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We investigate the sign problem of the fermion determinant at finite baryon density in (1þ 1) dimensions,
in which the ground state in the chiral limit should be free from the sign problem by forming a chiral spiral.
To confirm it, we evaluate the fermion determinant in the continuum theory at the one-loop level and find that
the determinant becomes real as expected. The conventional lattice formulation to implement a chemical
potential is, however, not compatible with the spiral transformation. We discuss an alternative of the
finite-density formulation and numerically verify the chiral spiral on the finite density lattice.

DOI: 10.1103/PhysRevD.89.014508 PACS numbers: 11.15.Ha, 12.38.Aw, 12.38.-t

I. INTRODUCTION

QCD has profound contents to be explored with external
parameters such as the temperature T, the baryon chemical
potential μB (that is equal to the quark chemical potential μq
multiplied by the number of colors Nc), the magnetic field
B, and so on [1]. The direct calculation based on QCD is,
however, feasible only in some limited ranges of these
parameters. In particular along the direction of increasing
μq, perturbative QCD is not really useful unless the density
is high enough to accommodate color superconductivity
[2,3]. Moreover, the numerical simulation based on lattice
QCD breaks down with finite μq. The most serious obstacle
lies in the fact that the Monte Carlo importance sampling is
invalid for the finite-density case due to the complex fer-
mion determinant, which is commonly referred to as the
sign problem [4].
The sign problem is also relevant in analytical computa-

tions [5,6]. At finite T, the temporal component of the
gauge field A4 plays a special role, and its expectation value
is given a gauge-invariant interpretation, namely, (the phase
of) the Polyakov loop, L≡ P exp½ig R β

0 dx4A4�. Because
the traced Polyakov loop is an order parameter for quark
deconfinement, many efforts have been devoted to the com-
putation of the effective potential for L [7–9]. With the con-
tribution from the fermion determinant [10], the effective
potential at nonzero μq has turned out to take a complex
value, and thus the physical meaning as a grand potential
or thermal weight is obscure. This is how we observe the
sign problem using the perturbative calculation.
Since the resolution of the sign problem is still far from

our hands, it is instructive to study density-like effects that
cause no sign problem. Theoretical attempts along this line
include the imaginary chemical potential [11], the isospin
chemical potential [12], the chiral chemical potential [13],
dense QCD with two colors or with adjoint matter [4,14],
the magnetic field [15], and so on. Among them the mag-
netic field leads to a quite suggestive change in the state of

quark matter. The most drastic consequences result from
the Landau quantization and the dominance of the lowest
Landau levels for spin-1=2 fermions. In the strong-B limit,
quarks are reduced to a (1þ 1)-dimensional system.
The nature of chiral symmetry breaking is affected

accordingly by the strong-B effects [16]; the spontaneous
breaking of chiral symmetry inevitably occurs in the
(1þ 1)-dimensional system (or in the lowest-Landau-level
approximation [17]), which is called magnetic catalysis.
This phenomenon is analogous to superconductivity, which
is also triggered by the low-dimensional nature of the Fermi
surface. In chiral model studies [18], the chiral phase tran-
sition is delayed toward a higher temperature due to mag-
netic catalysis, while in the finite-T lattice QCD simulation
it has been recognized that the chiral crossover temperature
gets smaller with increasing B, which is called inverse mag-
netic catalysis or magnetic inhibition [19]. Another inter-
esting example from the (1þ 1)-dimensional nature is
the topological phenomenon such as the chiral magnetic
effect [20] that might be detectable with the noncentral
collision of positively charged heavy ions through charge
separation or photon emission [21].
Such a (1þ 1)-dimensional quark matter provides us

with further useful information; the ground state of the
(1þ 1)-dimensional chiral system at finite density (with
a large number of internal degrees of freedom) is known
to form a chiral spiral [22,23]. In the strong-B limit, there-
fore, the “chiral magnetic spiral” would be the ground-state
candidate of finite-density and magnetized quark matter
[24]. The essential idea of Ref. [24] was that the explicit
μq dependence is rotated away in (1þ 1) dimensions,
and this procedure transforms the homogeneous chiral con-
densate to form a spiral in the chiral basis. This at the same
time implies that the sign problem should no longer be
harmful once the dimensional reduction occurs.
One might have thought that the strong-B limit is such a

special environment having loose relevance to our realistic
world. It has been argued, however, that quark matter at
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high density even without B already exhibits characteristics
of a pseudo-(1þ 1)-dimensional system locally on the
Fermi surface [25], and the whole Fermi surface should
be covered by low-dimensional patches [26]. Besides,
the p-wave pion condensation in nuclear matter having the
same spiral structure is still a vital possibility beyond the
normal nuclear density [27]. In thisway, it is definitelyworth
considering the sign problem and the ground-state structure
in (1þ 1)-dimensional systems both for academic interest
and for practical purposes.
The present work reports that the conventional lattice

formulation at finite density becomes problematic even
for describing the expected ground state of such an ideal-
ized (1þ 1)-dimensional system. First we shall illuminate
how the sign problem is irrelevant in (1þ 1) dimensions
by performing the perturbative calculation. Then, we will
proceed to the lattice formulation to find that the conven-
tional introduction of μq [28] cannot realize the transforma-
tion properties in the continuum theory. We choose an
alternative that is optimal to yield a chiral spiral and
conduct the numerical test to confirm a spiral formation
on the lattice.

II. PERTURBATIVE CALCULATION

Let us first evaluate the fermion determinant at finite μq
and a high enough T that justifies the perturbative treat-
ment. At the one-loop level in the deconfined phase, we
should keep the Polyakov-loop A4 background and carry
out the Gaussian integration with respect to quantum fluc-
tuations of gluons. After taking the summation over the
Matsubara frequency, we can write the determinant
M½A4� (for a single flavor throughout this work) down as

M½A4� ¼ N e−TdVdΓ½A4�

¼ N exp

�
αd

Z
Vdddp
ð2πÞd

× tr ln

�
ð1þ Le−ðε−μqÞ=TÞð1þ L†e−ðεþμqÞ=TÞ

��
;

(1)

where d and Vd represent the spatial dimension and the
spatial volume, respectively, and the dispersion relation
is ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. We note that the spin degeneracy factor

αd depends on d: α3 ¼ 2 and α1 ¼ 1. For practical
convenience, we rotate the color basis as ULU† ¼
diagðeiπϕ1 ; eiπϕ2 ; eiπϕ3Þ, where ϕ1 þ ϕ2 þ ϕ3 ¼ 0 should
hold to satisfy detðULU†Þ ¼ 1.
For the massless case (m ¼ 0), we can perform the full

analytical integration for arbitrary d. In particular, a choice
of d ¼ 3 yields the well-known Weiss–Gross-Pisarski-
Yaffe-type potential [8] that takes the following polynomial
form [1,10,29]:

Γ½ϕ� ¼ − 4π2

3

XNc

i¼1

B4

��
1þ ϕi

2

�
mod 1

− i ~μq
2

�
; (2)

where the Bernoulli polynomial appears as B4ðxÞ ¼
x2ð1 − xÞ2 − 1=30 [9]. We also introduced the dimension-
less chemical potential as ~μq ≡ μq=ðπTÞ for notational sim-
plicity. While we choose Nc ¼ 3 in our QCD study, Eq. (2)
is valid for any SUðNcÞ groups.
The apparent presence of the imaginary part in Eq. (2)

corresponds to the sign problem. Indeed, the phase of the
fermion determinant is nothing but −TdVdImΓ (mod 2π).
To gain a more informative view, we make a plot for ImΓ½ϕ�
in the upper panel of Fig. 1 as a function of ϕ1 and ϕ2 (with
ϕ3 ¼ −ϕ1 − ϕ2). It is clear from the figure that the imagi-
nary part has a nontrivial dependence on the gauge configu-
ration ϕ1 and ϕ2.
Amore interestingcase is ford ¼ 1 corresponding toquark

matter under the dimensional reduction. In this case we have

Γ½ϕ� ¼ 2π
XNc

i¼1

B2

��
1þ ϕi

2

�
mod 1

− i ~μq
2

�
: (3)

Here, we again used the Bernoulli polynomial as defined by
B2ðxÞ ¼ x2 − xþ 1=6. It is quite reasonable that B4ðxÞ in
Eq. (2) for dþ 1 ¼ 4 is replaced with B2ðxÞ in Eq. (3) for
dþ 1 ¼ 2. The imaginary part for d ¼ 1 is given as

FIG. 1 (color online). (Upper) Imaginary part of Γ½ϕ� for d ¼ 3
at ~μq ¼ 0.1 shown as a function of ϕ1 and ϕ2. (Lower) Imaginary
part of Γ½ϕ� for d ¼ 1 at ~μq ¼ 0.1.
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ImΓ½ϕ� ¼
8<
:

0 ð−1 < ϕ1 þ ϕ2 < 1Þ;
−2π ~μq ðϕ1 þ ϕ2 ≥ 1Þ;
þ2π ~μq ðϕ1 þ ϕ2 ≤ −1Þ:

(4)

This behavior is visually shown in the lower panel of Fig. 1.
The step emerges when ð1þ ϕ3Þ=2 ¼ ð1 − ϕ1 − ϕ2Þ=2
exceeds the boundary of modular one. As is clear from
the above expression, ImΓ takes a constant �2π ~μq, which
is �0.2π in our numerical setup ( ~μq ¼ 0.1) for Fig. 1.
With a more careful deliberation on the phase-space

volume, we see that an imaginary part in the region jϕ1 þ
ϕ2j ≥ 1 has no contribution since this finite value is quan-
tized as TV1ImΓ ¼ 2πnwith an integer n. To see this, let us
considerthebranch-cutcontributionfromthelogarithminthe
integrand of Eq. (1), which appears when the real part in
the logarithm turns negative, i.e., Re½eiπϕi−ðjpj−μqÞ=T � < −1.
The momentum integration under this condition picks
up the phase-space volume satisfying jpj < μq, that is,
�P

Phase Space2πθðμq − jpjÞ ¼ �2 · 2π⌊V1μq=2π⌋, where
⌊ � � � ⌋ represents the floor function. It reproduces Eq. (4)
multiplied with TV1 in a quantized form. As conjectured,
no sign problem arises in perturbative analyses in the
(1þ 1)-dimensional continuum theory.

III. LATTICE FORMULATION

This analytical observation is, however, not easy to be
validated on the lattice. To make the point clear, let us take
a pseudo-(1þ 1)-dimensional system discarding two trans-
verse (first and second) components. Then, in Euclidean
space-time with the longitudinal (third) and the temporal
(fourth) components, the Lagrangian density, Leff ¼
ψ̄DðμqÞψ , with DðμqÞ ¼ γ3ð∂3 − igA3Þ þ γ4ð∂4 þ μq −
igA4Þ defines the theory. Here, we consider the most
interesting case of m ¼ 0 only. Then, we can confirm that
μq is superficially erased by the following rotation:
ψ →ψ ¼Uψ 0, ψ̄ → ψ̄ ¼ ψ̄ 0U with U ¼ expð−μqγ3γ4x3Þ.
The chemical potential can be factorized out by the unitary
transformation, DðμqÞ ¼ U†Dð0ÞU†, and thus the fermion
determinant is independent of μq. Strictly speaking, this
rotation also causes a shift in momenta carried by ψ 0
and ψ̄ 0, and such a shift gives rise to a nontrivial μq depend-
ence through the chiral anomaly [22]. For the moment, it
suffices for our purpose of seeing the spiral if we focus on
the tree-level elimination of the μq term, and we will not go
into the anomalous μq dependence.
In the conventional lattice formulation [28], μq is

introduced as

ψ̄γ4ð∂4 þ μqÞψ ¼ ðψ̄e−μqx4Þγ4∂4ðeμqx4ψÞ

≃ 1

2
ψ̄ðxÞγ4eμqψðxþ 4̂Þ

− 1

2
ψ̄ðxÞγ4e−μqψðx − 4̂Þ: (5)

If we apply the unitary transformation U on the lattice, we
find UDðμqÞU as

1

2
fψ̄ 0ðxÞ½ðγ3 cos μq− γ4 sin μqÞψ 0ðxþ 3̂Þþ γ4eμqψ 0ðxþ 4̂Þ�
− ψ̄ 0ðxÞ½ðγ3 cos μqþ γ4 sin μqÞψ 0ðx− 3̂Þ
þ γ4e−μqψ 0ðx− 4̂Þ�g (6)

apart from the link variables. In the continuum limit (i.e. the
lattice spacing a → 0), where μqa goes vanishingly small,
the explicit μq dependence disappears as anticipated from
the continuum theory. In this sense, such an incomplete
cancellation in Eq. (5) is a lattice artifact, and yet, this
is crucial for the sign problem and the formation of the
chiral spiral.
One quick remedy for the noncancellation problem is to

alter the way one formulates μq on the lattice. We propose
to introduce the chemical potential asDðμqÞ ¼ U†Dð0ÞU†,
i.e. (see Ref. [30] for a similar proposal),

ψ̄ðγ3∂3 þ γ4μqÞψ
¼ ðψ̄U†Þγ3∂3ðU†ψÞ

≃ 1

2
ψ̄ðxÞðγ3 cos μq þ γ4 sin μqÞψðxþ 3̂Þ

−
1

2
ψ̄ðxÞðγ3 cos μq − γ4 sin μqÞψðx − 3̂Þ (7)

(with link variables omitted). In this form, it may look triv-
ial at first glance that the unitary transformation can get rid
of the μq dependence. However, the situation is not so
trivial. One can actually prove that the eigenvalues of
this fermion operator appear as a quartet: λ, −λ, λ�, and
−λ�. In other words, the fermion determinant is always real
regardless of the dimensionality! Needless to say, this can-
not be a resolution of the sign problem. Because sin μq is
accompanied by cos q3 in the momentum space of Eq. (7),
the sign of μq changes for the fermion doublers in the 3̂
direction. Therefore, if we interpret the doublers as differ-
ent quark flavors, μq as it appears in Eq. (7) represents the
isospin chemical potential rather than the quark chemical
potential, so that the determinant is always real! This also
means that the new formulation as in Eq. (7) cannot pro-
duce a chiral spiral.
Thus, we must cope with the doubler problem to treat μq

as a quark chemical potential. In this work we shall naively
add the Wilson term, rWψ̄∂2ψ (where we choose rW ¼ 1)
to make heavy doublers decouple from the dynamics.
In order not to violate the transformation properties,
DðμqÞ ¼ U†Dð0ÞU†, we must implement the Wilson term
according to Eq. (7) as rWψ̄∂2ψ → rWðψ̄U†Þ∂2ðU†ψÞ. In
this case the fermion determinant becomes real only for dis-
crete values of μq, which is quantized as μq ¼ ðπ=NÞn,
whereN is the number of lattice sites along the x3 direction.
Because the Wilson term has an explicit x3 dependence, we
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must require e2μqγ
3γ4N ¼ 1 to keep the action invariant

under the shift x3 → x3 þ N.
For μq ¼ ðπ=NÞn, the determinant returns to a real value.

While the bulk properties are fixed by the whole quantity of
the determinant, we emphasize here that the microscopic
dynamics is far more nontrivial. If the vacuum at μq ¼ 0
has a nonzero and homogeneous chiral condensate
σ0 ≡ hψ̄ψi ≠ 0, the rotated vacuum at μq ≠ 0 should yield
σ0 ¼ hψ̄ 0ψ 0i as well. In terms of the original basis, accord-
ingly, we can expect σ ≡ hψ̄ψi ¼ σ0 cosð2μqx3Þ and
η≡ hψ̄γ3γ4ψi ¼ σ0 sinð2μqx3Þ, which locally breaks chiral
symmetry but does not break it globally, i.e., the average of
the condensate vanishes:

R
d2xhψ̄ψi ¼ 0.

In Fig. 2 we show the condensates as a function of x3
defined by σðx3Þ≡ N−1

t
P

x4 tr½D−1ðμqÞ� and ηðx3Þ≡
N−1

t
P

x4 tr½γ3γ4D−1ðμqÞ� (in lattice units). This is the result
for one gauge configuration generated after 1000 quench
updates using the Wilson gauge action with β ¼ 5.0. If
we use the conventional introduction of μq as in Eq. (5),
only σ has a finite expectation value and the oscillatory pat-
tern is hardly visible. With the new formulation as in
Eq. (7), on the other hand, both σ and η take a finite value
to develop a clear chiral spiral. [One should be careful when
interpreting this result: the exact chiral limit with strict
(1þ 1) dimensions gives rise to no chiral condensate.
This is why we set our problem in pseudo-(1þ 1) dimen-
sions and it is also why the Wilson term plays a role.]
Since the chiral condensate is related to the low-lying

eigenvalues via the Banks-Casher relation, it is interesting
to see how the eigenvalue distribution changes with the chi-
ral spiral. The Wilson term breaks anti-Hermiticity, and the
eigenvalues are complex even at μq ¼ 0, so that the original
Banks-Casher relation needs a modification; the chiral

condensate should be derived from the eigenvalues of
D†ð0ÞDð0Þ rather than Dð0Þ [31]. In this work, we do
not calculate the former, and yet, it is quite interesting
to investigate the qualitative changes of the latter at finite
μq. Figure 3 shows the eigenvalue distribution of DðμqÞ for
μq ¼ 0 and 2π=N as introduced in Eq. (7). At μq ¼ 0 the
eigenvalue distribution is the same as a conventional one.
With increasing μq the distribution spreads to the negative
real region, and when μq reaches a multiple of π=N, the
determinant becomes identical to the μq ¼ 0 value, though
the eigenvalue distribution looks totally different. Although
the distribution appears to be symmetric for μq ¼ ð2π=NÞn
as seen in Fig. 3, there is no longer a quartet structure nor
any pairwise symmetry. It is miraculous that the product of
all these eigenvalues happens to be real.

IV. CONCLUSIONS

We have justified the idea that the sign problem is irrel-
evant in the (1þ 1)-dimensional system. This is caused by
the chiral transformation that removes the chemical poten-
tial. We have first evaluated the determinant perturbatively
in the continuum theory, and found that the imaginary part
in the (1þ 1)-dimensional case vanishes unlike the (3þ 1)-
dimensional situation that suffers from the sign problem.
For the discretized fermion on the (1þ 1)-dimensional

lattice, the conventional way to impose a chemical potential
causes the sign problem, which is a lattice artifact and
should be absent in the continuum limit. In practice, how-
ever, this lattice artifact hinders the formation of the chiral
spiral. To evade this problem, we have proposed a new
method to introduce a chemical potential by twisting the
Dirac operator along one of the spatial directions. In this

FIG. 2 (color online). Condensates σ and η at μq ¼ 2π=N (with
N ¼ 32) as a function of x3 in lattice units. The closed circles and
triangles represent the results from our new formulation, while
the open circles and triangles represent those from the conven-
tional one. The solid curves are 2.86 cos½2μqðx3 − aÞ� and
2.86 sin½2μqðx3 − aÞ�, which fit the oscillation behavior.

FIG. 3 (color online). Eigenvalue distribution of the finite-μq
fermion operator on the 32 × 32 lattice (N ¼ 32) for the gauge
configuration corresponding to Fig. 2. Results with μq ¼
2π=N (red dots) are overlaid on those with μq ¼ 0 (blue dots).
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case, the fermion determinant becomes real, but it turns out
that such a chemical potential induces not a quark density
but rather a doubler (or isospin) density if the doublers are
not killed. We then find no chiral spiral. By diminishing
spurious symmetry with doublers, we have successfully
confirmed a clear chiral spiral. The eigenvalues of our fer-
mion operator have a peculiar distribution, which suggests
some relation between the distribution pattern and the for-
mation of the chiral spiral. We leave this for future work.
Our formulation can be applied to more general dimen-

sions. If the spiral structure is the genuine ground state at
strong magnetic field or at high baryon density that brings
about the dimensional reduction, the conventional formu-
lation with μq is not an optimal choice. The present work
has manifestly demonstrated the advantage of the new

formulation to investigate the sign problem and the chiral
spiral. It is also an intriguing future problem to study our
method using the other fermions, particularly the overlap
fermion that also exhibits a peculiar distribution of
finite-density eigenvalues [32].
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