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Hadronic matrix elements of proton decays are essential ingredients for bridging the grand unification
theory to low-energy observables like the proton lifetime. In this paper we nonperturbatively calculate the
matrix elements, relevant for the process of a nucleon decaying into a pseudoscalar meson and an antilepton
through generic baryon-number-violating four-fermi operators. Lattice QCD with 2þ 1 flavor dynamical
domain-wall fermions with the direct method—which is the direct measurement of the matrix elements
from the three-point function without using chiral perturbation theory—is used for this study in order to
have good control over the errors due to lattice discretization effects, operator renormalization, and chiral
extrapolation. The relevant form factors for possible transition processes from an initial proton or neutron to
a final pion or kaon induced by all types of three-quark operators are obtained through three-point functions
of the (nucleon)-(three-quark operator)-(meson) with physical kinematics. In this study all the relevant
systematic uncertainties of the form factors are taken into account for the first time, and the total error
is found to be in the range 30%–40% for the π and 20%–40% for the K final states.
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I. INTRODUCTION

Proton decay is a “smoking gun” of physics beyond the
standard model and is a natural outcome of grand unified
theories (GUTs) [1,2]. The process occurs through baryon-
number-changing interactions mediated by the heavy new
particles. Dominant modes are X and Y gauge-boson
exchanges for GUTs and color-triplet Higgs multiplets
for supersymmetric (SUSY) GUTs [3,4]. Recent Super-
Kamiokande experiments have reported bounds on the pro-
ton partial lifetime, such as τ > 8.2 × 1033 years for the
p → eþπ0 channel [5,6]—which is typical for gauge-boson
exchange—or τ > 2.3 × 1033 years for p → Kþν̄ [7] and
τ > 1.6 × 1033 years for p → K0μ̄þ [8], both of which
are favored for some SUSY GUTs. There have been many
arguments for a constraint on the proton lifetime from vari-
ous types of GUT models (for a comprehensive review see
Ref. [9] and references therein). In order to constrain the
parameter space in GUT models with a reliable bound,
the removal of all the theoretical uncertainties is highly
desirable. One of the important elements—which can be
made less uncertain using current knowledge—is the had-
ronic contribution to proton decay matrix elements. Lattice
QCD calculations can lead to reducing the uncertainties in
the hadronic matrix element of a nucleon decaying into a

pseudoscalar meson, and thus they can provide relevant
information for the proton lifetime bound and help exper-
imental plans for the future [10].
The estimates for proton decay matrix elements in lattice

QCD have been significantly improved by removing sys-
tematic errors, one by one, since the first attempts in the
1980s [11–13]. A decade ago the JLQCD Collaboration
[14] performed an extensive calculation of proton decay
matrix elements using the Wilson fermion action and an
operator renormalization estimated by one-loop lattice per-
turbation theory in the quenched approximation with both
the “direct” method, which is a direct measurement of
matrix elements from three-point functions, and the “indi-
rect” method, which is an effective estimate through low-
energy constants in tree-level chiral perturbation theory,
calculated with two-point functions. A few years later
the JLQCD and CP-PACS joint collaboration carried out
a continuum extrapolation of the low-energy constants
for the indirect method [15] to control the uncertainty of
the large discretization error. Using the direct method,
the RBC collaboration [16] performed the analysis with
quenched domain-wall fermions (DWFs) and nonperturba-
tive renormalization, where—thanks to the almost exact
chiral symmetry of the DWFs—the discretization error
of OðaÞ was essentially removed and the error in the
renormalization factor associated with the use of lattice
perturbation theory was also eliminated. The RBC
Collaboration also performed the DWF calculation using
the indirect method with the quenched approximation as
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well as by unquenching the u and d quarks [16], and later
the RBC and UKQCD Collaborations extended the DWF
calculation with the indirect method using three dynamical
quarks (u, d and s) [17]. In this way, one of the uncontrolled
systematic uncertainties coming from the quenched
approximation was removed.
A striking (but perhaps not surprising) outcome of the

comparison of the results from the direct and indirect
calculations—though so far only performed with the
quenched approximation—is that the indirect method could
overestimate the matrix elements by a factor of about 2
[16]. To fully control the systematic uncertainties, there-
fore, one needs to perform the direct calculation with
the Nf ¼ 2þ 1 dynamical simulations and a nonperturba-
tive operator renormalization.
In this paper we provide the nonperturbative estimate of

the proton decay matrix elements using the direct method
with the dynamicalNf ¼ 2þ 1 (degenerate u, d and physi-
cal s quarks) flavor lattice QCD with DWFs. The DWF
ensemble for Nf ¼ 2þ 1 at the lattice cutoff a−1∼
1.7GeV with 300–700 MeV pion masses [18] in the
RBC/UKQCD Collaboration is used for this purpose,
which enables us to evaluate hadronic matrix elements
including almost all systematic errors on the lattice.
This paper is organized as follows. In Sec. II we explain

the definition and properties of thematrix elements aswell as
their relation to the proton partial decay width. The method
of extraction for the matrix elements from three-point func-
tions on the lattice is expressed in Sec. III, and in Sec. IV we
present our setup and a detailed analysis to obtain the matrix
elements and evaluate their systematic uncertainties.
Section V is devoted to a summary and outlook.

II. PROTON DECAY MATRIX ELEMENTS

A. Effective Lagrangian and matrix elements

Baryon-number-violating operators appearing in the
leading low-energy effective Hamiltonian are constructed
by the possible combinations of dimension-six (three
quarks and one lepton) operators as SU(3) color singlets
and SULð2Þ ×UYð1Þ invariants. Following the notation
of Refs. [19–21], the four-fermi operators are expressed as

Oð1Þ
abcd ¼ ðDi

a; U
j
bÞRðqkαc ; lβdÞLεijkεαβ; (1)

Oð2Þ
abcd ¼ ðqiαa ; qjβb ÞLðUk

c; ldÞRεijkεαβ; (2)

~Oð4Þ
abcd ¼ ðqiαa ; qjβb ÞLðqkγc ; lδdÞLεijkεαδεβγ; (3)

Oð5Þ
abcd ¼ ðUi

a;D
j
bÞRðUk

c; ldÞRεijk; (4)

with the generic lepton field l, and where the quark field of
the left-handed part is q and those of the right-handed part
areU andD (i.e., up and down types). The indices a, b, c, d

denote the generation number of the fermion, i, j, k denote
the color SU(3) indices, and α, β, γ, δ are SU(2) indices.
The inner product is defined as ðx; yÞR=L ¼ xTCPR=Ly,
which has a charge conjugation matrix C and a chiral pro-
jection PR=L. The baryon number violation (which still pre-
serves the B–L number) in GUT models is generally
expressed as a low-energy effective Hamiltonian with
the above dimension-six operators. The leading term of
the effective Hamiltonian at low energies is represented as

LB ¼
X
I

CI½ðqqÞðqlÞ�I þ � � � ¼ −X
I

CI½l̄cOqqq�I þ � � � ;

(5)

where CI ¼ CIðμÞ is the Wilson coefficient with renorm-
alization scale μ of the operator ½ðqqÞðqlÞ�I, with q being
a light quark flavor (u, d, or s). The operator is one of those
appearing in Eqs. (1–4) and is renormalized at μ. All the
details of the (SUSY) GUT are captured in the coefficients
CIðμÞ. The ellipsis indicates the higher-order operators,
which are suppressed by the inverse power of the heavy
mass scale. The index I distinguishes the type of operator
with respect to the quark-lepton flavor and chirality. The
three-quark operator reads

OΓΓ0
qqq ¼ ðqqÞΓqΓ0 ¼ εijkðqiTCPΓqjÞPΓ0qk; (6)

where the color singlet contraction is taken. Dirac spinor
indices are omitted in the above equation. In the following
we may denote the three-quark operators as OΓΓ0

. Γ and Γ0
denote the chirality, either R or L, and the bracket denotes
the contractions among the Dirac spinors.
We calculate the transition matrix elements of the

dimension-six operators with an initial nucleon (proton
or neutron, N ¼ p, n) state and a final state containing a
pseudoscalar meson [P ¼ ðπ; K; ηÞ] and an antilepton (l̄),

hPðp⃗Þ;lðq⃗;sÞj½l⃗cOΓΓ0 �jNðk⃗Þi¼ v⃗cl ðq;sÞhPðp⃗ÞjOΓΓ0 jNðk⃗;sÞi;
(7)

where the three-dimensional momenta are p⃗ for the final
pseudoscalar, k⃗ for the initial nucleon, and q⃗ ¼ p⃗ − k⃗
for the final lepton, which is determined from momentum
conservation. Neglecting the electroweak interaction of the
lepton, the amplitude hlðq⃗; sÞjl̄cj0i ¼ v̄cl ðq⃗; sÞ of the lepton
part can be captured in the wave function of the on-shell
lepton state at momentum q⃗ for the spin-s component.
The matrix element hPðp⃗ÞjOΓΓ0 jNðk⃗; sÞi is parametrized
by the relevant form factor W0ðq2Þ and the irrelevant
one W1ðq2Þ as

hPðp⃗ÞjOΓΓ0 jNðk⃗; sÞi

¼ PΓ0

�
WΓΓ0

0 ðq2Þ − iq
mN

WΓΓ0
1 ðq2Þ

�
uNðk; sÞ: (8)
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W0 and W1 are defined for each matrix element with
the three-quark operator renormalized in the minimal-
subtraction scheme (M̄S) with the naïve-dimensional-
regularization (NDR) at the scale μ and are functions of
the square of the four-momentum transfer q ¼ k − p.
Using the on-shell condition, the total matrix element as
shown in Eq. (7) is given by

ν̄cl ðq; sÞhPðp⃗ÞjOΓΓ0 jNðk⃗; sÞi

¼ ν̄cl ðq; sÞPΓ0
h
WΓΓ0

0 ðq2Þ − iq
mN

WΓΓ0
1 ðq2Þ

i
uNðk; sÞ

¼ ν̄cl ðq⃗; sÞPΓ0uNðk⃗; sÞWΓΓ0
0 ð0Þ þOðml=mNÞ; (9)

with iqvl ¼ mlvl and W1 ≃W0 [16]. Since −q2 ¼ m2
l is

much smaller than the nucleon mass squared in the case
of l ¼ e, ν, we set q2 ¼ 0 and ignore the second term in
Eq. (9). Taking only the relevant form factor will be a good
approximation even for l ¼ μ, as mμ=mN ∼ 10%, which is
smaller than the total error of W0 in this study.
Once the relevant form factor W0 is obtained in lattice

QCD, the partial decay width of the decay N → Pþ l̄ is
given by

ΓðN → Pþ l̄Þ ¼ mN

32π

�
1−

�
mP

mN

�
2
�
2
����
X
I

CIWI
0ðN → PÞ

����
2

(10)

with the perturbative estimate of the Wilson coefficient CI

in the GUT models [9]. Note that multiplying CI and WI
0

cancels their renormalization-scale dependence.
The different chirality combinations of the matrix

elements are related through the parity transformation as

hP; p⃗jORLjN; k⃗; si ¼ γ0hP;−p⃗jOLRjN;−k⃗; si; (11)

hP; p⃗jOLLjN; k⃗; si ¼ γ0hP;−p⃗jORRjN;−k⃗; si; (12)

which indicates that the four chirality combinations
ðΓΓ0Þ ¼ ðRLÞ, ðLLÞ, ðLRÞ, ðRRÞ are reduced to two

different combinations, ðΓΓ0Þ ¼ ðRLÞ, ðLLÞ. In the follow-
ing Γ0 is fixed in a left-handed chirality, and the short-hand
notation WΓL

0;1 ≡WΓ
0;1 is used. Under an exchange sym-

metry between u and d, there are the following relations
between the proton and neutron matrix elements:

hπ0jðudÞΓuLjpi ¼ hπ0jðduÞΓdLjni; (13)

hπþjðudÞΓdLjpi ¼ −hπ−jðduÞΓuLjni; (14)

hK0jðusÞΓuLjpi ¼ −hKþjðdsÞΓdLjni; (15)

hKþjðusÞΓdLjpi ¼ −hK0jðdsÞΓuLjni; (16)

hKþjðudÞΓsLjpi ¼ −hK0jðduÞΓsLjni; (17)

hKþjðdsÞΓuLjpi ¼ −hK0jðusÞΓdLjni; (18)

hηjðudÞΓuLjpi ¼ −hηjðduÞΓdLjni: (19)

A negative sign comes from the interpolation operator of
the proton or neutral pion by the exchange of u and d.
Furthermore, in the SU(2) isospin limit there is an addi-
tional relation between Eq. (13) and Eq. (14),

hπ0jðudÞΓuLjpi ¼
ffiffiffi
2

p
hπþjðudÞΓdLjpi: (20)

Therefore there are twelve principal matrix elements, which
we will calculate in this paper.

III. CALCULATION SCHEME FOR
THE FORM FACTORS

To obtain the matrix element we make use of the ratio of
the three-point function of the (proton)-(OΓL)-(meson) and
the two-point function of the nucleon and meson. Such a
ratio is represented as

R3ðt; t1; t0; p⃗; PÞ ¼
P

x⃗;x⃗1e
ip⃗ðx⃗1−x⃗Þtr½Ph0jJgsP ðx⃗1; t1ÞOΓLðx⃗; tÞJ̄gsp ð0⃗; t0Þj0i�P

x⃗;x⃗1e
ip⃗ðx⃗1−x⃗Þh0jJgsP ðx⃗1; t1ÞJgs†P ðx⃗; tÞj0iPx⃗tr½P4h0jJgsp ðx⃗; tÞJ̄gsp ð0⃗; t0Þj0i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zgs
P ðp⃗ÞZgs

p

q
L3
σ; (21)

where JgsP and Jgsp are the interpolating fields for the pseu-
doscalar and proton, respectively. These interpolating
operators are made of quark fields smeared using the
gauge-invariant Gaussian smearing [22] with the parameters
optimized separately for the meson and the proton. In the
periodic lattice the injected spatial momentum is p⃗ ¼
2πn⃗=Lσ , where n⃗ is an integer vector 0 ≤ ni ≤ Lσ − 1,

and Lσ is the spatial extension of the lattice. “tr” represents
a trace over spinor indices, andP is a spin projection matrix.
The three-point function in the numerator is constructed
using the quark propagator with the sequential source
method at the pseudoscalar sink location.
ZP;p indicates the amplitude of the overlap of the inter-

polating field to the on-shell state,
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hPðp⃗ÞjJgs†P ð0Þj0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zgs
P ðp⃗Þ

q
; (22)

h0jJgsp ð0Þjpð0⃗; sÞi ¼
ffiffiffiffiffiffiffi
Zgs
p

q
upðk; sÞ; (23)

with the proton Dirac spinor normalized as ūpðk; sÞ×
upðk; s0Þ ¼ 2mNδss0 . In this study we always take the proton
to be at rest. Note that the operator of the nucleon interpolat-
ing field is not uniquely determined, and we make use of the
two possible proton operators,

Jp ¼ εijkðuiTCγ5djÞuk; εijkðuiTCγ4γ5djÞuk: (24)

A numerical comparison of the above two types of nucleon
interpolating operators will be shown in the next section.
In the simulation we take the sufficiently large separation

between t0 and t1 in Eq. (21), so we have a range of t where
the three- and two-point functions in the ratio are domi-
nated by the ground states. Then the ratio leads to its
asymptotic form,

lim
t1−t;t−t0→∞

R3ðt; t1; t0; p⃗; PÞ

¼ Rasym
3 ðp⃗; PÞ ¼ tr

�
PPL

�
WΓ

0ðq2Þ − iq
mN

WΓ
1ðq2Þ

��
;

(25)

where q2 is the squared momentum transfer from the initial
proton to the final pseudoscalar meson state q2 ¼ ðk − pÞ2.
We employ two different projection matrices, P ¼ P4 or
iP4γj, where we use P4 ¼ ð1þ γ4Þ=2 to subtract the
contribution from the parity partner of the proton and to
disentangle W0 and W1. By solving the linear equations

Rasym
3 ðp; P4Þ ¼ WΓ

0ðq2Þ − iq4
mN

WΓ
1ðq2Þ; (26)

Rasym
3 ðp; iP4γjÞ ¼

qj
mN

WΓ
1ðq2Þ; (27)

the relevant form factor W0 can be obtained.

IV. NUMERICAL CALCULATION OF THE
PROTON DECAY FORM FACTORS

A. Lattice setup

We use the gauge configurations generated for 2þ 1
flavor dynamical domain-wall fermions with the Iwasaki
gauge action developed by the RBC and UKQCD collab-
orations [18]. The lattice volume is 243 × 64 and the size
of the fifth dimension is Ls ¼ 16. The gauge coupling

0.4

0.8

1.2

m
N

0.2

0.4

0.6

m
π

0 5 10 15 20 25 30

t

0.4

0.6

m
K

FIG. 1 (color online). Effective mass plot of the nucleon (top),
pion (middle), and kaon (bottom) at momentum squared n2p ¼ 0
(circle), n2p ¼ 1 (square), and n2p ¼ 2 (diamond), which corre-
spond to p ¼ ð0; 0; 0Þ, ðπ=12; 0; 0Þ, and ðπ=12; π=12; 0Þ, respec-
tively. For the nucleon we use a gauge-invariant Gaussian source/
sink, and for the meson we use a (Kuramashi-)wall source and
a -invariant Gaussian sink. This is for the lightest quark masses
mud ¼ 0.005 and ms ¼ 0.0343. The solid line (colored band) in-
dicates the central value (statistical error) obtained by fitting.

TABLE I. Lattice parameters, the estimate of the hadron masses, and the squared momentum transfer from the initial-state nucleon to
the final-state meson for each parameter set are shown. The lines with a blankmval

s entry show the kinematic parameters for the pion final
state and the nucleon mass, while those with a mval

s entry are for the kaon final states. The two −q2 values in each line are for the two
different momenta injected to the meson, p⃗2 ¼ ðπ=12Þ2, 2ðπ=12Þ2, respectively, where the −q2 is shown in units of GeV using a−1 ¼
1.73ð3Þ GeV [18]. The fitting range used for the mass estimates are 6 ≤ t ≤ 23 for the pion and kaon and 5 ≤ t ≤ 13 for the nucleon.

ðmsea
ud ; m

sea
s Þ mval

ud mval
s mπ mK mN −q2ðGeV2Þ # configs. # meas.

(0.005,0.04) 0.005 0.1897(5) 0.656(16) −0.129 0.241 202 404
0.005 0.0343 0.3131(5) 0.017 0.325
0.005 0.04 0.3322(5) 0.039 0.337

(0.01,0.04) 0.01 0.2420(6) 0.705(16) −0.162 0.194 150 150
0.01 0.0343 0.3328(6) −0.035 0.280
0.01 0.04 0.3510(6) −0.011 0.295

(0.02,0.04) 0.02 0.3228(6) 0.790(10) −0.218 0.137 100 100
0.02 0.0343 0.3681(6) −0.142 0.189
0.02 0.04 0.3849(6) −0.114 0.208

(0.03,0.04) 0.03 0.3880(7) 0.912(11) −0.391 −0.020 90 90
0.03 0.0343 0.4003(6) −0.364 −0.000
0.03 0.04 0.4160(6) −0.330 0.025
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β ¼ 2.13 corresponds to a−1 ¼ 1.73ð3Þ GeV. This is the
same ensemble as the in previous indirect method study
[17]. The boundary condition is periodic for the gauge field,
and it is spatially periodic and temporally antiperiodic for the
fermion fields. We use four different unitary u, d quark
masses for chiral extrapolation, and one unitary and one
partially quenched strange-quark mass for the study of
the strange-quark mass dependence of the final K0;þ kaon
state. For later convenience let us introduce the quark mass
~m, which includes the additive renormalization due to the
inexact chiral symmetry of the domain-wall fermions at a
finite extent of the fifth dimension. We define

~m ¼ mþmres (28)

as the multiplicatively renormalizable mass with m in the
lattice action, where the residual mass mres for the lattice
used in this study has been calculated as mres ¼

0.003152ð43Þ [18]. The form factors of the nucleon-to-pion
matrix elements depend on ~mud for the degenerate u- and d-
quark mass and the squared momentum transfer q2. For the
nucleon-to-kaon matrix elements, the strange-quark mass
~ms enters as an additional parameter.
In the computation of the two-point and three-point func-

tions on the lattice, we employ a gauge-invariant Gaussian
smearing with the optimized parameter ðnG; σÞ ¼ ð40; 5.0Þ
for the baryon source/sink and ðnG; σÞ ¼ ð16; 3.0Þ for the
meson sink, where the APE-smeared gauge links with
ðN; cÞ ¼ ð12; 0.4Þ are as defined in Ref. [23]. The time sli-
ces for the nucleon source t0 and meson sink t1 are set as
ðt0; t1Þ ¼ ð5; 37Þ or (27,59). The baryon-number-violating
operator at time t moves between them (t0 < t < t1). We
use the first and second smallest but nonzero momenta
p ¼ ðπ=12; 0; 0Þ, ðπ=12; π=12; 0Þ on the periodic lattice
for the meson. The statistics used for each ensemble are
summarized in Table I, as well as the valence masses used

W
0R

(m
=

0.
00

5)
W

0R
(m

=
0.

01
)

W
0R

(m
=

0.
02

)

5 10 15 20 25
t

W
0R

(m
=

0.
03

)

5 10 15 20 25
t

pµ=(π,0,0)/12 pµ=(π,π,0)/12

-0.1

0

-0.1

0

-0.1

0

-0.1

0

FIG. 2 (color online). WR
0 for the p → π0 decay channel is plotted as a function of operator time [t in Eq. (21)]. The proton source is

located at t ¼ 5, and the π0 sink is at t ¼ 27. Different symbols show the two different proton interpolating fields, which correspond to
ðuTCγ5dÞu (open) and ðuTCγ4γ5dÞu (filled). The horizontal solid line indicates the central value of the constant fit to both plateaus in the
range 13 ≤ t ≤ 20 simultaneously. The shaded area indicates the one-sigma error band.
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and the measured q2. Measurements are done with each of
the 40 hybrid Monte Carlo (HMC) trajectories for the
ensembles with mud ¼ 0.005 and 0.01, or with each of
the 20 HMC trajectories formud ¼ 0.02 and 0.03. We alter-
nate the source time slice between t0 ¼ 5 and t0 ¼ 27 from
one configuration to the next for mud ¼ 0.01, 0.02 and
0.03, while we measure both t0 ¼ 5 and 27 for all configu-
rations at mud ¼ 0.005. (Therefore the number of measure-
ments is double the number of configurations.)
The multiplicative renormalization factors that convert

the lattice three-quark operators in Eqs. (13–15) into those
in the M̄S NDR scheme have been calculated through the
regularization-invariant momentum-subtraction nonpertur-
bative renormalization procedure [17] as

Uðμ ¼ 2 GeVÞLL ¼ 0.662ð10Þð53Þ; (29)

Uðμ ¼ 2 GeVÞRL ¼ 0.665ð8Þð53Þ: (30)

The first error is statistical and the second is systematic. (A
systematic error of 8% was estimated in Ref. [17] as a trun-
cation effect of the perturbative expansion.)

In Fig. 1 we show the effective mass of the nucleon, pion,
and kaon two-point functions which enter in the denomi-
nator of Eq. (21). The effective mass at time t is constructed
with data at t and tþ 1, and we can observe the plateau
region whose starting point is t ¼ 5 for the nucleon and
t ¼ 6 for the pseudoscalar. Therefore, the denominator
of Eq. (21) is dominated by the ground states for t satisfy-
ing both t − t0 ≥ 5 and t1 − t ≤ 6.

B. Measurement of the form factor and kinematics

Figures 2 and 3 show the form factor W0 of the p → π0

channel in Eqs. (26) and (27) as a function of the time
position t of the three-quark operator. The open and filled
symbols correspond to results in two different nucleon inter-
polating operators, ðqTCγ5qÞq and ðqTCγ4γ5qÞq, respec-
tively. To obtain the value of W0, a simultaneous fit of
these two effective W0’s is performed at the plateau in
the range 13 ≤ t ≤ 20, where the twoW0’s appear to be con-
sistent and the contamination from the excited states dies
out. The same range is used for all the parameters and all
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FIG. 3 (color online). WL
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the matrix elements. Figures 4 and 5 show WR=L
0 for each

channel as a function of q2.
The form factors in the physical kinematics are calcu-

lated from the extrapolation or interpolation with the
momentum and quark masses. For the physical kinematics
of proton decay into a meson and lepton final state, −q2 is
equivalent to the lepton mass squared in the relevant form
factor W0ðq2Þ. In the lattice computation, however, the

quark masses are additional parameters that need to be
tuned toward the physical pion and kaon masses.
Therefore we have three parameters to tune: the degenerate
u-, d-quark mass ~mud, the strange-quark mass ~ms, and the
meson momentum jp⃗j. In our simulation, the ~mud → ~mphys

ud
limit is taken by an extrapolation and the ~ms → ~mphys

s limit
is taken by an interpolation, where the physical quark mass
in lattice units is realized by the limit
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FIG. 4 (color online). q2 dependence of WR
0 ðq2Þ at all quark masses in lattice units. We plot the results at mud ¼ 0.005 (circle),
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~mphys
ud ¼ 0.001385; (31)

~mphys
s ¼ 0.03785; (32)

where the values reproduce the experimental hadron mass
ratios, mπ=mΩ and mK=mΩ, and the pion and kaon masses
over the mass of Ω− [18].
We employ two different procedures for taking the above

limit. One is a global fit with a function that depends on
both the quark mass and q2, and thus W0 at the physical
point is straightforwardly obtained. The other procedure
is to sequentially take two limits: first we take q2 → 0,

and then we take the quark mass to the physical point.
In this procedure W0 at the physical point is obtained with
the second limit. In the next section we will show numerical
results obtained using these procedures.

C. Extrapolation to physical kinematics
with global fitting

In the global fitting, to obtain the form factor in the
physical kinematics we use the ansatz of the linear function,

Fπ;η
W0
ð ~mud; q2Þ ¼ A0 þ A1 ~mud þ A2q2; (33)
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FK
W0
ð ~mud; ~ms; q2Þ ¼ B0 þ B1 ~mud þ B2 ~ms þ B3q2; (34)

with the free parameters Ai and Bi. F
π;η
W0

is used for the pion
or η final state and FK

W0
is used for the kaon final state. This

procedure is the same as that employed in the previous
study [16]. We use four different quark masses, two differ-
ent strange-quark masses, and the two lowest nonzero spa-
cial momenta, and therefore the total number of data points
is eight for π and η or sixteen for the kaon final states. The
results obtained with the global fit using all the data are
shown in the second column in Table II. It turns out that
the simple linear function as described in Eqs. (33) and
(34) is in good agreement with the lattice data for all chan-
nels, which is indicated by the reasonable χ2=d:o:f: (≤ 1.4).
The fit results Fπ;η

W0
ð ~mphys

ud ; q2Þ, FK
W0
ð ~mphys

ud ; ~mphys
s ; q2Þ as a

function of q2 at the physical masses are shown in
Figs. 4 and 5.

D. Extrapolation to physical kinematics
with sequential fitting

In this procedure we first take the linear extrapolation or
interpolation to q2 ¼ 0 with two spatial momentum points
in each mass ~m and then take a chiral extrapolation to the
physical quark mass. Figures 6 and 7 plot the results at the
q2 ¼ 0 point as a function of ~mud after taking the q2 ¼ 0
limit. In the chiral extrapolation of the fitted data at q2 ¼ 0
we adopt the linear function as

fπ;ηW0
ð ~mudÞ ¼ a0 þ a1 ~mud; (35)

fKW0
ð ~mud; ~msÞ ¼ b0 þ b1 ~mud þ b2 ~ms (36)

for the pion, η final state or the kaon final state, respectively.
Here ai and bi are the free fitting parameters. From Figs. 6
and 7 we observe that the linear function describes the
lattice results quite well for each matrix element with four

different mass points, except that the data for the pion and
eta in Fig. 6 seems to be less consistent with the linear
ansatz. The difference between the four-point fit and the
three-point fit will be used in the estimate of the systematic
error discussed later. The results are shown in Table II (see
the column marked as “Sequential”).

E. Systematic errors

The systematic errors due to using the extrapolation (or
interpolation) into physical kinematics (q2 ¼ 0 limit), and
the contributions of the finite-volume effect and nonzero
lattice spacing will be discussed in this section. This work
uses the lattice scale estimated in Ref. [18] and the renorm-
alization constant shown in Eqs. (29) and (30). To estimate
the total error separately from the statistical error, the sys-
tematic errors in the extrapolation, the finite-size effect,
and the lattice artifact—together with the error of the lattice
scale and that of the nonperturbative renormalization
procedure—are all added in quadrature.
At the target mass and momentum point

ð ~mud; ~ms; q2Þ ¼ ð ~mphys
ud ; ~mphys

s ; 0Þ, no chiral singularity is
expected. Therefore, if the simulations are made closer
to the target, the linear approximation to the fitting function
becomes arbitrarily precise. However, as the simulated
points might not be close enough to assume linearity,
we need to assess the systematic error due to the choice
of this approximation. This systematic error is regarded
as an effect of higher order than Oð ~mudÞ and Oðq2Þ.
Note that the higher-order effect beyond Oð ~msÞ is safely
neglected as its variation around the physical point is very
small, as can be estimated by comparing the results with
ms ¼ 0.0343 and 0.04 in Figs. 4 and 5.
The main results of the relevant form factors are

employed similarly as those by the global fit with 0.005 ≤
mud ≤ 0.03 (see the second column of Table II). Note that r
denotes the different fitting ranges,

TABLE II. Table of results for the renormalized WR=L
0 ðμ ¼ 2 GeVÞ in GeV2 after global and sequential fitting. The error is only

statistical. For the global fitting, we show the results with three different fitting mass ranges, which are all in the range 0.005 ≤ mud ≤
0.03 (rfull), excluding the heaviest mass mud ¼ 0.03 (rlight) and the lightest mass mud ¼ 0.005 (rheavy). For the sequential fitting, we
show the results including all the masses.

Global Sequential
Matrix element rfull χ2=d:o:f: rlight rheavy rfull χ2=d:o:f:

hπ0jðudÞRuLjpi −0.103ð23Þ 1.4 −0.132ð29Þ −0.072ð34Þ −0.114ð22Þ 2.2
hπ0jðudÞLuLjpi 0.133(29) 1.4 0.156(41) 0.142(38) 0.123(28) 1.1
hK0jðusÞRuLjpi 0.098(15) 0.4 0.103(19) 0.092(29) 0.093(15) 0.1
hK0jðusÞLuLjpi 0.042(13) 0.4 0.044(16) 0.037(20) 0.037(14) 0.1
hKþjðusÞRdLjpi −0.054ð11Þ 0.8 −0.060ð13Þ −0.052ð21Þ −0.049ð13Þ 0.6
hKþjðusÞLdLjpi 0.036(12) 0.8 0.040(15) 0.041(18) 0.041(12) 0.6
hKþjðudÞRsLjpi −0.093ð24Þ 0.6 −0.108ð28Þ −0.082ð39Þ −0.088ð25Þ 0.9
hKþjðudÞLsLjpi 0.111(22) 0.6 0.121(28) 0.115(37) 0.117(23) 0.7
hKþjðdsÞRuLjpi −0.044ð12Þ 0.1 −0.043ð14Þ −0.041ð20Þ −0.044ð12Þ 0.1
hKþjðdsÞLuLjpi −0.076ð14Þ 0.3 −0.082ð17Þ −0.076ð24Þ −0.078ð14Þ 0.5
hηjðudÞRuLjpi 0.015(14) 1.3 −0.002ð19Þ 0.031(19) 0.017(14) 1.2
hηjðudÞLuLjpi 0.088(21) 0.7 0.094(29) 0.094(28) 0.076(21) 0.4
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rfull∶ ½0.005; 0.03�; rheavy∶ ½0.01; 0.03�;
rlight∶ ½0.005; 0.02�;

(37)

which are also used in Table II. The variations of the results
caused by removing the largest and smallest ~mud from the
global fit, together with the difference between the result in
the sequential fit and the main result, provide the systematic

errors coming from the uncertainty of the fitting function
for the extrapolation to the physical kinematics and the
finite-size effect (FSE).
The uncertainty in the extrapolation due to a higher-order

effect than linearity in the quark mass (and also q2) is esti-
mated by the variance between the results in rfull and those
in rlight and the variance between the results with the global
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FIG. 6 (color online). Results of WR
0 ð0Þ at different ~m ¼ mud þmres. The different open symbols shown in the matrix element of the

kaon final state are the results at different values of the partially quenched strange-quark mass, ms ¼ 0.0343 (circle) and ms ¼ 0.04
(square). Straight lines show the linearly fit function with all four quark masses. For the matrix element of p → K, these are the results
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points, and the star symbol is with three fitting points using the range of rlight defined in the text. We discuss the systematic uncertainties
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fit and those with the sequential fit. By comparing the
region with and without the heavy mass m ¼ 0.03, which
is close to the physical strange-quark mass, we estimate the
Oð ~m2Þ effect. Furthermore, since the sequential fitting
procedure (explained in the previous subsection) takes into
account the mass dependence of the q2 slope, we estimate
the systematic error of the extrapolation to the physical
kinematics as a part of the higher-order effect [e.g.,
Oð ~mq2Þ terms] beyond the ~m and q2 linear approximation
by comparing with the results in the global fit.
On the other hand, the difference between results the

in rfull and rheavy is expected to probe at least a part of

the FSE since the lightest point is affected the most by
the FSE rather than the Oð ~m2Þ effect. Such an estimate
of the FSE was used in the calculation of the nucleon
axial charge gA [24,25], in which a significant FSE
was observed in the lightest quark mass in the same
gauge ensemble. [This is also suggested by the fact that
the relevant form factor W0 for a pion final state is pro-
portional to ð1þ gAÞ in the leading order of baryon chiral
perturbation theory; see Ref. [16].] Therefore neglecting
data at the lightest mass m ¼ 0.005 in the fitting region
might result in less contamination from the FSE (see also
Fig. 10 of Ref. [25]).
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FIG. 7 (color online). Results of WL
0 ð0Þ with the same symbols as in Fig. 6.
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The systematic error including both the higher-order
effect [Oð ~m2Þ,Oððq2Þ2Þ,Oð ~mq2Þ] and the FSE is evaluated
by adding in quadrature the difference between the global
and sequential fitting results in the range of rfull and the
maximum difference between the global fitting results in
the range of (rfull, rlight) and (rfull, rheavy), even though this
proceduremay be too conservative. Themagnitude is shown
in the column denoted as “Extrapolation” in Table III.
The discretization error ofOðaÞmay arise from the inex-

act chiral symmetry due to a finiteLs. However, as the size of

the chiral symmetry breaking is small after the additivemass
shift [Eq. (27)] is performed, mresa≃ 3 × 10−3, this effect
can be safely neglected. Here the dominant discretization
error at Oða2Þ has been estimated using the scaling study
of a hadronic observable performedwith this and finer lattice
ensembles [18]. The observed discrepancy in the spectros-
copy of the light meson (Fig. 26 in Ref. [18]) with the two
lattice spacings is up to 1%–2%,which amounts to a roughly
5% discretization error of the form factor W0 assuming
the Oða2Þ scaling. We take this 5% as the Oða2Þ error,
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FIG. 8 (color online). Summary of WL=R
0 ðμ ¼ 2 GeVÞ for twelve principal matrix elements. Filled circles show the present

results, and for comparison the results in quenched QCD (triangles) and the indirect method using chiral perturbation theory (crosses)
are plotted as well.

TABLE III. Final results of the renormalized WL=R
0 ðμ ¼ 2 GeVÞ for individual matrix elements and the error budget of the statistical

and systematic uncertainties. The first and second errors in WL=R
0 represent the statistical and systematic errors, respectively. The third

column denotes the total error, which is estimated by adding the statistical and systematical errors in quadrature. The fourth column,
denoted as χ, shows the systematic error of the mass and momentum extrapolation/interpolation estimated by the variance of the
extrapolation to physical kinematics, and the fifth column shows the uncertainties from lattice artifacts (as explained in the text).
The last two columns show the uncertainties of the renormalization factor (ΔZ) and lattice spacing (Δa−1). We also show the
p → πþν decay matrix element using the SU(2) isospin relation in Eq. (20).

Total error Systematic error budget
Matrix element W0ðμ ¼ 2 GeVÞGeV2 (%) χ Oða2Þ ΔZ Δa−1

hπ0jðudÞRuLjpi −0.103 (23) (34) 40 0.033 0.005 0.008 0.004
hπ0jðudÞLuLjpi 0.133 (29) (28) 30 0.026 0.007 0.011 0.005
hπþjðudÞRdLjpi −0.146 (33) (48) 40 0.047 0.007 0.011 0.006
hπþjðudÞLdLjpi 0.188 (41) (40) 30 0.037 0.010 0.016 0.007
hK0jðusÞRuLjpi 0.098 (15) (12) 20 0.007 0.005 0.008 0.003
hK0jðusÞLuLjpi 0.042 (13) (8) 36 0.007 0.002 0.003 0.001
hKþjðusÞRdLjpi −0.054 (11) (9) 26 0.008 0.003 0.004 0.002
hKþjðusÞLdLjpi 0.036 (12) (7) 39 0.007 0.002 0.003 0.001
hKþjðudÞRsLjpi −0.093 (24) (18) 32 0.016 0.005 0.008 0.003
hKþjðudÞLsLjpi 0.111 (22) (16) 25 0.012 0.006 0.009 0.004
hKþjðdsÞRuLjpi −0.044 (12) (5) 30 0.003 0.002 0.004 0.002
hKþjðdsÞLuLjpi −0.076 (14) (9) 22 0.006 0.004 0.006 0.003
hηjðudÞRuLjpi 0.015 (14) (17) 147 0.017 0.001 0.001 0.001
hηjðudÞLuLjpi 0.088 (21) (16) 30 0.014 0.004 0.007 0.003
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which is more conservative than a naive power counting
ðaΛQCDÞ2 ∼ 0.02, with ΛQCD ¼ 250 MeV.
We also take into account the error coming from the

uncertainty of the lattice spacing, which is given as
a−1 ¼ 1.73ð3Þ GeV, and the error of the renormalization
constant, which is given in Eq. (29) or Eq. (30).
We ignore the partially quenched effect of the strange

quark—which is due to the small mismatch of the sea
and valence strange masses—for the matrix element of
the Kþ, K0 meson final state. Since the valence strange-
quark mass dependence of W0 is negligibly small—as
shown in Figs. 6 and 7—this effect is also negligible.
Note that we also do not consider the effect of disconnected
diagrams in thematrix elements of the η in the final state, but
we note that the result is valid assuming a flavor SU(3)
degenerate valence quarkmval

ud ¼ mval
s and ignoring the par-

tially quenched effect of the strange quark.

F. Results of proton decay matrix elements

Table III summarizes the results of the relevant form fac-
tor W0ðq2Þ of proton decay for all the principal matrix ele-
ments [Eqs. (13), (15–19)] at q2 ¼ 0. The central values are
those obtained with the global fit on q2 and the simulated
quark masses for the physical kinematics ~mud → ~mphys

ud ,
~ms → ~mphys

s , and q2 → 0, with the rfull range for mud.
The values in the first parenthesis are the statistical errors.
The budget of the systematic error is shown in the last four
columns. These four errors are added in quadrature to give
the total systematic error shown in the second parenthesis
for each value of the form factors.
Figure 8 shows the results of the form factors with the

error bars expressing the total error when the statistical
and systematic errors are added in quadrature, which are
marked as “Nf ¼ 2þ 1.” The two panels compare the
results with the old ones using some approximation. The
left panel compares the results with the quenched approxi-
mation in the direct method [16]. The right panel shows
those results obtained with the indirect method in the same
ensembles [17]. The sizable error for “Nf ¼ 2þ 1” in the
current analysis prevents us from seeing any significant
difference from the quenched or indirect results. For phe-
nomenological applications, however, one should clearly
use our Nf ¼ 2þ 1 results with the direct method with
the total error instead of the previous results [16,17],
because each previous approximation has used systematic
uncertainties that were not even estimated.

V. SUMMARY AND OUTLOOK

We have presented the lattice calculation of proton decay
matrix elements using 2þ 1 flavor dynamical domain-wall
fermions, which are essential ingredients to estimate the

nucleon lifetime in grand unified theories. The direct
method using the three-point function of the (nucleon)-
(operator)-(meson) with nonperturbative renormalization
was applied on a volume L3

σ ≃ 3 fm3. Previous calculations
had undermined the estimate of the systematic uncertainties
on the matrix elements at the physical kinematics. This
work made it possible to control these uncertainties for
the first time by removing most of them, while the remain-
ing uncertainties were given with their estimates. The
uncertainties that have been eliminated here are those
due to the quenched approximation [16] and the use
[17] of the indirect method with tree-level baryon chiral
perturbation theory. The estimated uncertainties are the
error in the extrapolation in the quark mass and meson
momentum, the finite-volume effect, the discretization
error, the error in the nonperturbative renormalization,
and the uncertainty of the lattice scale. The relevant form
factorsW0ðq2 ¼ 0Þ of the twelve principal matrix elements
[Eqs. (13), (15–19)]—from which one can calculate those
for the entire nucleon-to-pseudoscalar-meson process—
have been evaluated and summarized in Table III with their
error estimates.
Although we have established an estimate of the proton

decay matrix element with all the errors, the total errors are
fairly large (30%–40% for the π final state and 20%–40%
for the K final state). One of the major uncertainties is the
statistical error, especially for the p → eþπ0 decay mode,
which could have influenced the size of the error of the
combined chiral extrapolation and the finite-volume effect.
A significant improvement of the current results is expected
with the adoption of the newly developed technique for the
reduction of the statistical error [26], which will be
addressed in future work. However, we want to emphasize
that for now one should use the results in this paper with the
stated total errors in any serious phenomenological
application.
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