of Wilson loops, case (A)

We are now ready to perform the spectral analysis of our
lattice observables in temporal gauge.We start by considering
those observables, where the correspondingWilson loops do
not include links U0ðt ¼ 0;xÞ ≠ 1 [cf. Fig. 2, singlet, case
(A) and adjoint, case (A)]. To this end we write out the
Euclidean path integral in terms of the transfer matrix,

NhWΣðr;ΔtÞi ¼
1

Z

Z
DUj

Z
DU0ð0ÞUΣ

αβðt1;x; yÞ

×UΣ†

βαðt2; y;xÞ
T0;0↔T−a…T0;3a↔2aT0;2a↔ae−SðUjðaÞ;U0ð0Þ;Ujð0ÞÞ; (38)

where
R
DUj denotes the integration over all spatial links andR

DU0ð0Þ the integration over all temporal links connecting
time slice t ¼ 0 and t ¼ a. The path integral can now be
rewritten according to

NhWΣðr;ΔtÞi ¼
1

Z

Z
DUj

Z
DgUΣ

αβðt1;x; yÞUΣ†

βαðt2; y;xÞ × T0;0↔T−a…T0;2a↔ae
−SðUjðaÞ;1;Ug†

j ð0ÞÞ

¼ 1

Z
TrðT̂T−t2

0 ÛΣ†

βαðy;xÞT̂t2−t1
0 ÛΣ

αβðx; yÞT̂t1
0 P̂Þ

¼ 1

Z

X
k;m;n

hnjT̂T−t2
0 ÛΣ†

βαðy;xÞjkihkjT̂t2−t1
0 ÛΣ

αβðx; yÞjmihmjT̂t1
0 P̂jni

¼ 1

Z

X
k;m;n

e−EnðT−t2Þe−Ekðt2−t1Þe−Emt1 × hnjðÛΣ
αβðx; yÞÞ†jkihkjÛΣ

αβðx; yÞjmihmjP̂jni: (39)

P̂jni ≠ 0 only, if jni is a gauge invariant state, i.e. if jni is a
color-singlet. Then hmjP̂jni ¼ δmn and

NhWΣðr;ΔtÞi ¼
1

Z

X
k;n0

e−EkΔte−En0 ðT−ΔtÞ

×
X
α;β

jhkjÛΣ
αβðx; yÞjn0ij2; (40)

where
P

n0 is over gauge invariant states jn0i only. The nature
of the states jki is determined by the choice of Σ.
For Σ ¼ 1 the state ÛΣ

αβðx; yÞjn0i ¼ Ûαβðx; yÞjn0i trans-
forms under gauge transformations according to (28). Hence,

hkjÛαβðx; yÞjn0i ¼ hkjP̂F⊗F̄
αμνβÛμνðx; yÞjn0i (41)

such that only states hk0αβj with the same transformation
behavior contribute to the sum,while all others are annihilated,

NhW1ðr;ΔtÞi ¼
1

Z

X
k0;n0

e−V
1

k0 ðrÞΔte−En0 ðT−ΔtÞ

×
X
α;β

jhk0αβjÛαβðx; yÞjn0ij2 (42)

(En0 denotes eigenvalues of gauge invariant eigenstates of T̂0,
i.e. states without static quarks). Using the spectral decom-
position of the partition function,

Z ¼
X
k0
e−Ek0T; (43)

and considering infinite temporal lattice extent reduces
P

n0 to
the vacuum,

NhW1ðr;ΔtÞi

¼
P

k0;n0e
−V1

k0 ðrÞΔte−En0 ðT−ΔtÞP
α;βjhk0αβjÛαβðx; yÞjn0ij2P

k0e
−Ek0T

¼T→∞X
k0

e−ðV
1

k0 ðrÞ−E0ÞΔt
X
α;β

jhk0αβjÛαβðx; yÞj0ij2: (44)

This is of course the well-known result for the color-singlet
static potential.Note that there is a sumoverα andβ in (42) and
(44), which is a sum over theN2 possible color orientations of
thestaticquarkand the staticantiquark.Both theeigenvaluesof
the transfer matrix V1

k0 ðrÞ and the corresponding matrix
elements jhk0αβjÛαβðx; yÞjn0ij2 (no sum over α and β) are
independent of α and β, i.e. each quark-antiquark color
orientation yields the same contribution to the correlation
function. In other words in temporal gauge the color orienta-
tions of the static quark and the static antiquark are irrelevant,
i.e.anycolororientationwill result in thesingletstaticpotential.
The result for the color-adjoint case, i.e. Σ ¼ Ta, follows

in complete analogy. In this case the state ÛΣ
αβðx; yÞjn0i ¼

ÛTa

αβðx; yÞjn0i transforms as in (30) and we have

hkjÛTa

αβðx; yÞjn0i ¼ hkjP̂F⊗F̄⊗A
αμνβab Û

b
μνðx; yÞjn0i (45)

such that only states hk0aαβj with the same transformation
behavior contribute to the sum. The final result is
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NhWTaðr;ΔtÞi
¼T→∞X

k0
e−ðV

Ta

k0 ðrÞ−E0ÞΔt
X
α;β

jhk0aαβjÛa
αβðx; yÞj0ij2: (46)

This correlation function is suited to extract a three-
quark potential of a fundamental static quark, a funda-
mental static antiquark and an adjoint static quark. It is
not a quark- antiquark potential with the quark and the
antiquark in a color-adjoint orientation, i.e. it should not
be interpreted as a color-adjoint static potential. As for
Σ ¼ 1 the potential is independent of the color orienta-
tions of the three quarks. Cf. also Sec. IIIA2, where the
same result has been obtained using different methods
and arguments.
Finally, in the case Σ ¼ TaBa the state ÛΣ

αβðx; yÞjn0i ¼
ÛTaBa

αβ ðx; yÞjn0i again transforms as in (28), i.e. has
fundamental charges at x and y. Hence,

hkjÛTaBa

αβ ðx; yÞjn0i ¼ hkjP̂F⊗F̄
αμνβÛ

TaBa

μν ðx; yÞjn0i (47)

and thus only states hk0αβj contribute. These are in the same
color charge sector as those in (42); however, in this case
their parity is negative (for a more detailed discussion
regarding quantum numbers [other than color] of states
with two static charges we refer to e.g. [28,29]). The final
result for this case then reads

hWBðr;ΔtÞi
→

T→∞X
k0

e−ðV
1;−
k0 ðrÞ−E0ÞΔtX

α;β

jhk0αβjÛTaBa

αβ ðx; yÞj0ij2: (48)

The exponential decay is with color-singlet potentials in the
negative parity channel, thus hWBðr;ΔtÞi is not suitable, to
define a color-adjoint static potential.

5. Spectral analysis of Wilson loops, case (B)

In this section we give the spectral decomposition for the
situation, where the correlators close through the temporal
boundary. The backwards Wilson loop, cf. Fig. 2 (left
bottom), can be rewritten according to

NhWb
1ðr;ΔtÞi ¼

1

Z

Z
DUj

Z
DU0ð0ÞU†

0;αβðt ¼ 0;xÞUβγðt1;x; yÞU0;γδðt ¼ 0; yÞUδαðt2; y;xÞ

× T0;0↔T−a…T0;3a↔2aT0;2a↔ae−SðUjðaÞ;U0ð0Þ;Ujð0ÞÞ

¼ 1

Z

Z
DUj

Z
Dgg†αβðxÞUβγðt1;x; yÞgγδðyÞUδαðt2; y;xÞT0;0↔T−a…T0;3a↔2aT0;2a↔ae

−SðUjðaÞ;1;Ug†

j ð0ÞÞ

¼ 1

Z

X
k;m;n

e−EnðT−t1Þe−Ekðt1−t2Þe−Emt2hnjÛβγðx; yÞjkihkjðÛ†
αδðx; yÞÞjmihmjP̂F⊗F̄

αβγδjni: (49)

Because of the projector,
P

m;n can be restricted to all eigenstates which transform as in (28) and hm0jn0i ¼ δm0n0 . The other
matrix elements then require Ûβγðx; yÞjki to transform in the same way, which implies jki to be in the singlet sector. We
finally obtain

NhWb
1ðr;ΔtÞi ¼

1

Z

X
k0;n0

e−V
1

n0Δte−Ek0 ðT−ΔtÞ
X
βγ

jhn0βγjÛβγðx; yÞjk0ij2: (50)

This result is identical to (42), i.e. as expected the position of the Wilson loop relative to the slice of links U0ðt ¼ 0;xÞ ≠ 1
does not matter.
Similarly one can study the backwards correlator of the adjoint string UTa

αβðx; yÞ, cf. Fig. 2 (right bottom). In this case

NhWb
Taðr;ΔtÞi ¼ 1

Z

Z
DUj

Z
DU0ð0ÞU†

0;αβðt ¼ 0;xÞUTa

βγ ðt1;x; yÞU0;γδðt ¼ 0; yÞUðTaÞ†
δα ðt2; y;xÞ

× T0;0↔T−a…T0;3a↔2aT0;2a↔ae−SðUjðaÞ;U0ð0Þ;Ujð0ÞÞ

¼ 1

Z

X
k;m;n

e−EnðT−t1Þe−Ekðt1−t2Þe−Emt2hnjÛTa

βγ ðx; yÞjkihkjðÛTa

αδðx; yÞÞ†jmihmjP̂F⊗F̄
αβγδjni

¼ 1

N2Z

X
k0;n0

e−V
1

n0 ðrÞΔte−E
Qadj

k0 T jhn0βγjÛTa

βγ ðx; yÞjk0aij2; (51)
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where we have again used that the projector restricts jmi
and jni to states transforming as in (28) and m0 ¼ n0. Now
ðÛTa

αδðx; yÞÞ†jm0
αδi transforms as in (29), i.e. the states jki

are required to transform as a single adjoint charge at x0

(the corresponding eigenvalues of the transfer matrix are
denoted by EQadj

k0 ).
In the limit T → ∞ this simplifies to

NhWb
Taðr;ΔtÞi ¼

X
k0;n0

e−ðV
1

n0 ðrÞ−EQ
adj

0
ÞΔte−ðEQ

adj

0
−E0ÞT

×
X
β;γ

jhn0βγjÛTa

βγ ðx; yÞjk0aij2: (52)

This correlation function is suited to extract the common
singlet potential V1ðrÞ ¼ V1

0ðrÞ and a gluelump mass EQadj

0 .
Cf. also Sec. IIIA2, where the same result has been
obtained using different methods and arguments.

B. Coulomb gauge on the lattice

Another gauge featuring a transfer matrix/Hamiltonian is
Coulomb gauge ∂jA

g
j ¼ 0. On the lattice it corresponds to

links Ug
jðt;xÞ, which minimize

X
t;x

X
j¼1;2;3

ReðTrð1 −Ug
jðt;xÞÞÞ (53)

(for more details cf. e.g. [15]).
The gauge invariant color-singlet Wilson loop remains

identically the same, which is why we do not discuss it
again. Similar to the analysis presented in Sec. IIIA2 one
can write the color-adjoint Wilson loop as

hWTaðr;ΔtÞiCoulomb gauge

¼ 1

N
hTrðTaURTaULÞiCoulomb gauge

¼ 1

N
hTrðTagðt1;x0ÞURg†ðt2;x0ÞTagðt2;x0ÞULg†ðt1;x0ÞÞi

¼ 1

N
hTrðTahresðt1ÞgCoulombðt1;x0Þ

×URgCoulomb;†ðt2;x0Þhres;†ðt2ÞTahresðt2ÞgCoulombðt2;x0Þ
×ULgCoulomb;†ðt1;x0Þhres;†ðt1ÞÞi: (54)

Since the Coulomb gauge condition does not fix the gauge
completely (a space-independent residual gauge symmetry
remains), we have split the gauge transformation according
to gðt;xÞ≡ hresðtÞgCoulombðt;xÞ, where gðt;xÞCoulomb ∈
SUðNÞ transforms the links to Coulomb gauge and
hresðtÞ ∈ SUðNÞ represents the residual gauge degrees of
freedom.
Without imposing any additional gauge condition res-

tricting hresðtÞ one obtains in a nonperturbative evaluation

hWTaðr;ΔtÞiCoulomb gauge ¼ 0: (55)

Because of the integration over hresðtÞ the color-adjoint
Wilson loop averages to zero (note that, as in the case
without gauge fixing, a parallel transport in time between
the two generators Ta is missing).
One can complete the gauge fixing by e.g. also requiring

Ug
0ðt; z0Þ ¼ 1, where z0 is an arbitrary point in space. This

condition imposes temporal gauge (cf. Sec. IIIA) to
temporal links at z0. hresðtÞ is then chosen as specified
by (9), replacing g by hres and x by z0. The Wilson loop
average is then nonvanishing. Similar to (15) it can be
written as

hWTaðr;ΔtÞiCoulomb gauge ¼
2

NðN2 − 1Þ
X
a

X
b

hTrðTagCoulombðt1;x0ÞURgCoulomb;†ðt2;x0ÞTbgCoulombðt2;x0Þ

×ULgCoulomb;†ðt1;x0ÞÞTrðTaUðt1; t2; z0ÞTbUðt2; t1; z0ÞÞi: (56)

The second trace, which arises due to hres, corresponds to a
propagator of a static quark in the adjoint representation at
z0. Consequently the color-adjoint static potential in this
“completed Coulomb gauge” should also be interpreted as
a potential of three static quarks, one fundamental static
quark at y, one fundamental static antiquark at x and one
adjoint static quark at z0. For the choice z0 ¼ x0 the
resulting potential agrees with that in temporal gauge (with
modified matrix elements). This is clearly not in line with
the perturbative result (78), where no adjoint static quark

exists. Moreover, note that the color-adjoint static potential
in completed Coulomb gauge depends on z0, which is now
part of the gauge condition. Thus, even within this class of
gauges the color-adjoint static potential is gauge dependent
and depends on the details of the gauge condition.

IV. LEADING-ORDER PERTURBATIVE
CALCULATIONS

While some of the following calculations are neither new
nor original, we review the leading-order perturbative
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results for the correlators discussed here in Lorenz as well
as in Coulomb gauge.

A. Lorenz gauge

The gluon propagator in Lorenz gauge ∂μAμ ¼ 0 is

Dab
μνðx; yÞ ¼

1

ð2πÞ4
Z

d4pe−ipðx−yÞ

× δab
1

p2

�
δμν − ð1 − ξÞpμpν

p2

�
: (57)

In the following we use ξ ¼ 1 (Feynman gauge),
i.e.

Dab
μνðx; yÞ ¼ δabδμν

1

ð2πÞ4
Z

d4pe−ipðx−yÞ 1

p2

¼ δabδμν
1

4π2ðx − yÞ2 : (58)

The perturbative expansion of the Wilson loop (4) with
Σ ¼ 1; Ta is [cf. Fig. 3(a) and (b)]

hWΣðr;ΔtÞi ¼
�
1

N
Tr

�
ΣP exp

�
ig
Z
C1

dzμAμðzÞ
�
Σ†P exp

�
ig
Z
C2

dzνAνðzÞ
���

¼ 1

N
TrðΣΣ†Þ − g2

N
TrðΣTaΣ†TbÞ

Z
C1

dxμ

Z
C2

dyνDab
μνðx; yÞ

−
g2

2N
TrðΣTaTbΣ†Þ

Z
C1

dxμ

Z
C1

dyνDab
μνðx; yÞ

−
g2

2N
TrðΣΣ†TaTbÞ

Z
C2

dxμ

Z
C2

dyνDab
μνðx; yÞ þOðg4Þ: (59)

In the limit of interest, Δt → ∞, the contribution of the spatial strings is suppressed and the integrals receive
contributions from the same temporal parallel transporter,

FIG. 3. Loops and diagrams calculated perturbatively in Sec. IV.
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lim
ϵ→0

Z þΔt=2

−Δt=2
dt1

Z þΔt=2

−Δt=2
dt2

1

4π2ððt1 − t2Þ2 þ ϵ2Þ

¼ 1

4π2
lim
ϵ→0

�
þ 2Δt

ϵ
arctanðΔt=ϵÞ − ln

�
Δt2

ϵ2

��

¼ 1

4π2
lim
ϵ→0

�
þ πΔt

ϵ
− ln

�
Δt2

ϵ2

��
; (60)

or from opposite temporal parallel transporters,

Z þΔt=2

−Δt=2
dt1

Z −Δt=2
þΔt=2

dt2
1

4π2ððt1 − t2Þ2 þ r2Þ

¼ 1

4π2

�
− 2Δt

r
arctanðΔt=rÞ þ ln

�
Δt2 þ r2

r2

��
: (61)

One thus obtains

lim
Δt→∞

hWΣðr;ΔtÞi

¼ 1

N
TrðΣΣ†Þ− g2

�
CðΣÞ− TrðΣTaΣ†TaÞ

4Nπr

�
ΔtþOðg4Þ;

(62)

where CðΣÞ is an infinite constant, i.e. independent of r.
We begin by discussing the standard Wilson loop,

Σ ¼ 1. In this case TrðΣΣ†Þ ¼ N and TrðΣTaΣ†TaÞ ¼
ðN2 − 1Þ=2. In Lorenz gauge a transfer matrix or
Hamiltonian does not exist. However, for the manifestly
gauge invariant Wilson loop the time evolution is the same
in any gauge and without gauge fixing. Therefore, for large
temporal separations Δt they are guaranteed to decay
exponentially proportional to the eigenvalue of the lowest
energy eigenstate with corresponding quantum numbers,

lim
Δt→∞

hWΣðr;ΔtÞi
¼ A expð−VΣðrÞΔtÞ
¼ A expð−ðVΣ;ð0Þ þ g2VΣ;ð2ÞðrÞþOðg4ÞÞΔtÞ
¼ A expð−VΣ;ð0ÞΔtÞexpð−ðg2VΣ;ð2ÞðrÞþOðg4ÞÞΔtÞ
¼ A expð−VΣ;ð0ÞΔtÞð1− g2VΣ;ð2ÞðrÞΔtþOðg4ÞÞ; (63)

where VΣ;ðnÞðrÞ denote those terms of VΣðrÞ, which are
proportional to gn, i.e. VΣðrÞ¼VΣ;ð0Þþg2VΣ;ð2ÞðrÞþOðg4Þ.
Comparing powers of g2 in (62) and (63) yields the singlet
static potential,

V1ðrÞ ¼ − ðN2 − 1Þg2
8Nπr

þ constþOðg4Þ: (64)

For the adjoint case Σ ¼ Ta and without summing over a
we have TrðΣΣ†Þ ¼ 1=2 and TrðΣTaΣ†TaÞ ¼ −1=4N.
Assuming exponential decay as above and comparing
powers of g2 one finds the result known in the literature,

VTaðrÞ ¼ þ g2

8Nπr
þ constþOðg4Þ: (65)

Note that (65) is independent of the position of Σ, i.e.
independent of s. However, since in Lorenz gauge a
transfer matrix or Hamiltonian does not exist, the expo-
nential form of (63) only holds for manifestly gauge
invariant observables like the ordinary Wilson loop. By
contrast, in the limit of large Δt the correlator hWTaðr;ΔtÞi
in Lorenz gauge is neither positive nor exponentially
decaying. In other words, the physical meaning of the
result (65), which often appears in the literature, is unclear.
The importance of a gauge-covariant time evolution of

color charges by means of parallel transport is highlighted
by the perturbative evaluation of the string-string correlator
(10) in Lorenz gauge,

1

N
hTrðUðt1;x; yÞUðt2; y;xÞÞiLorenz gauge ¼

1

N

�
Tr

�
P exp

�
ig
Z þr=2

−r=2
dzA3ð−Δt=2; 0; 0; zÞ

�

× P exp

�
ig
Z −r=2
þr=2

dzA3ðþΔt=2; 0; 0; zÞ
���

Lorenz gauge

¼ 1 − ðN2 − 1Þg2
8Nπ2

�
lim
ε→0

�
þ πr

ε
− ln

�
r2

ε2

��
− 2r
Δt

arctanðr=ΔtÞ þ ln

�
Δt2 þ r2

Δt2

��

þOðg4Þ

→
Δt→∞

1 − ðN2 − 1Þg2
8Nπ2

�
lim
ε→0

�
þ πr

ε
− ln

�
r2

ε2

��
− r2

Δt2

�
þOðg4Þ (66)

[cf. Fig. 3(d)]. Trying to extract the singlet potential assuming exponential behavior of this correlator and comparing powers
of g2 as in (63) and (66), fails. There is no linear term in Δt, i.e. one obtains the physically incorrect result
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V1ðrÞ ¼ Oðg4Þ (67)

in contrast with the string-string correlator in temporal
gauge, viz. the Wilson loop, where the parallel transport is
included.

B. Gauge invariant QQ̄Qad correlator

As explained in Sec. IIIA2, the following gauge invariant
correlation function is equivalent to hWTaðr;ΔtÞi, when
evaluated in temporal gauge for a ≤ t1 < t2 < T [case (A)],

hWQQ̄Qadðr;ΔtÞi ¼
�

1

N2− 1
ðN2WLðr=2þ s;ΔtÞ

×WRðr=2− s;ΔtÞ−W1ðr;ΔtÞÞ
�

(68)

[cf. Fig. 3(c)]. Evaluating this correlator in Lorenz gauge
one finds

lim
Δt→∞

hWQQ̄Qadðr;ΔtÞi

¼ N2

N2−1

�
1−g2

�
C− N2−1

8Nπðr=2þsÞ
�
ΔtþOðg4Þ

�

×

�
1−g2

�
C− N2−1

8Nπðr=2−sÞ
�
ΔtþOðg4Þ

�

−
1

N2−1

�
1−g2

�
C−N2−1

8Nπr

�
ΔtþOðg4Þ

�

¼ 1−g2
�ð2N2−1ÞC

N2−1
− 1

8Nπ

�
N2

r=2þs
þ N2

r=2−s
−1

r

��
Δt

þOðg4Þ (69)

(in the WLWR-term the gluon must propagate within the
same loop, i.e. either in WL or in WR; otherwise, the
contribution vanishes, because TrðTaÞ ¼ 0).
As a gauge invariant observable, this loop is guaranteed

to decay exponentially. Comparing powers of g2 in (63) and
(69) shows that the QQ̄Qad static potential is

VQQ̄Qadðr; sÞ ¼ − g2

8Nπ

�
N2

r=2þ s
þ N2

r=2 − s
− 1

r

�

þ constþOðg4Þ: (70)

For s ¼ 0 (Qad is placed symmetrically between Q and
Q̄) the result simplifies to

VQQ̄Qadðr; s ¼ 0Þ ¼ − ð4N2 − 1Þg2
8Nπr

þ constþOðg4Þ;
(71)

i.e. is in leading nontrivial order attractive and, depending
on N, by a factor 4þ 3=ðN2 − 1Þ ¼ 4:::::5 stronger than
the singlet static potential (64).

In a recent similar work a nonperturbative extraction of
the color-adjoint potential from Polyakov loop correlators
was suggested [30]. Similar to our treatment here and in
earlier work [16], an adjoint Schwinger line appears, which
however is placed at spatial infinity, or far away from the
fundamental quarks. In (70) this corresponds to s → ∞
(Qad is placed at spatial infinity) and one obtains

VQQ̄Qadðr; s → ∞Þ ¼ þ g2

8Nπr
þ constþOðg4Þ; (72)

a repulsive static potential, which is identical to the
perturbative result in Lorenz gauge (65). Note, however,
that perturbation theory is only valid at small quark
separations, but not for large separations or even the limit
s → ∞, where string breaking must occur. Hence, the
physical meaning of (72) is questionable. While no
simulations of this observable with large s are available
yet, since adjoint charges are screened we expect this
correlator to decay as the ordinary Polyakov loop corre-
lator. The physical quantity one obtains from this correlator
is the singlet static potential shifted by a gluelump mass.

C. Coulomb gauge

The gluon propagator in Coulomb gauge ∂jAj ¼ 0 is

~Dab
00ðpÞ ¼ δab

1

jpj2 ;
~DjkðpÞ ¼ δab

1

p2

�
δjk−pjpk

jpj2
�

(73)

Dab
00ðx; yÞ ¼

1

ð2πÞ4
Z

d4pe−ipðx−yÞ ~Dab
00ðpÞ

¼ δab
δðx0 − y0Þ
4πjx − yj : (74)

Starting from (59) the spatial parallel transporters can again
be neglected for Δt → ∞, while the integrals along the
temporal lines give

lim
ϵ→0

Z þΔt=2

−Δt=2
dt1

Z þΔt=2

−Δt=2
dt2

δðt1 − t2Þ
4πϵ

¼ Δt
4πϵ

(75)

Z þΔt=2

−Δt=2
dt1

Z −Δt=2
þΔt=2

dt2
δðt1 − t2Þ

4πr
¼ − Δt

4πr
: (76)

The result for hWΣðr;ΔtÞi is is the same as in Lorenz
gauge. Consequently,

V1ðrÞ ¼ − ðN2 − 1Þg2
8Nπr

þ constþOðg4Þ (77)

is the same in both gauges, which is expected, since the
Wilson loop W1ðr;ΔtÞ is gauge invariant. Similarly one
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finds the same result for the color-adjoint static potential
obtained from WTaðr;ΔtÞ in Coulomb gauge as well as in
Lorenz gauge,

VTaðrÞ ¼ þ g2

8Nπr
þ constþOðg4Þ: (78)

In Coulomb gauge a transfer matrix/Hamiltonian exists
[15], the asymptotic decay in t is exponential and a
comparison of powers of g2 in (63) and WTa

[which yields
(78)] appears physically meaningful. However, a nonzero
result without completing the gauge is in contrast to the
nonperturbative evaluation, Sec. IIIB. This indicates that
gauge fixing in perturbation theory is not the same as in a
corresponding nonperturbative formulation. The reason
might be that perturbation theory is an expansion about
a free theory with classical minimum Aμ ¼ 0, which does
not include averaging over all gauge equivalent gauge field
configurations fulfilling the gauge condition.

V. NUMERICAL RESULTS

In this section we compute the singlet static potential
V1ðrÞ and the color-adjoint static potential in temporal
gauge VTaðrÞ, which is identical to the gauge invariant
static potential VQQ̄Qad

, using SUð2Þ lattice gauge theory,
where Ta ¼ σa=2.

A. Lattice setup

The lattice action is the standard Wilson plaquette gauge
action [Eqs. (23)–(25)]. The lattice extension is
ðL=aÞ3 × T=a ¼ 243 × 48. We have performed simula-
tions at four different values of the coupling constant
β ∈ f2.40; 2.50; 2.60; 2.70g. Observables are computed
as averages over 200 essentially independent gauge link
configurations.
To introduce a physical scale we have identified the

Sommer parameter r0 with 0.46 fm, which is roughly the
QCD value (cf. e.g. [31,32]; the Sommer parameter is
defined via the static force, jFðr0Þr20j≡ 1.65, FðrÞ ¼
dV1ðrÞ=dr). The corresponding lattice spacings are listed
in Table I.

B. The singlet and the color−adjoint=QQ̄Qad

static potential

We have used standard techniques, to compute the
singlet and the color−adjoint=QQ̄Qad static potential.

We have evaluated the gauge invariant correlator diagrams
shown in Fig. 2 [singlet, case (A) and adjoint, case (A)]
on the 200 available gauge link configurations using
translational and rotational invariance to increase statistical
precision. Moreover, we have resorted to common smear-
ing techniques:
(1) APE smearing for spatial links [33]

This improves the ground state overlap, i.e. increases
e.g. for the matrix elements in (42) the ratio

���� h0αβjÛαβðx; yÞj0i
hk0αβjÛαβðx; yÞjn0i

����; ðk0; n0Þ ≠ ð0; 0Þ: (79)

This in turn allows us to extract the value of V1ðrÞ or
VTaðrÞ from the exponential behavior of the corre-
sponding correlator diagrams at smaller temporal
separations, where also the statistical errors are
smaller. We used NAPE ¼ 15 and αAPE ¼ 0.5, where
detailed equations can e.g. be found in [34], Sec. III A.

(2) HYP2 smearing for temporal links [35,36,37]
This amounts to using a different discretization for
the action of the static color charges. It reduces the
self-energy of these charges and, therefore, the
extracted static potential V1ðrÞ or VTaðrÞ by an r-
independent constant. Consequently, the exponential
decay of the correlator diagram is weaker, which
again results in a smaller statistical error.

Figure 4 shows V1 and VTa
in physical units. Note that at

large static color charge separations both V1 and VTa

exhibit essentially the same slope. This is expected and
indicates flux tube formation not only between Q and Q̄ in
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FIG. 4 (color online). V1 (lower curve) and VTa
(upper curve)

as a functions of the QQ̄ separation r in physical units (lattice
results obtained at different values of β have been shifted
vertically, to compensate for the a-dependent self-energy of
the static charges). For VTa

the adjoint static color charge is
located halfway between Q and Q̄. Lattice results, where any of
the static charges are closer than 2a, have been omitted, because
of rapidly increasing discretization errors.

TABLE I. αs extracted from V1ðrÞ and from VTaðrÞ.
β a in fm α1s αT

a

s Δαrels

2.40 0.102 0.89 0.75 17%
2.50 0.073 0.59 0.52 13%
2.60 0.050 0.43 0.40 9%
2.70 0.038 0.36 0.33 6%
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the singlet case, but also between Q and Qad and also
between Qad and Q̄ in the color−adjoint=QQ̄Qad case.

C. Comparing lattice and perturbative results

Lattice results for the static potential are known to
exhibit large discretization errors, as soon as static color
charges are closer than 2a (for our ensembles
2a ≈ 0.08 fm…0.20 fm). On the other hand perturbative
results for the static potential are only trustworthy for
separations ≲0.2 fm. Therefore, the region of overlap
between lattice and perturbative results is quite small.
Moreover, the leading order of perturbation theory

V1;LOðrÞ ¼− 3g2

16πr
þ const; VTa;LOðrÞ ¼− 15g2

16πr
þ const

(80)

[here specialized to gauge group SUð2Þ] we have calcu-
lated in Secs. IVA and IVB is known to be a rather poor
approximation (cf. e.g. [38–41]). Consequently, one can
only expect qualitative agreement, when comparing the
here presented lattice and perturbative results.
Weperformsuchacomparisonbydeterminingαs ≡ g2=4π

from the corresponding static forces FXðrÞ ¼ dVXðrÞ=dr,
X ∈ f1; Tag, which we define on the lattice by finite
differences. For the singlet case we use

V1;latticeð3aÞ − V1;latticeð2aÞ
a

¼ 3α1s
4ð2.5 × aÞ2 : (81)

This ensures that the static color charges are separated by at
least 2a, while at the same time their separation is small
enough, to expect that the leading-order perturbative result
is a reasonable approximation. Similarly we use

VTa;latticeð6aÞ − VTa;latticeð4aÞ
2a

¼ 15αT
a

s

4ð5 × aÞ2 (82)

for the color-adjoint case.
The values we obtain for αs are collected in Table I. The

relative difference between αs extracted from V1ðrÞ and
from VTaðrÞ, defined as

Δαrels ≡ 2

���� α
1
s − αT

a

s

α1s þ αT
a

s

����; (83)

is quite small, less than 10% for our two smallest lattice
spacings, which is a clear sign of agreement between the
lattice and the perturbative results. Δαrels is getting smaller,
when the lattice spacing is decreased, which is expected,
since the quality of the leading- order perturbative

approximation is improving at smaller static color charge
separations.
It is also interesting to note that the values for αs increase

for larger lattice spacings, i.e. for larger static color charge
separations. αs ≳ 1 signals complete breakdown of pertur-
bation theory.

VI. CONCLUSIONS

We have discussed the nonperturbative definition of a
static potential for a quark antiquark pair in a color-adjoint
configuration, based on Wilson loops with generator
insertions in the spatial string. Leading-order perturbation
theory in Lorenz gauges has long predicted the correspond-
ing potential to be repulsive. Saturating the open adjoint
indices with color-magnetic fields, as suggested in the
literature [4], produces a well-defined gauge invariant
observable but spectral analysis shows it to project on
the color-singlet channel only. If the adjoint indices are left
open, gauge fixing is required in order to obtain a nonzero
result for the correlator.
Lorenz gauges violate positivity and the gauge fixed

correlator no longer has purely exponential decay, thus
precluding a nonperturbative definition of the potential. In
temporal gauge a positive transfer matrix with well-defined
charge sectors exists and the Wilson loop with generator
insertions can be shown to be equivalent to a gauge
invariant object, where the open charges are saturated with
an adjoint Schwinger line. This correlator projects on states
with the desired transformation behavior; however, the
resulting potential is attractive and should be interpreted as
a three-quark potential (fundamental, antifundamental and
adjoint). The same qualitative behavior is found in leading-
order perturbation theory once the adjoint line is included.
In Coulomb gauge a positive transfer matrix exists, but the
gauge is incomplete and the observable averages to zero.
Imposing an additional gauge condition to render Coulomb
gauge complete again introduces an adjoint static quark.
The interpretation of the resulting static potential is then
identical to that in temporal gauge. It thus appears impos-
sible to reproduce the perturbatively repulsive color-adjoint
potential by a nonperturbative computation based on
Wilson loops, even at short distance.
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