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The scaling laws in an IR theory are dictated by the critical exponents of relevant operators. We have
investigated these scaling laws at leading order in two previous papers. In this work we investigate further
consequences of the scaling laws, trying to identify potential signatures that could be studied by lattice
simulations. From the first derivative of the form factor we derive the behavior of the mean charge radius of
the hadronic states in the theory. We obtain hr2Hi ∼m−2=ð1þγ�mÞ which is consistent with hr2Hi ∼ 1=M2

H . The
mean charge radius can be used as an alternative observable to assess the size of the physical states, and
hence finite size effects, in numerical simulations. Furthermore, we discuss the behavior of specific field
correlators in coordinate space for the case of conformal, scale-invariant, and confining theories making use
of selection rules in scaling dimensions and spin. We compute the scaling corrections to correlations
functions by linearizing the renormalization group equations. We find that these corrections are potentially
large close to the edge of the conformal window. As an application we compute the scaling correction to the
formulaMH ∼m1=ð1þγ�mÞ directly through its associated correlator as well as through the trace anomaly. The
two computations are shown to be equivalent through a generalization of the Feynman-Hellmann theorem
for the fermion mass and the gauge coupling.
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I. INTRODUCTION

Gauge theories with an infrared fixed point (IRFP) are
studied currently for building models of strongly interact-
ing electroweak symmetry breaking [1–4]. At large dis-
tances the couplings flow toward their fixed point values,
and the theory becomes scale-invariant. Theories with an
IRFP are said to lie within the conformal window, see e.g.
Refs. [5,6] for analytical results in the perturbative regime.
In the absence of supersymmetry, it is difficult to identify

a fixed point in the nonperturbative regime of the theory.
Lattice simulations provide a first principle tool to inves-
tigate the low-energy dynamics of asymptotically free
gauge theories. Breaking scale invariance explicitly, e.g.
by introducing a fermion mass term in the action and
studying the scaling of field correlators as the breaking
parameter tends to zero, has become a common way to
characterize IRFPs in lattice studies e.g. [7]. A theoretical
understanding of the scaling laws is a necessary tool for
these analyses, and a number of useful (hyperscaling)
relations have already been investigated in our previous
work [8,9]. Working out these scaling relations is an
interesting theoretical problem, independently of its appli-
cation to the analysis of lattice data. For a recent discussion
of lattice results, we refer the reader to the comprehensive
review that appeared in Ref. [10].
Extending our previous work on mass-deformed con-

formal gauge theories (mCGT) [8,9], we discuss here the
application of the scaling laws to a number of interesting
physical cases, namely the scaling of the hadron size, the
scaling corrections, and the determination of selection rules
for field correlators.

The fact that hadrons emerge in a mCGT is a nontrivial
empirical fact. At least at weak coupling this can be
understood as a consequence of the fermions decoupling
below the mass m, so that the low-energy dynamics should
be described by a pure Yang-Mills effective theory, which
is believed to be of confining nature [11]. In practical lattice
simulations confinement is identified through a nonvanish-
ing expectation value for the Polyakov loop, and it is
characterized by the spectrum of the bound states that
determine the correlators of gauge invariant interpolating
fields as in QCD. In such a theory all hadronic parameters
are controlled to leading order by the coupling m, which
breaks explicitly scale invariance, and whose scaling
exponent characterizes the long-distance dynamics. This
is clearly at odds with the behavior observed in QCD,
where chiral symmetry breaking requires the Goldstone
bosons to be massless in the chiral limit, while the rest of
the spectrum has a finite mass, which is dictated by some
typical hadronic scale. We shall refer to the bound states of
a mCGT as m-hadrons in what follows. For a mCGT the
properties of these m-hadrons are very different from the
ones commonly encountered in QCD-like theories. Being
able to characterise the size of m-hadrons, and to compute
the scaling of the size with the fermion mass is crucial in
order to understand finite-size effects (FSE) in the results of
numerical simulations. When the volume of the lattice is
not large enough to accommodate the m-hadrons, FSE
distort the spectrum, and may well obscure the scaling
behavior that one is trying to identify. This is an important
source of systematic errors in lattice studies, and has been a
major concern in the interpretation of the most recent (and
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precise) studies of the spectrum of mCGT, see e.g.
Refs. [12,13] for recent discussions.
There has been a recent renewed interest in the existence

of theories that are scale invariant without being symmetric
under the full conformal group. For recent work on scale-
invariant (SFT) versus conformal field theories (CFT) see
e.g. Refs. [14–18], and references therein for earlier work
on the subject. It emerges from our analysis that the scaling
laws for field correlators in a neighborhood of a fixed point
provide a criterion to distinguish SFTs from CFTs. As a
consequence, we discuss the possibility of identifying the
existence of a fixed point describing a CFT by looking at
the scaling behavior of the correlators when the theory is
deformed by a mass term.
This paper is organized as follows. In Sec. II we rederive

briefly the scaling laws, emphasizing the features that will
be useful in the rest of our study. In Sec. III we apply the
scaling relations to form factors of conserved currents, and
deduce a scaling law for the radius of the charge distribu-
tion inside the (pseudo)scalar meson. In Sec. IV we use the
scaling laws to formulate a criterion that allows us to
distinguish a scale-invariant theory from a conformal-
invariant one as well confining theories. Finally in
Sec. V, we investigate the subleading corrections to the
scaling laws for generic correlation functions. The correc-
tions are explicitly calculated for the hadronic mass in
two ways and their equivalence is shown using a
Feynman-Hellmann type relation for the gauge coupling.
The relation of the charge radius to the derivative of the
form factor is summarized in Appendix A 2 for the reader’s
convenience.

II. CONFORMAL SCALING

Let us concentrate here on a theory with only one
relevant perturbation at the IRFP, whose coupling we
denote by m, and let us introduce an UV cutoff Λ; O1

and O2 are two local operators. The generic two-point

correlator, evaluated on two arbitrary physical states φa;b,
in the regulated bare theory:

Cðx;m;ΛÞ ¼ hφajO1ðxÞO2ð0Þjφbi (1)

depends on the distance x, the couplingm and the scaleΛ. In
the expression above we rescale the dimensionful coupling
m by some reference scalem0, so that the correlator depends
on the dimensionless coupling m̂≡m=m0. We denote the
scaling dimension of the coupling m by ym ≡ dm þ γm
where dm and γm are the engineering and anomalous
dimension, respectively (and clearly dm ¼ 1). We shall
adopt the same conventions as in Refs. [8,9], denoting by
dOi

and γOi
the classical and anomalous dimensions of Oi

and therefore the scaling dimension of the operatorO reads:
ΔOi

≡ dOi
þ γOi

. For the sake of clarity, anticipating Sec. V,
we shall denote by γ� (and thus Δ�) any anomalous
dimension at the fixed point in order to distinguish it from
the one away from the fixed point.
In computing the leading scaling we perform, as usual, a

renormalization group (RG) transformation Λ → Λ=b:

Cðx; m̂;ΛÞ ¼ b−ðγ
�
O1

þγ�O2
ÞCðx; by�mm̂;Λ=bÞ;

y�m ¼ 1þ γ�m (2)

followed by a rescaling of all mass scales by a factor of b,
on the right-hand side of (2):

Cðx; by�mm̂;Λ=bÞ ¼ b−ðdO1
þdO2

þdφaþdφb ÞCðx=b; by�mm̂;ΛÞ:
(3)

A crucial observation is that the physical states are free
of anomalous scaling [9]. Combining Eqs. (2) and (3)
we get

Cðx; m̂;ΛÞ ¼ b−ðΔ
�
O1

þΔ�
O2

ÞCðx=b; by�mm̂;ΛÞ: (4)

FIG. 1. Overview of behavior of relevant and irrelevant directions at UVand IR fixed points (FPs). The couplings, say Leff ∼ giOi with
yi ¼ 4 − Δi, fall into relevant (ygi > 0), irrelevant (ygi < 0) and marginal (ygi ¼ 0) classes at the FPs. In all cases there is a trivial
(g�UV ¼ 0) ultraviolet fixed point UVFP and the y-axis corresponds to its critical surface. (Left) The couplings g0 and g are irrelevant and
relevant at the UVFP. An example of which is QCD with g being the gauge coupling and g0 the quark mass. (Middle) nontrivial IR fixed
point (g�IR ≠ 0). The direction g is relevant and irrelevant at UVand IRFP, respectively, whereas g0 is irrelevant at both fixed points. An
example is IR-conformal gauge theory (withm ¼ 0) and g0 is four quark operator provided yg0 < 4 is really the case. (Right) The same as
before but g0 is relevant at IR fixed point. Examples are, assuming ym > 0, mCGT where g0 is the mass m. Another example is IR-
conformal gauge theory with m ¼ 0 where g0 is four quark operator where this time yg0 > 0.
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We can exploit the arbitrariness of b and choose it such that
b ¼

ffiffiffiffiffi
x2

p
m0. This then implies that

Cðx; m̂;ΛÞ ¼ ðx̂2Þ−αðm0ÞdO1
þdO2

þdφaþdφb Fðx̂y�mm̂; Λ̂Þ (5)

with α≡ ðΔ�
O1

þ Δ�
O2

þ dφa
þ dφb

Þ=2, Λ̂ ¼ Λ=m0 and F a
dimensionless function. We will use this particular form of
the scaling law to derive some physical consequences in the
following sections. The application to mCGTs can be
inferred indirectly from the caption of Fig. 1. Discussion
of finite size effects to Eq. (5) can be found in Appendix B 1.

A. Comment on additional relevant directions in mCGT

In derivations like the one shown in the previous section
it was assumed that there is only one relevant operator
driving the system away from the IRFP. Current lattice
results seem to suggest that this is indeed the case for the
theories that have been investigated so far. Nevertheless it
might be the case that four quark operators

Leff ¼ cq̄qq̄q
Λ2
ETC

q̄qq̄q (6)

that do appear for example in extended technicolor (TC)
models, become relevant, i.e. Δq̄qq̄q < 4. In this case a
situation like the one shown in Fig. 1 (right) will apply: in
the very far IR this operator will grow and drive the system
away from the fixed point; both the mass of the fermions
and this additional coupling need to be tuned for the system
to be on the critical surface. Academically one could hope
to hit a trajectory that goes directly in the UVFP for which
cq̄qq̄qjUVFP ¼ 0, and then flow out of the UVFP along the
renormalized trajectory flowing into the IRFP. This would
be the equivalent of finding a perfect action for the IRFP. In
practice, e.g. when setting the bare parameters in a
simulation at finite lattice spacing, it is impossible to tune
the system exactly to this point. The simple plaquette action
does contain higher dimensional couplings by construction,
and an infinite amount of tuning is needed to find a perfect
action. Thus summa summarum the study of the scaling
dimension of higher dimensional operators within mCGT
will remain an important topic in practice.

III. SIZE OF m-HADRONS FROM FORM FACTORS

In this section we characterize the size of hadronic states
in mCGTs by studying the radius of their charge distribu-
tion. The radius of the charge distribution is defined from
the derivative of the form factor of the state; the latter is
defined in turn from the matrix element of the conserved
vector current between hadronic states. Scaling laws for the
derivatives of the form factor can be deduced from the
scaling laws we have obtained for the matrix elements in
our previous paper [9].
In the following let us consider a matrix element where a

scalar particle H probes a conserved vector current. On the

grounds of Lorentz covariance the matrix element may be
parametrized as follows 1

hHðp1ÞjVμjHðp2Þi ¼ ðp1 þ p2ÞμfHþðq2Þ;
JPCðHÞ ¼ 0PC; (7)

where q≡ p1 − p2 is the momentum transfer to the
current. Note that the structure ðp1 − p2ÞμfH−ðq2Þ vanishes
by virtue of current conservation: ∂ · V ¼ 0. The function
fHþðq2Þ is known as a form factor: its value at zero
momentum corresponds to the charge of H under the
current Vμ, and its derivative corresponds to the square of
the charge distribution cf. Appendix A 2. For instance for
the pion form factor in QCD,

fπ�þ ð0Þ ¼ �1; hr2π�i ¼ 6
d
dq2

fπ�þ ðq2Þj
q2¼0

: (8)

We wish to emphasize that (8) is not related to the pion’s
special role in QCD as should be clear from the notes in
Appendix A 2. We shall later on contrast the behavior of the
pion charge radius in QCD with the charge radius of a
generic m-hadron. In order to determine the scaling
exponents, following the notation in [8,9], we define

fHþ;n ≡ dn

dðq2Þn f
Hþðq2Þj

q2¼0

∼mηfn ; (9)

and shall assume that the derivatives exist. Our main
interest is to establish the behavior of the size of the m-
hadrons as a function of the relevant perturbation m. We
will proceed in two steps: (i) we derive the relative
difference ηfnþ1

− ηfn , and (ii) we determine ηf0 .
(i) The mass dependence of the form factor, fðq2Þ≡

fHþðq2Þ for shorthand, is summarized in a scaling law
akin to Eq. (5):

fðq2Þ ¼ ~fðq̂2=m̂2=y�mÞ ¼ ~fð0Þ þ ~f0ð0Þ
�

q̂2

m̂2=y�m

�

þ 1

2
~f0ð0Þ

�
q̂2

m̂2=y�m

�
2

þ � � � ; (10)

where the dots stand for higher terms in the Taylor
expansion. Note there is no dependence on the RG
scale as the current is conserved. From Eq. (10) it is
immediate to deduce

ηfnþ1
− ηfn ¼ −2=y�m (11)

1The current Vμ, which we do not specify any further at this
point, might be in the flavor singlet or adjoint representation. The
main point is thatH couples to it. Subtle cases in the real hadronic
world are fπ0þ ¼ 0 by virtue of C-covariance; yet fK0þ ≠ 0 as K0 is
not C-eigenstate.
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(ii) Second, we shall show ηf0 ¼ 0. It follows directly
from our master formula [9]:

hφ2jOð0Þjφ1i ∼ ðm̂ÞðΔ�
Oþdφ1þdφ2 Þ=y�m (12)

where φ1;2 are physical states. We note that ΔVμ
¼ 3

(sinceVμ is a conserved current) and thatdφ1
¼dφ2

¼−1
which implies that fHþ;1ð0Þðp1 þ p2Þμ ∼m1=y�m . Since
the energy momentum vector is free from anomalous
scaling it counts like the engineering dimension in the
formula in the nominator of the exponent in (12) and
therefore ~fð0Þ ¼ fð0Þ ∼Oð1Þ (i.e. ηf0 ¼ 0). Another
way to arrive at the same result is to notice that ~fð0Þ is
equal to the charge and since the latter cannot scalewith
external parameters like the mass this implies that ~fð0Þ
is independent of the mass and thus ηf0 ¼ 0.

Putting the two results together we get:

ηfn ¼
−2n
y�m

≡ −2n
1þ γ�m

; (13)

and for the mean charge radius squared (8) we obtain:

hr2Hi ¼ 6
d
dq2

fHþðq2Þj
q2¼0

∼mηf1 ¼ m−2=y�m ∼
1

M2
H
; (14)

where MH denotes the mass of the hadron H and we have
used the general result MH ∼m1=y�m derived for the entire
hadronic spectrum in Ref. [9]. Thus, in summary, the size
of the m-hadrons is inversely proportional to the hadronic
mass. Whereas this result does not seem surprising, it is of
importance for controlling FSE on the lattice. Whereas the
scaling law gives information on the relative size of hadrons
for different values of m, it does not determine its absolute
size hr2Hi ¼ Kr2H

M−2
H . The determination of Kr2H

∼Oð1Þ
could then be pursued by a measurement of the slope of the
form factor (7) through Eq. (14). Using twisted boundary
conditions could help in improving the momentum reso-
lution, and hence in resolving better the slope of the form
factor. The discussion of finite size effects in the context of
the form factor can be found in Appendix B 2.
It would seem that the arguments of the form factor of a

scalar coupled to a conserved current (7) ought to general-
ize to higher spin hadrons. The application to the analogue
of the proton electromagnetic form factor should be rather
straightforward. In general a more detailed analysis would
necessitate the consideration of the corresponding polari-
zation tensors. Suppose two higher spin hadrons couple to
an operator O that is not necessarily related to a physical
charge. Even though ηf0ðOÞ ≠ 0 in general, we anticipate
that the extension of the overlap with the operator O is
determined by (11) based (10) which in turn follows from
generic scaling arguments.
Let us briefly open a parenthesis here. Since MH ≈

KMH
m1=y�mΛ1−1=y�m

ETC with m ≪ ΛETC (c.f. Fig. 2 for an
explanation of ΛETC), KMH

¼ Oð1Þ, one concludes that for

y�m ≡ 1þ γ�m > 1 ⇒ m < MH; (15)

at least for sufficiently small m to overcome the unknown
Oð1Þ-coefficient discussed above. Other than that the
hierarchy is controlled by the positivity of γ�m which is
of course dependent on the actual gauge theory.
Furthermore whereas the unitarity bound implies γm ≤ 2
no lower bound exists other than the fact that for γm < −1
the operator becomes irrelevant which goes against our
working assumption as well as all results, known to the
authors, in the literature.
It is interesting to contrast the behavior of the mean

charge radius of the (pseudo)scalar meson in mCGT to the
one obtained for the Goldstone boson in QCD. More
precisely, since in both cases the masses vanish in the
limit m → 0 it is clear from a heuristic viewpoint that, for a
state with sharp momentum, the particle cannot be localized
and therefore one expects the charge radius to diverge. The
functional behavior of the divergence is not clear a priori. In
a theory where chiral symmetry is spontaneously broken,
the dynamics of the light Goldstone bosons is described by
chiral perturbation theory. The mean charge radius can be
computed in perturbation theory, and it is found to diverge
logarithmically with the pion mass [20]. This difference
suggests that the existence of a conformal fixed point could
be characterized by studying the scaling of hr2Hi for the

FIG. 2. Sketch of the RG flow for an IR-conformal
gauge theory. At high energies the theory is asymptotically
free, and at lower energies it reaches a fixed point g�IR. The
mass parameter m, or equivalently the mass scale MH > m (of
the hadronic bound states), drives the theory away from the FP.
This is the picture that heuristic computations of the quark
condensate suggest e.g. [8,19]. Note the inverse of the lattice
box size has to be significantly smaller than MH in order for
FSE effects to be under control. More precisely as long as
LMH ≫ 1, FSE are of the order expð−MHLÞ. If this condition
is not met the effects are powerlike with known exponents
e.g. [13]. We should point out that we have not attempted to
indicate the effect on the coupling of the actual value of
L on the curve on the graph.
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pseudoscalar meson. We wish to reemphasize [8] that the
scaling laws for the mass parameter imply that there is no
remnant of the pion as a pseudo-Goldstone boson in
a mCGT.

IV. EXPLOITING SELECTION RULES OF
CFT-CORRELATORS

We discuss in this section how to exploit selection rules
for two-point vacuum correlators originating from scaling
dimensions and spin of the quasiprimary (to be commented
on further below) operators. In subsection IVAwe contrast
these aspects from the viewpoint of distinguishing CFTs
from SFTs (cf. [21] for lecture notes on this topic), while in
subsection IV B we focus on differentiating conformal
from confining behavior.

A. CFT vs SFT

Consider first a scale invariant theory, and specifically
(quasi)primary fields O1;2 and Oμ

3 with respective scaling
dimension Δ�

O1
¼ Δ�

O3
≠ Δ�

O2
. In the absence of symmetry

breaking, the short distance correlator obeys the following
selection rules:
(1) Scaling dimension [22]2

CðxÞ¼ h0jO1ðxÞO2ð0Þj0i∼
�ðx2Þ−α SFT

0 CFT
; (16)

with α≡ ðΔ�
O1

þ Δ�
O2
Þ=2.

(2) Spin:

CμðxÞ ¼ h0jO1ðxÞOμ
3ð0Þj0i

∼
�
xμðx2Þ−ðαþ1=2Þ SFT

0 CFT
; (17)

with α≡ ðΔ�
O1

þ Δ�
O3
Þ=2. Eq. (17) follows from the

investigations in [23].
The equations above state that, in order to have a non-
vanishing correlator, the scaling dimension as well as the
spin structure of the two operators in question have to be
identical [23]. Let us add that it is the local nature of the
special conformal transformations which is responsible for
the selection rules quoted above. These transformations are
precisely the difference between the symmetries of a CFT
and a SFT.
Using Eq. (5) we get:

Fðt; yÞ→t→0
�
constant SFT

0 CFT
; (18)

for y ¼ Λ=m0 ¼ Λ
ffiffiffiffiffi
x2

p
=b such that the system is suitably

close to the fixed point. More precisely for fixed x2 and Λ, y
(or b) has to be such that the system is close to the fixed

point. In general we expect the constant to be finite with the
possible caveat that the correlator, which is generally not a
physical observable, is affected by IR divergences.
This criterion is unfortunately of limited use for standard

gauge theories. In recent years the understanding has
emerged [16] that limit cycles are the only possibility
for four-dimensional unitary quantum field theories to be
scale but not conformal invariant. On the other hand limit
cycles have only been found in theories with flavor depen-
dent couplings, a.k.a. Yukawa terms [16]. These couplings
are absent in the gauge theories currently studied on the
lattice, and therefore it would seem that IR-conformal
theories are indeed IR-conformal and not just IR-scale-
invariant. Let us add to this end that, currently, the only
logical possibility for scale invariant theories to exist is if the
theories can evade the strong version of the a-theorem at the
nonperturbative level [17], as the latter has been shown to be
valid in perturbation theory some time ago [25].

B. CFT (IR-conformal) vs confining theory

In the previous paragraph we discussed a possible recipe
for discerning theories that have only one (flavor indepen-
dent) coupling, and that are CFTs and not SFTs. The
selection rules can also be useful in distinguishing CFTs
(IR-conformal) from confining theories. In the following
we shall assume that in a gauge theory without IR fixed
points, chiral symmetry breaking and confinement occur
together.
For that purpose, let us analyze the dimension, and the

spin selection rules for a number of example operators. We
consider the case of (i) quasiprimary operators from the
viewpoint of the CFT candidate theory, (ii) whose corre-
lation function does not vanish by virtue of non-CFT
selection rules such as parity symmetry for example.
(i) Scaling dimension:3

O1 ¼
1

g2
G2; Δ�

G2 ¼ 4;

O2 ¼ q̄q; Δ�̄
qq ¼ 3 − γ�m: (19)

We note that the correlator (16) with (19) vanishes to
all order in perturbation theory in the massless limit as
the gauge theory Lagrangian is even under q → γ5q

2For more elaborate forms under open flavor and Lorentz
indices of the SFT correlators we refer the reader to Refs. [16,24].

3The actual implementation on the lattice might still be
nonstraightforward as a gluon field strength tensor is known
to mix with mq̄q. Yet in the limit this mixing would disappear. A
more delicate issue is the mixing with the identity, which
corresponds to the disconnected part of the correlator. Whereas
in dimensional regularization the mixing occurs with m41 only,
which is of no problem for the same reason as above, in lattice
cutoff regularization terms of the form m2Λ21 and Λ41 (with
Λ ¼ 1=a with a being the lattice spacing) are expected to occur.
Whereas both have hitherto prohibited a clean extraction of the
gluon condensate for instance, it is the latter which seems to pose
a problem for the case discussed above.
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and m → −m whereas the correlator is odd (since
q̄q → −q̄q and G2 → G2). Thus the correlator probes
the nonperturbatve regime or more precisely chiral
symmetry breaking through hq̄qi ≠ 0.

(ii) Spin:

O1¼Pa
5 ¼ q̄iγ5taq; Δ�

Pa
5
¼ 3− γ�m;

Oμ
3 ¼Aaμ ¼ q̄iγμγ5taq; Δ�

Aaμ ¼ 3; (20)

where ta is a SUðNfÞ representation matrix acting
on flavor space. For the same reason as above the
correlator (17) with (20) vanishes to all orders in
perturbation theory in the massless limit. It is, however,
nonvanishing in the theory with chiral symmetry break-
ing since the pion couples to both currents:

h0jAa
μð0Þjπbi¼δabifπpμ; h0jPað0Þjπbi¼δabgπ;

gπ¼
fπm2

π

2m
; (21)

where it is noted in particular that gπ is finite and
nonvanishing in the chiral limit form2

π ∼m in a chirally
broken phase. Conversely fπ is only nonvanishing if
mπ ∼matleastwhichisthecasefortheGoldstonebosons
only. It seemsworthwhile to elaborate abit further on this
point. The correlation function (17) assumes the follow-
ing form in the chirally broken phase,

CμðxÞ ¼ h0jO1ðxÞOμ
3ð0Þj0i

¼
Z

d4p
ð2πÞ4

ipμfπgπ
p2 þm2

π
eip·x

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Cμ

0
ðxÞ

þOðmÞ; (22)

with all other contributions to the spectrum vanishing in
the chiral limit4. More precisely

Cμ
0ðxÞ ¼ fπgπ∂μ

Z
d4p
ð2πÞ4

eip·x

p2 þm2
π

¼ fπgπ∂μ
mπK1ðmπxÞ

ð2πÞ2x

¼ fπgπ∂μ

�
1

x2
þOðmπ ln xÞ

�

¼ hq̄qi 2x
μ

x4
þOðmÞ; (23)

where x ¼
ffiffiffiffiffi
x2

p
, for odd powers of x and in the

last equality we have made use of the Gell-Mann
Oakes Renner relation f2πm2

π ¼ −2mhq̄qi.

Let us briefly comment on the scaling dimensions of
the operators quoted in Eqs. (19, 20) which were already
exploited in our previous work [8,9]. The scaling dimension
of the gluon field strength tensor is four as it appears in the
trace anomaly which is related to the physical mass. The
scalingdimensionof quark condensate times themass is four,
Δ�̄

qq þ ð1þ γ�mÞ ¼ 4, for the same reason and therefore
Δ�̄

qq ¼ 3 − γ�m. The scaling dimension ofAaμ is three because
it is a partially conserved current affected only by explicit
breaking. The scaling dimension of Pa

5 can be obtained from
Ward identities as presented in Appendix B.1 of Ref. [8]. It
would seemworthwhile to point out that the operators quoted
in Eqs. (19,20) are of the (quasi)primary type as the non-
primary operators derive from the latter through derivatives.
Finally, in essence we get, as a replacement of Eq. (18)

for the case at hand,

Fðt; yÞ→t→0
�
≠ 0 confining
0 CFT

; (24)

for y such that the system is suitably close to the fixed point
as previously discussed. We note that Fðt; yÞ is known
explicitly (23) for the second example considered.

C. Comments on finite volume effects in
lattice simulations

Equations (3), and (18) show that the behavior of
Fðt; yÞ → 0, as t → 0, provides the possibility to distin-
guish between a CFT and an SFT or a confining theory. In
practice one would keep x fixed and study the behavior of
the correlator for m → 0. In lattice simulations one would
need to work for given values of m with sufficiently large
volumes, L ≫ MH

−1, as the limits m → 0 and V ≡ L4 →
∞ are known not to commute. Further comments can be
inferred from Fig. 2 where the relative scales are sketched
against a typical behavior of a (gauge) coupling. In regard
to this figure we would like to draw the reader’s attention to
the fact that the actual value of the coupling is scheme
dependent, whereas the question of whether there is a fixed
point or not is scheme independent as it shows up in
physical measurable quantities in terms of scaling laws.

V. FIRST ORDER CORRECTION TO THE
FIXED POINT

We have already discussed the scaling of field correlators
as a function of the mass m for g ¼ g�. When the coupling
is not tuned to its critical value, scaling corrections appear.
In this section we compute these corrections at first order in
the δg≡ g − g�. In Sec. VAwe introduce the notation and
discuss the linearized RG equations. In Sec. V B we
compute the scaling corrections to field correlators of local
operators. In Sec. V C we apply these results and compute
the scaling corrections to the hadronic masses first by using
the trace anomaly, and then by analyzing the mass
correlator. Furthermore we show that the two expressions

4Multiparticle pion states also come with zero invariant mass
but at the same time have zero phase space and therefore vanish in
the limit m → 0.
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for the scaling corrections are equal by using an extension
of the Feynman-Hellmann theorem [26].

A. Linearization around the IR fixed-point

Weassume that the bare couplings at the cutoff scale g and
m̂, which correspond to the point I in Fig. 1 (left) with the
identification ðg; g0Þ ¼ ðg; m̂Þ, are chosen such that the
system is on a trajectory that is close to the fixed point.
We are going to linearize the RG flow equations in the
deviations from the fixed point, that is to say in the variable
δg≡ g − g�, wherewe use the notation g� ¼ g�IR throughout
this section. We shall comment on the aspects of this
expansion at the end of Sec. V B 1. For the beta function,
the mass anomalous dimension γm, and the anomalous
dimension matrix γij ≡ ðγOÞij5 of a generic set of operators
fOig that mix under the RG-flow, we may linearize the
system around the IRFP as follows:

β¼β1δgþOðδg2Þ; δg≡g−g�; γm¼γ�mþγð1Þm δgþOðδg2Þ;
γij¼γ�ijþγð1Þij δgþOðδg2Þ; ðγij≡ðγOÞijÞ. (25)

We have verified that in a mass-independent scheme β1 is
universal (scheme independent) whereas γð1Þm=ij are not. We
remind the reader that the anomalous dimensions associated
with gauge invariant operators (such as γ�m) are universal.
Whenworkingwith renormalized quantitieswe shall choose
notation accordingly. The behavior of the beta function as a
function of the coupling is illustrated in Fig. 3; β1 corre-
sponds to the slope where the curve crosses the IR fixed
point. We note that for the beta function described in Fig. 3,
the coefficient β1 is positive as there are no further zeros
between g ¼ 0 and g ¼ g�. The beta function equation is
easily integrated to that order,

βðgÞ ¼ Λ
d
dΛ

ðδgÞ ¼ β1δgþOðδg2Þ ⇒ δgðΛÞ

¼ δgðΛ0Þ
�
Λ
Λ0

�
β1
; (26)

where Λ is a UV cutoff as will become clear in the next
subsection.

B. Scaling corrections to correlators

We shall use the language of Wilsonian renormalization
group for which the theory is defined at some fixed UV
cutoff ΛUV ≡ Λ6. Let us consider a correlation function
Oiðg;m;ΛÞ, as a function of the bare parameters g, m, and
the UV cutoff Λ. We shall denote by Zij the matrix that
describes the mixing of Oi under renormalization. Oi

satisfies an RG equation (also known as ’t Hooft-
Weinberg or Callan-Symanzik equations), e.g. Ref. [27],�
Λ

∂
∂Λ δij þ βðgÞ ∂

∂g δij − γmm
∂
∂m δij − γij

�
Ojðg;m;ΛÞ

¼ 0; (27)

where summation over j is implied and

βðgÞ¼Λ
d
dΛ

g; γm¼−Λ d
dΛ

lnm; γij¼Λ
d
dΛ

ln Zij:

(28)
We nowwish to reformulate the theory using a different UV
cutoff Λ0

UV ≡ Λ0

Λ
Λ0 ¼ b; (29)

where the parameter b has the interpretation of a blocking
factor, and b > 1 if high-energy modes are to be integrated
out. The formal solution to Eq. (27) is given by:

Oiðg;m;ΛÞ ¼ Z−1
ij ðbÞOjðgðbÞ; mðbÞ;Λ=bÞ; (30)

where
d

d lnb
lnZijðbÞ¼−γijðgðbÞÞ; Zð1Þ¼1;

d
d lnb

gðbÞ¼−βðgðbÞÞ; gð1Þ¼g;

d
d× lnb

lnmðbÞ¼γmðgðbÞÞ; mð1Þ¼m. (31)

We assume here that we are working in a mass-independent
scheme, and therefore the beta function and the anomalous
dimensions only depend on the gauge coupling g. The
solution (30, 31) is known by the name of the method of
characteristics, see e.g. Ref. [27]. Assuming the fixed point
is in the linear regime (26), the three equations above can be
solved to order OðδgÞ:

FIG. 3 (color online). Sketch of the β function in terms of the
coupling for a system exhibiting asymptotic freedom g�UV ¼ 0
and a nontrivial IR fixed point at some value g�IR > 0. In Sec. V a
system in the vicinity of the IR fixed point is considered as
indicated in the figure.

5In statistical mechanics the anomalous dimensions of oper-
ators are often denoted by the symbol η rather than γ in order to
distinguish it from anomalous dimensions of parameters such as
the mass for instance.

6In the context of a lattice field theory the lattice spacing a is
related to the UV cutoff as a ¼ Λ−1

UV.
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gðbÞ ¼ g� þ δgðbÞ ¼ g� þ δgb−β1 ;

mðbÞ ¼ mbγ
�
m exp

�
− γð1Þm

β1
δgfðbÞ

�
;

ZijðbÞ ¼ exp

�
γ� ln b − γð1Þ

β1
δgfðbÞ

�
ij
; (32)

where we have introduced the notation

fðbÞ≡ b−β1 − 1; (33)

which parametrizes the distance from the initial point in
blocking space. Equation (30) may be written using the
relation (32) as:

Oiðg;m;ΛÞ ¼ ZijðbÞ−1OjðgðbÞ; mðbÞ;Λ=bÞ

¼ exp

�
−γ� ln bþ γð1Þ

β1
δgfðbÞ

�
ij
Oj

�
gðbÞ; mbγ

�
m exp

�
− γð1Þm

β1
δgfðbÞ

�
;Λ=b

�

¼ exp

�
−Δ� ln bþ γð1Þ

β1
δgfðbÞ

�
ij
Oj

�
gðbÞ; mb−ð1þγ�mÞ exp

�
− γð1Þm

β1
δgfðbÞ

�
;Λ

�
;

where in the last equality we have rescaled all dimensionful
quantities by a factor b. The matrixΔij ¼ diδij þ γij, where
di is the classical dimension of Oi, yields the scaling
dimensions of the operators. In order to get the δg correc-
tionswe need to expand in that variable. In our opinion this is
best done from the expression in the second line of the
equation above. The last step can be done after the expansion
for each individual term. Furthermore, in order to avoid path
ordering in coupling space, we shall assume that γ�ij is
diagonal. The corrections are parametrized as follows,

Oiðg;m;ΛÞ ¼ b−γ�iið½Oi�� þ δgOð1Þ
i þOðδg2ÞÞ; (34)

where

Oð1Þ
i ¼

�
γð1Þii

β1
½Oi��fðbÞ − γð1Þm

β1
m�½Oi��;mfðbÞ þ ½Oi��;gb−β1

�

(35)
and

½Oi�� ¼ OiðgðbÞ; mðbÞ;Λ=bÞjδg¼0;

½Oi��;m ¼ ∂
∂mðbÞOiðgðbÞ; mðbÞ;Λ=bÞjδg¼0;

½Oi��;g ¼
∂

∂gðbÞOiðgðbÞ; mðbÞ;Λ=bÞjδg¼0;

m� ¼ mðbÞjδg¼0; ðg� ¼ gðbÞjδg¼0Þ: (36)

Wewish to emphasize thatwhen g� is tuned to the fixed point
coupling, m� ¼ mbγ

�
m corresponds to the leading scaling of

the mass at the fixed point.
The scaling corrections as a function of m can be made

explicit by rescaling all dimensionful quantities by the
appropriate power of b in the last step in Eq. (34), and then
using the arbitrariness of b > 1 to impose:

mb−ð1þγ�mÞ ¼ m0 ⇒ b−1 ¼ m̂1=ð1þγ�mÞ; m̂≡ m
m0

: (37)

As a result, we obtain a scaling formula that includes the
scaling corrections at first order in δg:

Oiðg;m;ΛÞ¼ m̂
Δii

1þγ�m ½Oi��
�
1þδg

�
AþBm̂

β1
1þγ�m

		
þOðδg2Þ;

(38)

with

A ¼
�
− γð1Þij

β1
þ γð1Þm

β1
m� ½Oi��;m

½Oi��



b

B ¼
�
þ γð1Þij

β1
− γð1Þm

β1
m� ½Oi��;m

½Oi��
þ ½Oi��;g

½Oi��



b
; (39)

where the curly brackets with a b superscript indicate
that all physical units are to be scaled by b, e.g.

f½Q�
i �gb ¼

ð36ÞfOiðgðbÞ; mðbÞ; Λ=bÞjδg¼0gb → bdOOiðgðbÞ;
×bmðbÞ; ΛÞjδg¼0. It is interesting to note that the scaling
corrections above simplify when β1 → 0:

�
Aþ Bm̂

β1
1þγ�m

�
→

½Oi��;g
½Oi��

þOðβ1Þ: (40)

This situation is expected to be realized at the lower edge of
the conformal window in the Banks-Zaks limit.

1. Discussion of scaling corrections

The expression (34) yields the corrections to scaling for
small fermion mass m̂, while the irrelevant coupling g is at a
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distance δg from the fixed point. Clearly when δg vanishes,
so do the scaling violations. We note that for fixed initial
value g, δg≡ g − g� is proportional to the value of the IR
fixed point coupling g�, as can be inferred from Fig. 1. The
linear approximation discussed here therefore becomes less
reliable if the IR fixed point is at strong coupling coupling,
unless g is tuned to reduce the size of δg. Note that for large
δg the linear corrections tend to grow. This can be
compensated by going to smaller initial masses m̂ since
the first order (relative) scaling corrections are determined
by the combination Bδgm̂β1=ð1þγ�mÞ.
We would like to add an important point concerning the

size of the corrections at the lower edge of the conformal
window. For a strong coupling fixed point, one would
expect large values of γð1Þij , as well as γ

ð1Þ
m , whereas the value

of β1 is expected to be small as the fixed point is to be lost
which in turn is consistent with g� being large. Moreover,
unless the bare coupling g is fine-tuned, one can expect to
have rather large values of δg, driven by our ignorance in
guessing the exact location of the fixed point. Thus in
summary the precoefficient Bδg should be expected to be
large at the lower edge of the conformal window. On the
other hand, the exponent β1=ð1þ γ�mÞ is then small and
leads to a suppression. In the previous statements large and
small are meant relative to the region away from the lower
edge of the conformal window. Which of the two counter-
acting effects dominates is unclear a priori but the argument
suggests that it is important to go to small masses m̂ at the
lower edge of the conformal window to suppress poten-
tially large scaling corrections. This is of practical impor-
tance as many of the lattice simulations have been
performed precisely at the lower edge of the conformal
window in search of a theory of walking technicolor.
The signs of A and B, in Eq. (38), are determined by the

dynamics. Since in general we cannot make statements
about the derivative of the operators the sign of A and B are
thus not known a priori. This is somewhat different for the
hadronic masses, that is to say for the operators Q and G,
which is what we are going to exploit in the next section.

C. Scaling corrections to the mass formula

We shall first introduce some notation and justify the
formulas needed for the comparison of the two derivations
of the scaling corrections to the hadronic mass in
subsection V C 2.

1. Preliminary formulas

The following notation,

hXiEH
≡ hHðE; p⃗ÞjXjHðE; p⃗Þic; (41)

shall prove convenient throughout this section. The sub-
script c denotes the connected part of the matrix element,
while jHðE; p⃗Þi is a physical state with definite spatial
momentum and energy and X is a (local) operator. Above

we have explicitly indicated the energy dependence of the
hadronic state H which we occasionally suppress in the
remaining part of this work. Note that the disconnected part
of the correlator is related to the vacuum energy, that is to
say the cosmological constant. As usual the Lorentz
invariant state normalization is given by:

hHðE0; p⃗0ÞjHðE; p⃗Þi ¼ 2Eðp⃗Þð2πÞ3δð3Þðp⃗ − p⃗0Þ: (42)

The expectation value of the energy momentum tensor
Tμν in a single-particle state is:

hTμνiEH
¼ 2pμpν; (43)

where p0 ¼ E. In order to keep a compact notation we are
going to extend the notation (41) for two specific matrix
elements to:

QEH
≡ Nfmhq̄qiEH

; GEH
≡

�
1

g2
G2

�
EH

: (44)

We remind the reader that the notation (41) refers to the
connected part of the matrix element only.
For the discussion in this section it is convenient to use

renormalized quantities. Accordingly we denote the renor-
malized couplings by ḡ and m̄, and the matrix elements of
the renormalized operators ḠEH

and Q̄EH
, respectively. The

renormalized coupling ḡ is defined as

g ¼ ZgðgÞḡ: (45)

En passant we note that physical quantities such as the
energy momentum tensor and thus the hadronic mass do
not renormalize (i.e. Tμν ¼ T̄μν). In the neighborhood of the
IRFP, the renormalization constant is expanded similar to
(30) as

ZgðgÞ ¼ Z�
g þ Zð1Þ

g δgþOðδg2Þ; (46)

which implies

δg ¼ ðZ�
g þ gZð1Þ

g ÞδḡþOðδg2Þ; g
∂
∂g ¼ κḡ

∂
∂ḡ ;

κ ¼
�
1 − Zð1Þ

g

Z�
g

�
þOðδg2Þ: (47)

The trace anomaly can be written in terms of the renor-
malized quantities as [28]

2M2
H ¼

�
β̄

2ḡ

�
ḠMH

þ ð1þ γ̄mÞQ̄MH
; (48)

and is a RG invariant. More precisely since Q̄EH
is a RG

invariant, β̄=ð2ḡÞḠEH
þ γ̄mQ̄EH

inherits this property by
virtue of Eq. (48). This entails that GEH

≠ ḠEH
. In
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identifying the two computation the following relations are
of importance:

m̄
∂
∂m̄ E2

H ¼ Q̄EH
; ḡ

∂
∂ḡ E

2
H ¼ − 1

2
ḠEH

: (49)

The first relation is a straightforward application of the
Feynman-Hellmann theorem and is widely used, as for
instance in our previous work [9]. The second relation is
akin to a Feynman-Hellmann relation but has been derived
recently [26] through a RGE, the trace anomaly (48) as well
as the first relation.

2. Two pathways to mass-scaling corrections

Let us now compute the corrections to scaling in two
different ways by using results from the previous section:
the corrections are obtained up to order δḡ≡ ðḡ − ḡ�Þ and
the symbol δ on other quantities denotes the linear variation
in the δḡ variable. Recall that β1 ¼ β̄1 (at least in a mass-
independent scheme) and γð1Þm ≠ γ̄ð1Þm in general and we shall
therefore use notation accordingly.
(1) First we compute δð2M2

HÞ directly from the RG
scaling formulas (38) for renormalized quantities,
combined with the relation (49):

δð2M2
HÞ ¼ δḡ

�
½2M2

H��;ḡb−β1− γ̄ð1Þm

β1
m̄�½2M2

H��;m̄fðbÞ
�
þOðδḡ2Þ ¼ð49Þδḡ

�
− 1

ḡ�
½ḠMH

��b−β1−2
γ̄ð1Þm

β1
½Q̄MH

��fðbÞ
�
þOðδḡ2Þ:

(50)

(2) Second we compute δð2M2
HÞ through the trace anomaly (48):

δð2M2
HÞ ¼ δḡb−β1

�
β1
2ḡ�

½ḠMH
�� þ γ̄ð1Þm ½Q̄MH

��
�
þ ð1þ γ�mÞδQ̄MH

; (51)

which necessitates the computation of δQ̄MH
. The latter is given by Eq. (38):

δQ̄MH
¼ δḡ

�
½Q̄MH

��;ḡb−β1 − γ̄ð1Þm

β1
m̄�½Q̄MH

��;m̄fðbÞ
�
: (52)

The expressions (50), and (52) yield the scaling corrections as a function of δg and the mass m. These expressions all
have the same scaling exponents, yet it is not clear from these formulas that the corresponding prefactors are equal. To
compare the prefactors we ought to compute ½Q̄MH

��;ḡ and ½Q̄MH
��;m̄ to leading order in δḡ. The latter is simply given by the

leading order scaling (12)

m̄�½Q̄MH
��;m̄ ¼ 2

1þ γ�m
½Q̄MH

�� þOðδḡÞ; (53)

up to corrections which are beyond the aimed accuracy. The computation of ½Q̄MH
��;ḡ is slightly more involved; it is obtained

by differentiating 2M2
H with respect to ḡ using (49):

∂
∂ḡ ð2M

2
HÞ ¼ − 1

ḡ
ḠMH

¼ − 1

ḡ�
½ḠMH

�� þOðδg2Þ (54)

as well as the right-hand side (RHS) of Eq. (48),

∂
∂ḡ ð2M

2
HÞ ¼

�
β

2ḡ

�0
ḠMH

þ
�
β

2ḡ

�
Ḡ0

MH
þ γ0mQ̄MH

þ ð1þ γ�mÞQ̄0
MH

þOðδḡÞ

¼ β1
2ḡ�

½ḠMH
�� þ γ̄ð1Þm ½Q̄MH

�� þ ð1þ γ�mÞ½Q̄MH
��;ḡ þOðδḡÞ; (55)

where □0 denotes differentiation with respect to ḡ. We have dropped the term ∼βḠ0
MH

from passing from the first to the
second line since it is of relative orderOðδḡÞ. By equating Eqs. (54) and (55) we may solve for ½Q̄MH

��;ḡ and insert it into (52)
and finally into (51) to obtain:

δð2M2
HÞ¼δḡb−β1

�
β1
2ḡ�

½ḠMH
��þ γ̄ð1Þm ½Q̄MH

��
�
þδḡ

�
−2 γ̄

ð1Þ
m

β1
½Q̄MH

��fðbÞ− 1

ḡ�
½ḠMH

��b−β1 −b−β1
�
β1
2ḡ�

½ḠMH
��þ γ̄ð1Þm ½Q̄MH

��
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½Q̄MH

��;ḡ

�

¼δḡ

�
− 1

ḡ�
½ḠMH

��b−β1 −2
γ̄ð1Þm

β1
½Q̄MH

��fðbÞ
�
; (56)

which equals Eq. (50), as expected. We note that the second line in Eq. (56) is equal to ð1þ γ�mÞδQ̄MH
at leading order.
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An interesting question is whether we can say something
about the sign of the correction in Eq. (50). That is to say
we would like to know whether lMH

inM2
H ¼ kMH

þ lMH
δḡ

is positive or negative. We should add that δg < 0 as can be
inferred from Fig. 3. As we are interested in the long-
distance dynamics of the theory that is defined at the UV
Gaussian fixed point, the coupling lies in the interval ½0; g��.
As previously stated β1 > 0 in Eq. (30) by virtue of no

zero crossings of the β-function between the UVand IRFP.
If the anomalous dimension increases monotonically from
the UVFP γ�m;UV ¼ 0 to γ�m;IR ¼ γ�m then γ̄ð1Þm > 0, which is
not compelling but to be expected. Furthermore, ½QMH

�� >
0 since M2

H ¼ ð1þ γ�mÞ½QMH
�� þOðδgÞ and ð1þ γ�mÞ > 0

as we have assumedm to be a relevant direction and fðbÞ <
0 for b > 1. Finally we see that everything depends on the
sign of GMH

for which we cannot make a definite assertion.
It is well known that naive positivity of operators, effective
in quantum mechanics, is not necessarily maintained in
quantum field theory. In the case at hand there is the
additional complication that only the connected part of the
matrix element is required. That is to say even if the total
matrix element were positive the connected part might
still be negative. It seems worthwhile to point out that in
QCD for m → 0 and β < 0 Eq. (48) implies that GMH

< 0
indeed. Summa summarum we cannot say anything
definite about the sign of lMH

as the sign of GMH
seems

uncertain.

VI. CONCLUSIONS

We have explored the consequences of conformal scaling
in a number of interesting cases. One of our main findings
is the scaling of the radius of them-hadrons as a function of
the fermion mass. Our results show that the typical size of
the m-hadrons, defined from the average charge density, is
a linear function of the inverse mass of the hadron (14).
Characterizing the size of m-hadrons is very important in
order to understand how to tame FSE in numerical studies,
and hence obtain reliable results from Monte Carlo sim-
ulations. It is worthwhile to emphasise that the dependence
of the mean charge radius on the mass of the m-hadrons is
radically different from the logarithmic scaling obtained in
chiral perturbation theory for the Goldstone boson in a
chirally broken theory [20]. The latter provides yet another
way to asses the difference between a conformal and a
confining phase.
By exploiting selection rules for scaling dimensions and

spin we propose to use coordinate space correlation
function, deformed by a mass term, to distinguish CFTs
from SFTs as well as confining theories.
We investigated the scaling corrections to correlation

functions by linearizing the RGE in the variable δg ¼
g − g� which is the distance of the initial coupling from the,
presumably unknown, fixed point value. In essence this
corresponds to the scaling corrections due to the IR-
irrelevant coupling g. The generic result is given in

Eq. (38) and (39). In subsection V B 1 we note in particular
that scaling corrections can be expected to be large at the
lower edge of the conformal window. This can be counter-
acted by going to smaller masses. We computed the scaling
corrections to the hadron mass explicitly, once directly
through its associated correlation function and second
through the trace anomaly. The results are given in
Eqs. (50), (51) and their equivalence is made manifest in
Eq. (56). The latter was established by using the Feynman-
Hellmann relation for the mass and an analogous relation
for the gauge coupling (49). The derivation of the latter is
given in a separate paper [26].
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APPENDIX A: CHARGE AND CHARGE RADIUS
OF PION FORM FACTOR

In this appendix we shall give a derivation of the charge
radius in terms of the form factor as stated in Eq. (8) as the
derivation of the latter has become sparse in modern
textbooks. We shall work in Minkowski-space in this
section with metric signature ðþ;−;−;−Þ. Starting from
the zeroth component of (7)

hHðp1ÞjV0ðyÞjHðp2Þi ¼ ðEp1
þ Ep2

ÞfHþðq2Þeiðp1−p2Þ·y;
(A1)

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

H

p
and q≡ p1 − p2 as usual. Note

for on-shell states the equality of the 3-vectors p⃗1 ¼ p⃗2 then
implies the vanishing of the 4-vector q ¼ 0. We define the
D − 1 ¼ 3-dimensional Fourier transform of the form
factor

fHðq2Þ ¼
Z

d3x
ð2πÞ3 f̂

Hðx⃗; q20Þeix⃗·q⃗; (A2)

for latter convenience. The scalar product with arrow vector
denotes the 3-dimensional scalar product.

1. Charge

The charge of the state H is obtained by integrating the
charge density over the space

Z
d3xhHðp1ÞjV0ðxÞjHðp1Þi¼2EpQHðð2πÞ3δð3Þð0ÞÞ;

¼ðA.1Þ2EpfHþð0Þ
�Z

V
d3x

�
; (A3)
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remembering the normalization hHðp1ÞjHðp2Þi ¼
2Ep1

ð2πÞ3δð3Þðp⃗1 − p⃗Þ2Þ, setting p⃗1 ¼ p⃗2 on the first line
and using the definition on the second line. To the more
mathematically inclined reader this equation might look
better if p⃗1 ¼ p⃗2 is not assumed before identifyingR
V d

3x ¼ ð2πÞ3δð3Þð0Þ. The latter identification leads to
the first result of this appendix:

⇒ fHð0Þ ¼ QH; (A4)

and suggests that

f̂Hðx⃗; 0Þ=ð2πÞ3 ¼ ρðx⃗Þ (A5)

is the charge density which we shall use below.

2. Charge radius

We shall define the 3-dimensional Laplace operator Δ
acting on Fourier space as follows:

Δ∘F ðqÞ ¼
X3
a¼1

i
d
dqa

i
d
dqa

F ðqÞjq¼0: (A6)

We let it act on the form factor directly and through its
Fourier transform:

Δ∘fHðq2Þ ¼ðA.6Þ
�
6

d
dq2

fHðq2Þ þ 4q⃗2
d2

dðq2Þ2 f
Hðq2Þ

�
jq¼0 ¼ 6

d
dq2

fHðq2Þjq¼0

¼ðA.2Þ
Z

d3x
ð2πÞ3 x⃗

2f̂Hðx⃗; q20Þeix⃗·q⃗jq¼0 ¼
Z

d3x
ð2πÞ3 x⃗

2f̂Hðx⃗; 0Þ: (A7)

This leads, using (A5), to the second result of this
appendix:

⇒ hr2Hi ¼
Z

d3xx⃗2ρHðx⃗Þ ¼ðA.7Þ6 d
dq2

fHðq2Þjq¼0: (A8)

Thus we have now justified the results quoted in Eq. (8)
through (A4) and (A8).

APPENDIX B: FINITE SIZE EFFECTS

The aim of this appendix is to present an extension of the
presentation in the main text to include finite size effects.

1. Generic two point function

Finite-size effects to Eq. (5) can be easily incorporated.
Writing explicitly the dependence of the correlators on the
size L of the physical volume, the RG equation becomes:

Cðx; m̂;Λ; LÞ ¼ b−ðγ
�
O1

þγ�O2
ÞCðx; by�mm̂;Λ=b; LÞ;

y�m ¼ 1þ γ�m: (B1)

The underlying assumption in the equation above is that the
volume is large enough, such that a blocking transforma-
tion does not change the volume dependence. When all
dimensionful quantities are rescaled by the corresponding
power of the reference mass m0, Eq. (5) becomes:

Cðx;m̂;Λ;LÞ¼ðx̂2Þ−αðm0ÞdO1
þdO2

þdφaþdφb Fðx̂y�mm̂;Λ̂; x̂=L̂Þ:
(B2)

In the thermodynamic limit, L̂ → ∞

Fðx̂y�mm̂; Λ̂; x̂=L̂Þ → Fðx̂y�mm̂; Λ̂Þ þ κ
x̂

L̂
þ � � � ; (B3)

where κ is a number.

2. Charge radius

We discuss the modifications of the scaling laws
of the form factor (7), relevant to the charge radius, due
to finite-size effects. The form factor depends on the
fermion mass, the UV cutoff, and the physical size of
the lattice:

fðq2Þ ¼ fðq2; m̂;Λ; LÞ; (B4)

where the hat indicates that dimensionful quantities have
been rescaled by the appropriate powers of the reference
mass m0. Keeping Λ unchanged, and performing the
standard RG analysis that we used above, yields:

fðq2; m̂;Λ; LÞ ¼ ~f

�
q̂2

m̂2=ym
; L̂m̂1=ym

�
: (B5)

Expanding Eq. (B4) in powers of q̂2m̂−2=ym :

fðq2; m̂;Λ;LÞ ¼ ~fð0; L̂m̂1=ymÞ þ ~f0ð0; L̂m̂1=ymÞ q̂2

m̂2=ym
þ � � � :
(B6)

This is the same expansion obtained in Eq. (10), but now
the coefficients of the expansion depend on the physical
size of the lattice L. Denoting the nth derivative of the form
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factor by ~f;n, and introducing the dimensionless finite-size
scaling variable l ¼ L̂m̂1=ym , we obtain:

~f;nð0;lÞ ¼
1

L̂ymηn
lηnym

�
1þ κ

l
þ � � �

�
(B7)

with κ a number and the dots denote the finite volume
corrections. The dependence in Eq. (B7) reproduces the
expected mass scaling discussed before in the large-
volume limit.
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