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Proposals for physics beyond the standard model often include new colored particles at or beyond the
scale of electroweak symmetry breaking. Any new particle with a sufficient lifetime will bind with standard
model gluons and quarks to form a spectrum of new hadrons. Here we focus on colored particles in the
octet, decuplet, 27-plet, 28-plet and 35-plet representations of SU(3) color because these can form hadrons
without valence quarks. In every case, lattice creation operators are constructed for all angular momentum,
parity and charge conjugation quantum numbers. Computations with fully dynamical lattice QCD con-

figurations produce numerical results for mass splittings within this new hadron spectrum. A previous
quenched lattice study explored the octet case for certain quantum number choices, and our findings pro-

vide a reassessment of those early results.
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I. INTRODUCTION

Quantum chromodynamics (QCD) describes the inter-
actions between colored particles such as the color-triplet
quarks and color-octet gluons of the standard model, but
additional colored particles are present in many extensions
of the standard model. Supersymmetry requires gluinos and
squarks. String theory provides a broader range of possibil-
ities. New strong dynamics would generate a spectrum of
new composite particles (recall the technihadrons of classic
technicolor), and if the new elementary particles (akin to
techniquarks) carry QCD color, then the new composite
particles occur as octets, decuplets, and other multiplets
of QCD color. Studies of new colored particles in the con-
text of the Large Hadron Collider therefore go far beyond
triplets and octets [1-7], continuing several decades of
interest in the range of color representations that might
be realized beyond the standard model [8-25].

Lattice QCD is routinely used to obtain quantitative
results from the SU(3) gauge theory of gluons and quarks.
The inclusion of additional particles in an octet [26-32],
sextet [26,33—40], or symmetric [41,42] representation
has also been investigated, in some cases applied to a
new strong interaction rather than to QCD itself. Of more
direct relevance to our work is a lattice study by Michael
and coworkers [43-46], culminating in Ref. [46] where
QCD is coupled to a new heavy color-octet particle repre-
senting the gluino of supersymmetry. Given that the gluino
is significantly heavier than the QCD scale, Foster and
Michael [46] were able to treat the gluino as a static par-
ticle, where the spin of the gluino is irrelevant so their
results are applicable more generally to particles of arbi-
trary spin. If the static particle is sufficiently stable, then
it will couple to surrounding gluons and quarks to form
hadronic bound states. Foster and Michael used lattice
QCD simulations to produce predictions for mass
splittings within this new spectrum of hadrons.
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Specifically, Ref. [46] contains numerical results for two
types of hadrons: gluelumps (having one static octet oper-
ator coupled to gluon fields, but no valence quarks) and
adjoint mesons (having one static octet operator coupled
to a quark-antiquark pair).

According to Ref. [46], the lightest gluelump has
JPC€ = 17=. The predicted mass splittings of the five
next-lightest gluelumps are shown in Table I. Four model
calculations [47-50] are also shown in Table I for compari-
son. We display mass differences because these are what
emerge directly from the lattice simulations, but in fact
the absolute mass scale has been determined in Ref. [51]
using a combination of effective field theory and related
lattice QCD input. After fixing this absolute mass scale,
Ref. [51] then takes the gluelump mass splittings directly
from Ref. [46]. We point to potential NRQCD [52] as an
example of an important theoretical development that has
requested further lattice studies of gluelumps.

The authors of Ref. [46] expressed surprise at the
heaviness of their 0" state, and also at the degeneracy
of 2t~ and 37, Lattice simulations use irreducible repre-
sentations A of the octahedral group rather than continuum
angular momentum J, so, for example, a J = 2 state should
appear for both A = E and A = T,, but Ref. [46] points out
that E* and 75" are not degenerate in their lattice data
though the discrepancy is consistent with degeneracy in
the continuum limit. Because of the computational
expense, Ref. [46] made use of quenched lattices so the
authors expect at least a 10% systematic error. The work
also relied exclusively on operators built from square paths
on the lattice which allows access to only half of the pos-
sible APC representations (i.e. 10 out of 20), leaving quan-
tum numbers such as JP¢ =0, 0-*, 0, and 1*°
unstudied.

In the present work, we extend the basis of operators to
the complete set of APC options, and we use dynamical
(unquenched) lattices. This provides an opportunity to
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TABLE 1. The smallest gluelump mass splittings relative to the 17~ state from the original lattice simulation [46] (where errors are
statistical only), compared to model calculations published subsequently. See Sec. III for a crucial discussion of lattice systematics. See
the original publications for detailed discussions about other parameter choices and systematic issues; this table is merely an
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introduction. (To display data from Ref. [50] we chose ry = 0.5 fm.)

M(JPC) — M(177) [GeV]

Jre Lattice [46] Bag [47] String [48] Coulomb gauge [49] Transverse gluons [50]
1— 0.368(7) 0.55 0.47 0.40 0.37
2= 0.567(10)° 0.54 0.49 0.59 0.57
3t 0.972(24) 1.01 0.84 1.11 0.97
2T 0.973(36) 1.21 0.83 0.71 0.94
0t 1.092(28) ~1.2 0.91 e e

“This entry repairs a simple typo in column 4 of Table Il in Ref. [46], as can be seen by comparing with column 3 of that same table

and with Fig. 3 in Ref. [46].

revisit some of the surprises revealed by Foster and Michael
in their seminal work, and to predict additional gluelump
masses. We also develop operators for generalized glue-
lumps by replacing the static octet source with a static
source having a larger color representation. To
avoid the expense of lattice simulations with valence
quarks, we choose representations that need only gluons
to produce a color-singlet generalized gluelump.
Specifically we choose dimensions 10, 27, 28, and 35.
We reiterate that our numerical results make use of dynami-
cal lattice simulations so that virtual quarks and antiquarks
are retained.

Static propagators are known to produce particularly
large statistical uncertainties in lattice simulations, and a
static octet particle is noisier than a static triplet [46,53].
We expect that the larger representations included in the
present study will be noisier still. Also, the Casimir scaling
hypothesis [54-56] is the notion that the string tension
between strongly interacting particles should be propor-
tional to the quadratic Casimir, and standard group theory
[57,58] shows that the quadratic Casimirs for our represen-
tations, normalized such that the triplet has C,(3) = 4/3,
are C2(8> = 3, C2(10) = 6, C2(27) = 8, C2(28) = 18, and
C,(35) = 12. Polyakov loops with all of these representa-
tions have been tested previously for Casimir scaling: see
Table 2 of Ref. [59]. [For other lattice studies of Casimir
scaling and various representations in four-dimensional
SU(3) gauge theory, sometimes in the context of n-ality,
see Refs. [60—-69]. The present work deals exclusively with
zero n-ality.] In the case of gluelumps, our simulations

confirm that signals for representations with larger
Casimirs are damped more rapidly as a function of
Euclidean time, as well as being statistically noisy.
Despite these substantial difficulties, the numerical results
of this project provide useful information about represen-
tations beyond the octet, as well as the octet itself.

II. CORRELATION FUNCTIONS

Generalized gluelumps do not involve valence quarks, so
the heavy static particle must be able to form a color singlet
by coupling to a collection of octet gauge fields,

SRRV -
€1B8DI0DI0D27D28D28D35P35D---. (1)

Representations of dimension np = 8, 10, 27, 28, and 35
will be considered in this work. The corresponding Young
tableaux, derivable using standard group theory methods
[57,58], are displayed in Table II. Notice that the number
of boxes in each tableau is a multiple of 3, as required for
tableaux built exclusively from octet gauge fields. As will
be discussed below, each generalized gluelump will have a
tensor where the number of indices equals the number of
columns in its Young tableau.

As is standard in lattice QCD simulations, mass
splittings will be obtained by computing a correlation
function and then observing the exponential dependence
on Euclidean time. A correlation function that creates a
gluelump at Euclidean time z; and then annihilates it at time
T Vi 1S

TABLE II. Young tableaux for representations relevant to this work. Labels inside boxes are to aid the discussion of (anti)
symmetrization.
np 8 10 27 28 35
1 T k|l T iljlk|1
Tableau D O s R FU AL R
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Clzp — ;) = H"™ (2;) GO0 (7 ) H"0 P (zp). (2)

Repeated indices a and f are summed from 1 to nj, to pro-
duce a gauge-invariant correlation function. The operators
H and H' that, respectively, annihilate and create the
required gauge field structure will be developed in
Sec. IIB. The propagator G for the static particle is
described presently.

A. Static propagator

A static particle propagates purely in the temporal direc-
tion (subscript “4”), so for a representation of dimension rnp,
we can write

G("D)a/}(’[i, Tj) — Ué((’m)ﬂt}’ ()a Ti) Uiﬂu)?ﬁ(ﬁ 7, + Cl)
x UL (% 5;+2a) - U (£2p) - (3)

with repeated Greek indices summed from 1 to np.
Each generalized link U"») is built from elementary
links (one per column of the Young tableau) contracted
at each end (e.g. Euclidean times 7; and 7; + a) with a basis
tensor 7,

USP = U, U TETY, 4)
y(10)ap _ UizU/mUknTiljleﬂm,,, 5)
U = U,,U,,U;, U5, T Tnop. (6)

U(28>aﬁ = Uio Ujp qu Ulr Ums UntTZ'klmn Tgpqrst’ (7)

UBYY = U, Uy Uy Uy Ui T Thopar: - (8)

where repeated color indices i, j, k, ... are summed from
1 to 3.

An acceptable basis for the octet representation is
T% = )%/+/2 where A% is a standard Gell-Mann matrix as
was used in Ref. [46]. Beyond the octet we find it more
convenient to use real 7" tensors, and for consistency we
will also use real matrices for the octet itself.

For a Young tableau with np boxes, we begin with an
arbitrary tensor having np indices. Then we symmetrize
all indices within a row. Next we antisymmetrize all indices
within any column having two boxes and multiply that pair
of indices by a Levi-Civita tensor, thus reducing the number
of indices by one for each antisymmetrized column. The
final step is to select a real basis of T tensors. For example,
consider the 27-plet. An arbitrary 6-index tensor is a“/x"",
and after symmetrization of (i, j, k, [), symmetrization of
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(m,n) and then antisymmetrization of (i,m) and (j,n),
we have

bijklmn ijklmn

—a _ amjklin _ ainklmj + amnklij 4o (9)

which reduces to a 4-index tensor,

Tklpq = Zeimpejnqbijklmn. (10)

Evaluation of all 3* =81 elements of this tensor
reveals that it contains 36 distinct entries but only 27
of them are linearly independent due to the following
9 constraints:

Ty +Thop +Ti33 =0,
Tian + Tonn + T3 =0,
Ty + T+ T3 =0,
T3+ T3 + Ti3 =0,
Ty + T3303 + T1312 =0,
Ty + Thap + To33 =0,
T3+ To3s3 + Tioi3 =0,
T3313 + Tiznn + Tosi =0,
T3333 + Th1313 + T3z = 0. (11)

Our choice for the basis of 27 tensors is given explicitly in
Appendix A together with the other representations: octet,
decuplet, 28-plet, and 35-plet.

As a useful check of these expressions, we calculate a
completeness relation for each case: Appendix A verifies
that the quantity

np
Z T(l T{l (12)
a=1

comprises a simple Kronecker delta structure. This is
important for the gauge invariance of our correlation
functions.

Notice also that our decuplet representation agrees with
Appendix B of Ref. [70]. Finally, we mention that we have
verified numerically that our real basis of octet T tensors
produces correlation functions that are identical to those
obtained in the Gell-Mann basis.

B. Creation/annihilation operators

The remaining ingredient needed for the computation of
correlation functions is the set of operators, H of Eq. (2),
coupling to the generalized gluelumps. An H operator is
built from products of gauge links that join to the static par-
ticle propagator via a T tensor (from Sec. IIA). Planar
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squares were used for H operators in Ref. [46], but this
provides access to only half of the possible quantum num-
bers. Our most basic building block will be a “chair,” i.e. a
1 x 2 rectangle bent to a 90° angle, which provides access
to all quantum numbers. For extra confirmation of
numerics, we also ran simulations with the planar square
operators used by Foster and Michael, and we verified that
results are consistent with the corresponding chair-based
operators defined here.

Figure 1 displays a pair of chairs touching each other
at one lattice site and rotated into all of the 24 orienta-
tions that are possible on a cubic lattice. Notice that each
chair has a particular direction because a “backward link”
U_, (x+u)=Uj(x) is not equal to the “forward link”

FIG. 1 (color online).

PHYSICAL REVIEW D 89, 014502 (2014)

U,(x). Within each pair of chairs in Fig. 1, A+ B
is a positive parity operator and A — B is a negative par-
ity operator. Because U,(x) — Uj(x) under charge con-
jugation, a “forward” chair plus a “backwards” chair has
positive charge conjugation and the difference between
these two chairs has negative charge conjugation.

The five bosonic irreducible representations of the
octahedral group are A = A, A,, Ty, T, and E, and their
smallest continuum angular momenta are J =0, 3, 1, 2,
and 2, respectively. For octet gluelumps, the correspond-
ing operators are obtained from specific linear combina-
tions of the chair-shaped paths in Fig. 1. The steps of a
derivation are provided in Appendix B, and the results
are given here:

Each chair-shaped path is the product of six gauge links used to build operators for octet gluelumps. Solid lines

are the gauge links; dashed lines are just to aid with three-dimensional (3D) visualization.
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12 24
(ZLQ) TS, H®(4,) = (Z(—l)“LEP—Z(—l)“LE?) T,

ij a=1 a=13 ij

HO(Ty) = (LY + L + LY + L) - L — 1 - LY — 1), 19,
HO(T)) = <L<>+L§J+L§2+L§J—L&#—LP—L&?— zzx,
HOUT) = (L + LY + L+ L - L) — L - LT - L), 1%,
H<8>0<T3>=<L28>—Léi?+L§§>—LE§>+L§?—L§8>+Lé>—L23 )i 7%,
HO(T)) = (LY — L + L5 — L3 + L) 1P + LT — 13,19,
HOr3) = (L = L + LY = L + L) - L) + L - L), 19,
H®(E") = (v* — ), TF, H®(E?) = (v° + 0¥ — 20°),, T¢,

v =L L LY ALY L LY LY+ LY,
U ALY AN A U AN AN ALY AL A0
=LY LY LY LY L) L+ LY LY. (13)

Notice that A; and A, are one-dimensional representations, 7 and 7, are three dimensional, and E is two dimensional.
Each decuplet chair contains three paths that begin at a central lattice site (where the tensor 7" will be placed; and end at a
Levi-Civita tensor. Each of those three paths is the product of three gauge links. The precise definition of L( is displayed
in Fig. 2, and Lg o through Lg4 ) are defined by applying the same procedure to every chair in Fig. 1. The decuplet operators
are obtained by making two simple adjustments to Eq. (13): replace every superscript (8) with a superscript (10) and replace
every pair of indices ij by the three indices ijk.
The 35-plet is built from a double chair, specifically one octet-type chair and one decuplet-type chair, defined as follows:

35 8 10 35 8 10
i = CD) L W) = C)in (L) 0
35 8 10 35 8 10
(Lé ))ijklm (Lé ))im(L(lO ))jkl’ (L(14 )>ijklm = (LgZ))im(LEES ))jkl’
5 m = En L5 ) = (L) (L6
35 8 10 35 8 10
(Lﬁ(l ))ijklm (Lz(; ))im(L(l2 ))jkl’ (L(m )>ijklm = (Lg4))im(L§0 ))jkl’
L5 i = C )i i 5 i = L) (L5 0
35 8 10 35 8 10
(L<6 >)ijklm = (Lgo))im(Lg ))jkl’ (ng ))ijklm = (L(14))im(L§2 ))jkl’
35 8 10 35 8 10
(L<7 >)ijklm = (Lgl))iin(Lg ))]kl’ (LE9 ))ijklm = (L(IS))im(Lg3 ))jkl’
35 8 10 35 8 10
(Lé >)ijklm = (L<12))im(L4(1 ))jkl’ (Lgo ))ijklm = (L(l6))im(L§4 ))jkl’
35 8 10 35 8 10
L5 ijtam = D )an LS8 CE )i = C)in (L1570
L3 ijtam = CE)in L6 i LSt = L) (L1370
35 8 10 35 8 10
L m = ED LS ) = (L) (L)
35 8 10 35 8 10
(ng ))ijklm = (Lé(l ))im(Lz(a ))jkl’ <L§4 )>ijklm = (Lgo))inz(l’§6 ))jkl' (14)

(35) (8)

Notice that a diagram of L, would resemble L, of Fig. 1 except that the chairs in each lattice cell are in the opposite
locations (there is a chair where there was not, and there is not a chair where there was). There are two options—the octet-
type chair could have been to the left or to the right of the decuplet-type chair when viewed from a certain angle—and
Eq. (14) show which of the two options we have selected. The 35-plet operators are obtained by making two simple adjust-
ments to Eq. (13): replace every superscript (8) with a superscript (35) and replace every pair of indices ij by the set i jk/m.
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FIG. 2 (color online). Octet chairs and decuplet chairs have the
same shape but the product of gauge links differs. Solid lines are
the gauge links; dashed lines are just to aid with 3D visualization.
A filled circle denotes insertion of a Levi-Civita tensor.

The 27-plet is also built from a double chair, but both are
octet-type chairs. The definition is obtained from Eq. (14)
with these replacements: (35) — (27), (10) — (8),
ijklm — ijkl, im — ik, jkl — jl. The 27-plet operators
are obtained by making two simple adjustments to
Eq. (13): replace every superscript (8) with a superscript
(27) and replace every pair of indices ij by the set ijkl.

The 28-plet is built from a double chair; both are decup-
let-type. The definition is obtained from Eq. (14) with these
replacements: (35) — (28), (8) — (10), ijklm — ijkimn,
im — ijk, jkl — Imn. The 28-plet operators are obtained
by making two simple adjustments to Eq. (13): replace
every superscript (8) with a superscript (28) and replace
every pair of indices ij by the set ijkimn.

To complete the discussion of generalized gluelump
operators, notice that the octet and 27-plet are eigenstates
of charge conjugation, whereas the decuplet, 28-plet, and
35-plet are not. This is evident from the Young tableaux
representations of the underlying group theory as shown
in Table II. Representations with twice as many boxes in
the top row as the bottom row have the same number of
symmetric and antisymmetric indices. They are their
own antirepresentations and are eigenstates of charge con-
jugation. Other representations are “charged” and cannot
form states with definite charge conjugation. This property
can also be seen in the color flow in Figs. 1 and 2. Any
single octet chair has one color and one anticolor emanating
from the central lattice site, but the decuplet has three colors
and no anticolors.

PHYSICAL REVIEW D 89, 014502 (2014)
III. LATTICE SIMULATIONS

The simulations performed for this work use two ensem-
bles of configurations provided by the CP-PACS and
JLQCD Collaborations [71]. These ensembles are O(a)-
improved due to the use of the clover coefficient, cgqy.
The lattice spacings are comparable to the smallest values
used in Ref. [46]. Precise parameter values are displayed in
Table III. Notice that the strange quark mass is essentially
its physical value, but the up and down quarks are not: the
pion is about 3.5 times heavier than its physical value.

Stout link smearing [72] was applied to the operators of
Sec. IIB with parameters tuned to reduce contamination
from excited states. In the notation of Ref. [72], we use
(p.n,) = (0.20,15) for the octet and decuplet, and we
use (p, n/,) = (0.15, 15) for the 27-plet, 28-plet, and 35-plet.
Figure 3 gives an indication of the quality of the data by
showing the relatively clean example of the octet T7C as well
as the much more challenging example of the 27-plet EFC.

Mass differences are obtained by the simultaneous fit of
a pair of correlation functions:

Cl = fle_le and C2 = fze_(M1+5M12>T’ (15)

where |, f,, M|, and 6M |, are the four fit parameters. The
mass difference M, is the physics we wish to extract, and
its statistical uncertainty is determined by bootstrapping
[73]. The most important systematic uncertainty comes
from choosing the range of time steps, 7; to 7y, to include
in each fit. Fits do not depend significantly on 7, because
the inclusion of noisy data at large Euclidean times has a
negligible influence. We determined the range of z; options
that all produced acommon 6M |, value within one statistical
standard deviation, and then used the smallest z; in that range
because it produces the smallest statistical uncertainty. A
one-sigma systematic error was then assigned to be

5M12(Ti> - 5M12(Ti - 1)
> .

(16)

Table IV and Fig. 4 contain the final results for mass
splittings among gluelumps with the static particle in the

TABLE III. Input parameters and standard output parameters (separated by a horizontal line) used in this work were obtained from
Ref. [71]. For comparison, parameters used in the quenched study by Ref. [46] are also shown.

Source [71] [71] [46] [46] [46]

B 1.90 2.05 5.7 6.0 6.2

Kud 0.13700 0.13560 e e e

Ky 0.13640 0.13540

Csw 1.7150 1.6280 e

L3xT 203 x 40 283 x 56 123 x 24 16> x 48 243 x 48

No. of configurations 790 650 99 202 60

Lattice spacing [fm] 0.0982(19) 0.0685(26) 0.170 0.0948 0.0683

mg/m, 0.6243(28) 0.6361(47) e e e
2m2% — m,z,/m(,, 0.7102(20) 0.6852(46)
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FIG. 3 (color online).
channels containing a static 27-plet particle at f = 1.90.

color-octet representation. As is true throughout this article,
angular momentum J refers to the light degrees of freedom
only; all results apply to a heavy particle—color octet in
this case—with any spin. Although the central value for
the mass difference at # = 2.05 tends to be larger than
the central value at f = 1.90, the effect is marginal relative
to the quoted error bars. Since both lattice spacings are less
than 0.1 fm and an improved lattice QCD action has been
used, it is not surprising that mass splittings are essentially

TABLEIV. The mass spectrum of gluelumps containing a static
octet particle, as determined from dynamical lattice QCD at two
lattice spacings. J denotes the continuum angular momentum of
the light (gauge) degrees of freedom and does not include the spin
of the octet particle. The first error is statistical and the second is
systematic, from Eq. (16).

M(APC) — M(T}7) [GeV]

APC g B =190 B =205

T~ 1 0334£0024+007  0.24+0.05+0.06
E~ 2 066+£002+007  0.87£0.04+0.05
T, 2 067£002+006  0.64+0.11+0.09
E*~ 2 0944003 +0.08 1.18 £ 0.05 £ 0.06
T{7 2 11240034008 1.39 + 0.06 & 0.06
AT 0 1.14 +0.05 £ 0.11 1.55 +0.12 + 0.09
Aj- 3 13940.12+022  227+0.05+0.25
AT 0 1.44+£0.09+0.19 1.734£0.23 £ 0.26
Et* 2 151+0.07£0.11 2.07 £0.03 £0.15
T{Y 2 200£0.13+0.13  2.88+0.05+0.18
T 21440154019  2.14+0.38+0.45
"1 159 £0.06+£0.12  2.3140.04 +0.16
At 3 171 £0.14 £ 024 254 +0.06 +0.23
E* 2 189+0.10+006  245+0.04+0.16
;% 2 1.86+0.09+0.11 2.52+0.04 £0.19
At 3 191 +£033+£042  320£0.124+0.29
A~ 3 2974+005+059  3.58+0.19+0.32
A7t 0 3.02+005+048  3.82+0.18+0.17
AT 0 2.82+0.04+041 3.44 +0.13 +£0.19
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T T T T
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107 *
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Sample correlation functions: (a) the 7¥¢ channels containing a static octet particle at # = 2.05, (b) the EF€

independent of lattice spacing. It is also reassuring to see
that EPC and T1C are consistent with each other for each
PC, since they should couple to the same physical state
(J = 2) in the continuum limit.

The quenched lattice QCD study of Ref. [46] had access
to only 10 of the 20 channels listed in our Table IV. The raw
data for those 10 channels are provided in Table II of
Ref. [46] (here called “[46]-1I" for brevity) without system-
atic errors, but several options for adjacent time steps are
shown in [46]-1I and from this a systematic error defined by
our Eq. (16) can be estimated if desired. The raw data from
[46]-II are in reasonable agreement with the present work,
but we wish to point out some concerns about how [46]-11
was used to arrive at final mass splittings in MeV, as listed
in [46]-IIL.

To begin, we note that [46]-III was obtained from [46]-11
by going through the figure [46]-3. The figure [46]-3 is
largely obtained from [46]-II by using the first two time
steps (called “# = 2:1” in Ref. [46]) and combining errors

g P
T E {
RGN

oE ? R T T R R Y NS B 1

FIG. 4 (color online). The content of Table IV is displayed vis-
ually. Statistical and systematic errors were added linearly.
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from the two energy levels in quadrature. This numerically
reproduces the data in [46]-3 with two exceptions, both at
p =5.7: the Af* data point in [46]-3 is not consistent with
[46]-11, and neither is the error bar for 75 *. A first concern
is that # = 5.7 data have a significant impact on the con-
tinuum extrapolation presented in [46]-III, and direct use of
[46]-1I indicates a much more modest lattice spacing
dependence than was claimed. A second concern is that
the r =2:1 data are used to obtain the continuum limit
even though [46]-II shows that they produce mass splittings
that differ significantly from later time steps.

These concerns should not detract from the valuable
comparison between the present study and [46]-II. Our
dynamical lattice QCD study uses two lattice spacings that
are very close to the finer two spacings of the quenched
study in Ref. [46], and produces compatible results, which
indicates that quenching errors are too small to disentangle
from the other uncertainties. The authors of Ref. [46]
reported a lack of degeneracy for E** and 75" at nonzero
lattice spacings, with 75 © heavier than E*, and we see a
similar tendency though it is not large relative to the error
bars in Fig. 4. Moreover, we now have three other channels
(+—, —+, and —) where E and T, can be compared, and
these are all appropriately degenerate when systematic
uncertainties are taken into account. The authors of
Ref. [46] were surprised by the degeneracy of 27~ with
37, but in the context of our 20-channel study this pair
of operators has no striking degeneracy. The authors of
Ref. [46] were surprised by the heaviness of the 01,
and we agree that it is heavy, although the extrapolation
in Ref. [46] is noticeably reduced when the f = 5.7 data
are taken directly from [46]-I1.

For representations beyond the octet, our efforts to opti-
mize the smeared operators were concentrated on the f =
1.90 ensemble. Simulations of the f = 2.05 lattices were
computationally expensive and, like the octet results, we
do not anticipate a significant dependence on lattice
spacing between these two S values, so our results at
P = 1.90 represent predictions for the continuum physics
spectrum. Mass splittings for gluelumps with the static par-
ticle in the color-decuplet representation are shown in
Table V. Notice that the A}, which in the continuum is
07, appears to be the lightest state in this spectrum modulo
systematic uncertainties.

Mass splittings for gluelumps containing a 27-plet static
particle are shown in Table VI. All 20 APC channels were
attempted, but those omitted from the table produced no
usable signal. Although mass differences are tabulated rel-
ative to 75, the data do not ensure that this is the lightest
state. For both the decuplet and the 27-plet, the E and T,
channels are consistent with one another.

Correlation functions for the 28-plet and 35-plet con-
tained too few usable time steps to give a meaningful sys-
tematic error, so we refrain from presenting numerical
results. Nevertheless, the writing and running of this code

PHYSICAL REVIEW D 89, 014502 (2014)

TABLE V. The mass spectrum of gluelumps containing a static
decuplet particle, as determined from dynamical lattice QCD at
p = 1.90. J denotes the continuum angular momentum of the
light (gauge) degrees of freedom and does not include the
spin of the decuplet particle. The first error is statistical and
the second is systematic, from Eq. (16).

AP J M(AP) — M(A7) [GeV]
Ty 1 0.39 + 0.04 + 0.33
E- 2 0.40 + 0.05 + 0.33
T; 2 0.41 +0.04 £ 0.32
T} 1 0.57 +0.05 4 0.48
AT 3 0.89 + 0.10 + 0.47
E* 2 0.90 + 0.07 + 0.45
TS 2 0.96 + 0.06 + 0.37
AT 0 1.05 +0.10 + 0.38
Ay 3 1.48 +0.17 + 0.44

helped us to confirm the operator definitions presented in
Secs. IIA and IIB and Appendixes A and B—for example,
we tested gauge invariance through explicit computations
with a single configuration in every case.

Although none of the operators used in the present work
contain valence quarks, physical states with valence quarks
could have the same quantum numbers as gluelumps.
Examples of such states include the adjoint mesons in
Ref. [46] that were explored on quenched lattices by using
operators that contain explicit valence quarks. As exempli-
fied by Fig. 8 of Ref. [46], the mass difference between
gluelumps and adjoint mesons is difficult to ascertain.
Our use of dynamical configurations in principle allows
adjoint mesons to mix with the gluelump signals, but
our exclusive use of quark-free operators likely produces
only a feeble coupling to adjoint mesons. A combined
study of adjoint mesons and gluelumps would require

TABLE VI. The resolvable mass spectrum of gluelumps
containing a static 27-plet particle, as determined from
dynamical lattice QCD at = 1.90. J denotes the continuum
angular momentum of the light (gauge) degrees of freedom
and does not include the spin of the 27-plet particle. The first
error is statistical and the second is systematic, from Eq. (16).

APC J M(APC) — M(T5) [GeV]
E++ 2 0.04 + 0.06 + 0.24
ATt 0 0.05 £ 0.07 £ 0.19
T, 2 0.50 + 0.08 = 0.45
E~* 2 0.53 +0.09 + 0.43
T 1 0.66 + 0.09 + 0.38
Ayt 3 0.74 +0.17 + 0.50
AT 3 1.12 +0.23 + 0.45
T/~ 1 1.29 +0.26 + 0.93
T/ 1 1.34 +0.20 + 0.57
TS 2 1.91 +0.32 4 0.45
E* 2 2.13 4 0.41 + 0.30
i~ 1 2.49 +0.55 +0.44
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operators of both types to be analyzed simultaneously in a
matrix that permits mixing between them.

IV. CONCLUSIONS

Any extension of the standard model with a long-lived
colored heavy particle will contain new hadrons that are
QCD bound states of the heavy particle together with gluons
and quarks. The lattice QCD study of this new hadron spec-
trum was pioneered by Michael and collaborators [43—46],
motivated by the color-octet gluino of supersymmetry.

The present study has revisited the gluelump spectrum in
greater detail. This is the first lattice simulation to explore
the complete set of gluelump quantum numbers, JFC,
where J represents the angular momentum of the light
degrees of freedom. The heavy particle is treated as static,
so its spin decouples. The lightest new state not studied pre-
viously is 07—, which is found to be as light as some of the
states that were studied in Ref. [46]. Comparison of E and
T, representations, both of which couple to J =2 in the
continuum limit, provides a cross-check on systematic
errors. A leading systematic error was identified as arising
from the choice of a fitting window in Euclidean time.
Comparison of the quenched results from Ref. [46] with
the present dynamical results does not reveal any large
quenching artifacts.

PHYSICAL REVIEW D 89, 014502 (2014)

In addition, the present study provides the first results for
generalized gluelumps, where the heavy particle is not
color octet but rather decuplet or 27-plet. The machinery
for 28-plet and 35-plet computations was also established
and tested, so future studies will be straightforward in those
cases as well.

Final numerical results are presented in Tables IV, V, and
VI. The two f values for octet results represent two differ-
ent lattice spacings that agree within uncertainties.
Comparison of Table IV with the previous studies tabulated
in Table I shows a general agreement, and indicates that
systematic errors cannot be neglected: lattice results are
presently limited by systematics rather than statistics.
Future studies can directly use the operators developed here
to perform larger-scale simulations and improve the preci-
sion for this spectrum of generalized gluelumps.
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APPENDIX A: BASIS TENSORS FOR EACH REPRESENTATION

To reduce notational clutter, define generalized Kronecker delta functions where indices in parenthesis are to be permuted
through all distinct orderings. A few examples are the following:

Sfijyiky = Gk

S(ij iy = Oubji + 6.

S(ijky(uty = Suudj10k,
i tim) = 810 18km + 88 jmOut + i 11,

5{ijk}{lmn} = 5i15jm5kn + 5i15jn5km =+ 5im5j15kn =+ 5im5jn5kl + 5in5j15km + 5i115jm5klv

Stijkiy{ppppt = Oip0ipOipdip

5{ijkl}{Ppﬁq} = 0ip0pOplig + 6ip0p0igbip + 01p0g0ipdip + 6ig6p0ip0ip
5{ijkl}{ppqq} = 5!‘1751'1)5/(4514 + 5ip5jq‘skp‘slq + 5iq§jp5kp51q + 5ip5jq§kq51p + 5iq§jp5kq§lp + 5iq5jq§kp5!p’
5{ijkl}{ppqr} = 5ip5jp5kq51r + 5ip5jq5kp5lr + 5iq5/'p5kp5lr + 5ip5jq5kr51p + 5iq§jp5kr51p + 5iq§jr5kp5lp

+ 81p8,y81B1g + 81p811S1pS1g + 8ir8ipBrpBig + GipBirBigBlp + 5:8ipSigBip + 5irSigSipSip-

The basis used for the octet representation is
Tllj - 5,’15]-2, lej - 51'1(5]'3, T?j -

1
7 _
T;; = ) (5i15j1 - 5;‘25,;2)’ NG

The octet tensors obey the relation

0203, T?j =

1
TS = —=(616j1 + 0ndj —

(A

0201, T3 = 6501 TS = 6536,

25355). (A2)
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8
1
Z T Ty = 6ubji — 551‘ Ok (A3)
p=1
The basis used for the decuplet representation is

1 1
Th=0umny  Toe=0unp2y  Ti=8unpny  Th= Rtz T3 = Rt

1 1 1 1 1
T= 755{’7"}{122}’ Th= ﬁ‘s{ifk}mﬂ’ T = \/_55{1'1%}{133}’ T = ﬁ5{ijk}{233}a T = %5{%}{123}-
(A4)
The decuplet tensors obey the relation
Z T8T o = 8018 (A3)

The basis used for the 27-plet representation is
Tl =Supandunzy T =Supndunesy T =Sy Tiu = Sueadun

T2 = 0unaybunny Tow = 0uneaybuney Thu= % (Sgi 1130 qr{23})s
T?jkl = \% <5{ij}{12}5{k1}{33})v T?jkl = \% (5{ij}{13}5{kl}{22})v
Tiju = \}— (Sgippapdtapin)s T = \}E Gupyendunnzy)s  Tiu= % (S(ijy22)Oay (13})
T = ;(5{u}{11}5{k1}{12} = 3(ij02y0up2y)- Tl = \/12—0(6{ij}{11}5{kl}{12} +8(ij112)O1xy {22) — 26(ij1 {13} 0 (k1) 23))
Tija= 1 5 Briy By 13y = 838y 33y T = \/12—0 (Oijy 11y O ey (13 + 84ij13) Staay (33) — 20073 012) O aay 23)):
Tiju=3 3 G~y e ). Th = \/%—O (Btijp12y 8y ny + 8y 221812y — 28032318 guy13))-
Tiju=> 3 Gty a3 — Sy 09 T = \/%—0 (Bt 2duwren + 0 b 3 — 206020 13))-
T3 = 1 (5{11}{13}5%1}{1 1y =33y Sy 131 T = \/%6 (B iy + 04333101k (13 — 260173 123101k {12})
Tha=> 3 3y )31y 2 = 3y 59 By ) ) Tiu = \/%—0 (Btinenduwrea + 0 endun e — 20603 0m12)-
TH = \/117) (Oijy )0y (1) = Sy 22y Ok i22) = Sigy 13y kay (13) + 611y (23) S kr) 23

1
T = /30 Ggip Sy () + Ogijp2ySpap2y — 2004330 my 331 — 20(i3 (1210 an12) + 64y 131k (13}
+ 5{ij}{23}5{kl}{23})a
1
T3 = NG (264701130 ry 11y + 26411223 Oy (22} + 20411433y Sy (331 — Sgip1200my{12) — Oij{13}0 (ki {13}

— 8ij}23}0 (k1) 23})-
(A6)

The 27-plet tensors obey the relation
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27

Ho _
§ :Tijlem"DP =
pu=1

(5im5jn5k051p + 5im5jn5kp510 +6in5jm6k05lp + 5in5jm5kp510)

FNg-

1

20
+ 5in5105jk5mp + 5in51p6jk5mo + éiléjmékoanp + 5i15jm5kp5no + 5i16jn5k06mp + 5i15jn6kp6mo
+ 5ik5jm§l()5np + 6ik5jm51p5no + 6ik5jn51()5mp + 5ik6jn61p6m0)

(5im5j15k05np + 5im5j16kp5n0 + 5in5j16k06mp + 5in5j15kp6mo + 6im5106jk5np =+ 6im51p5jk6na

1
+ E (5ik5jl5m05np + 5ik5j15mp5no +5i15jk5m05np =+ 6il5jk5mp5n0)' (A7)

The basis used for the 28-plet representation is

The 28-plet tensors obey the relation

T}jklmn _ 5{ijklmn}{111111}’ Tzzjklmn = 5{ijklmn}{222222}’
1
Tfjk,mn = O(ijkimn}{333333} 5 T?/'klmn = 765{i/klmﬂ}{111112}’
1 1
T?jklmn = 7—6—5{ijklmn}{lllll3}’ T?jklmn = 766{"/]‘1”’”}{222221}’
1 1
Tijlmn = 755{i kimn}{222223} » T?jklmn = 765{ijklmﬂ}{33333'}’
1 1
. B 0o _
T2 kimn = 765{ijklmn}{333332}? T iktmn = \/—l—s'é{ijklm”}{” 122}
| 1
Tt!jlklmn = 75{ijklmn}{l 11133} > Tl!jzklmn = 76{"/'1‘[’"”}{2222] 1}
V15 vis
| 1
. 4 _
Lijuimn = \/71_55{ijk1’”"}{222233}’ T = \/—l_sé{ijkzmn}{msn},
| 1
_— 6 _
Tijkimn =775 ki) (333222) Figtamn = \/_2_05{ijklmn}{1”222}’
| 1
T kimn = \/—z—oé{ijklmn}{111333}v Titmn = /20 Ofijkimn} 222333}
! 1
T kimn = —72= O fijkimn {11123} T3 imn = \/ Ofijhtmn} (222213}
30 30
! 1
Tmn =~ Ottt} (339312) Tk =g Otmn (111223
1 1
Tzz;klmn = ,—60 5{ijklmn}{111332}v Tl'zj%klmn = \/ﬁé{’jkl’”"}{zzzlw}’
1 1
Tiikimn =75 Otiamn) (222931 Tikinn =g takinn) 23112)
1 1
Tiann =75 Btskimn) 333221) Tk =755 0 amn (11223 o
28
u u !
Z TijklmnTopqrst = aé{ijklm"}é{wqm}' (A
H=1 .

The basis used for the 35-plet representation is
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Thiim = Sty (010y0m3s Trigm = Sy 01iy0mas T = Spijay 220203 Tiam = Sijniy 2222) O
1 1
Tikim = Otijnty333310m2. Touam = Sgijkay(3333)0mts Tlgm = 2 Otijki} {1112} 0m3- Tiim = 2 OLijktH{1113}9m2-
9 ! 10 1 11 ! 12 1
Tijm =5 0tijkr1222y0m3 Tijiam = 500ijky2223)0mt> Tijram =500k (133310m2: Tijiam =75 04ijki}(2333}Om1

TS

1
T13 T4 ikim = 765{““}{2233}6"“’

1 1
iikim = 765{”“}{1122}6"13’ ijkim = %5{1‘1‘“}{1133}%2,

1
T11j6klm = \/—2—4 (Sijky{1231)Om1 — Ogijkry {1232} Om2) Ti1j7klm = \/% (Sijkny{1231)Om1 + Sijiry{1232)0m2 — 20ijk1y (123310m3 )

1
Tioim = 7§(5{ijkl}{1112}5m2 =8 111310m3)s Tijam = ¢+—2(5{Uk1}{1112}5m2 + 87k 1113)0m3 — 2840k {(111110m1 ) »

1
Toim = NG (8tijuiy222130m1 = Bgijuiy(222310m3)s Tojpam = #‘2‘ (8¢ijkiy 22213 Om1 + 84k} 12223} Om3 — 26 jki (22220m2)
2~ S — 811 Sp)y TR, = (8 S+ 804, S — 26111 S13)
ijklm \/g {ijkl}{3331}9m1 {ijkl}{3332}9m2)> ijklm — /12 {ijkl}{3331}9m1 {ijkl}{3332}9m2 {ijkl}{3333}9m3)>

1 1
Tim = \/—1—8(5{ijkl}{1122}5m2 =8 11230m3)s Tiam = ﬁ(Sé{ijkl}{HZl}éml —268(ijk1y{1122)0m2 — 184k {1123} Om3 )

1 1
Tim = \/—1—8(5{ijkl}{1133}5m3 =i 113230m)s  Tiem = ﬁ(35{ukl}{1131}5m1 —268(3jk13{1133)0m3 — 184k {1132} Om2 )

1 1
Thim = \/—1—8(5{ijkl}{2211}5m1 — Sk 221340m3)s Tiem = ﬁ(35{ijkl}{2212}5m2 —268(ijk1y{2211}0m1 — 184k {2213} 0m3 )

1 1
Tim = \/—1—8(5{ijk1}{2233}5m3 =iy 2231y0m)s  Tijem = ﬁ(35{ijkl}{2232}5m2 —26(ijk1}{2233)9m3 — 104 jki {2231} 0m1 )

1 1
Tm = \/—1_8(5{ijk1}{3311}5'"1 —8ijiya3120m)s Tijam = ﬁ(35{ijkl}{3313}5m3 —208ijk1y(3311}9m1 — 14k (3312} Om2 ) »

1 1
T?szm = \/—ﬁ (Sijk1y(3322)Om2 — O(ijkiy (3321} Om1) T?;klm = ﬁ (384 jki (33231 0m3 — 20(ijk1y {3322y Omz — 18¢ijkay 3321} O )-
(A10)

The 35-plet tensors obey the relation

35

1 1
Z TliljklmTﬁ(’I’qr = ﬁé{ijlk}a{nopq}émr - m (5{jk1}6{opq}5im5nr + 5{jkl}5{npq}5im50r + 5{jk1}5{naq}5im5pr
p=1

+ 6{jk1}6{n0p}5im5qr + 5{ik1}5{opq}5jm5nr + 6{ikl}5{npq}5jm50r + 6{ik1}5{t10q}5jm5pr + 5{ik1}5{nop}5jm5qr
+ 5{ijl}5{opq}5km5nr + 5{ijl}5{npq}5km50r + a{ijl}é{noq}ékmapr + 5{ijl}5{n0p}5km5qr + 5{ijk}5{opq}5lm5nr
+ 6{ijk}5{npq}6lm6()r+6{ijk}5{n0q}5lm5ﬂr + 5{ijk}6{n()p}5lm5qr)' (Al 1)

APPENDIX B: BUILDING THE OCTET OPERATORS

The construction of operators relies on textbook group theory methods (see, for example, Ref. [74]). Table VII is a
reminder of the connection between angular momentum in the continuum and on a lattice [75,76]. To build an octet oper-
ator, begin with a single chair and list all possible rotations of it. There are 24 orientations in total, as shown in Fig. 1. The A,
representation is built from a particular sum,

24
H®(4)) = <Z L,(18)> T¢. (B1)
a=1 i

1
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TABLE VII. The relationship between continuum angular
momentum J and octahedral irreducible representation A.

J
A 0 1 2 3
A 1 0 0 0
A, 0 0 0 1
E 0 0 1 0
T, 0 1 0 1
T, 0 0 1 1

Any octahedral rotation of this sum leaves it invariant, as
expected for a J = 0 operator. The A, representation is built
from a different sum,

12 24
o) = (el =3 e 1 @2

a=1 a=13 ij

Some octahedral rotations of this sum leave it invariant;
others return the negative of the sum. The 7’| representation
is built from a set of three sums,

HO(T)) = (L + Ly + Ly +LiY - LY

— L) — L) — L), (B3)
HE(TY) = (L5 + LYY + Ly + Lig — L7

— L) = LY — L)y T, (B4)
H®«T) = (LY + LY + L + 1P -1

- Ly — LY - L3y T (BS)

Any octahedral rotation of one of these sums returns one of
the three sums (itself or one of the other two) up to £1, as
expected for a vector with / = 1. The T, representation is
built from a set of three sums,

Oy = (0 L 1)~ L+ ]
LY +LY — LY, e, (B6)

O — (0 Ly 1)~ L)+ 1]
LY+ L) — L), T, (B7)

HOxT3) = (LY — 1Y + LY — 1LY + LY
— L+ LY L), 1. (BS)

Any octahedral rotation of one of these sums returns one of
the three sums (itself or one of the other two) up to +1. The
E representation is built from a set of three differences,

PHYSICAL REVIEW D 89, 014502 (2014)

vy — vy, (B9)
vy — 3, (B10)
vy — vy, (B11)
where
v =(Lg) + Ly + L + LY + L + Ly
+L58) +Lg3))le;l]’ (B12)
vp= (LY + L + L5 + Lig + L) + L
+ LY + L)Y, (B13)
vs= (LY ALY LY LY L) L)
+ LY+ L), TS (B14)

Notice that only two of the three differences are linearly
independent. Any octahedral rotation of one of these
differences returns one of the three differences (itself or
one of the other two) up to +1.

The next task is to calculate the character y of each rep-
resentation, which is defined to be the set of traces of the
explicit matrix representation. Since the octahedral group
has five conjugacy classes, we need to evaluate five traces
per representation. To be explicit, we can use

{x(e) x(c5”

where ¢
l,z=0)and ¢
line (x =y = z)

For the A;, A,, Ty, and T, representations, it is not
necessary to build an explicit matrix representation; we
can merely sum the +1 factors for those rotations that
return an element to 4 (itself). For the E representation
it is best to build the two-dimensional matrices explicitly.
A convenient choice for the basis (as used, for example, in
Ref. [77]) is

Fm N (@) a ()Y, B15)

denotes a 180° rotation about the line (x +y =
(97520 denotes a 120° rotation about the

).x(c

H(8)a(El)> < \/%(Ul—ﬂz) )
= _ , B16
(Fon(er Atn-2y) B
and it leads to

—(1 0) (B17)

““\o 1/

-1 0
E*Z)_<0 1). (B18)

)

Under a ¢;” rotation, we obtain
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TABLE VIII. Characters y of all irreducible representations A
for the octet operator.

A xle) aed”) AT

1) x(c?)?)

A1 1 1 1 1
A, 1 -1 1 -1 1
E 2 0 —1 0 2
T, 3 —1 0 1 ~1
T, 3 1 0 -1 ~1
L —) = (-0 B19)
— (v — 1) > —=(vr3—w
\/i 1 2 \/§ 3 2
1/1 V3 (=1
=== —vy) | +— | —=(v +v3—203) |,
(B20)
_1( + vy — 203) _1( +v,—2v;) (B2
—\V Vy — 2LV - — (v Vy — LV
N 1 2 3 NG 3 2 1
V31 1 /-1
=—|—(v, — ——— -2 .
5 <\/§(Ul Uz)) 2(\/6(1)14'”2 03))
(B22)
Therefore
) Lo
cy) = <é _21> (B23)
2 2

All other matrices can be obtained by multiplication of cz((v)

and cff) in various orders finding, for example,

/=10
Cg))—(o 1>a

(B24)
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(x—» —>7—>X) _l _\/_5
g = (g $>, (B25)
VR
1 0
() = <o 1). (B26)

The characters of all representations are collected into
Table VIII, and the multiplicities are obtained through
standard group theory methods:

m(Ay) = 57 (z(e) + 62(cy™) + 8r(¢5™ ™)
+ 6)((cff>) + 3)((05‘2))2) ~ 1. B27)

m(A;) = % (x(e) — 6;((c§xy)) + 8)((CgX—’y—>z—>x>)
_ 6)((@@) + 3)((621))2): 1. (B28)

1 X=2>y—=>7I—2X Z
m(E) = 52 ((e) = 87(cf ™7 7Y) 4 r(ef)) = 1.
(B29)
1 Xy 2 Z
m(T\) = 57 (Bxle) = 6x(es™) +6¢(cl7) = 3(l7)?)
=1, (B30)

1 Xy Z Z
m(T2) = 57 Bx(e) + 6x(es”™) = 6(cl?) = 3(cl?)?)
=1. (B31)

To summarize, the operators that will be typed into the
computer code are those shown in Eq. (13). Operators
beyond the octet are built from this octet starting point,
as described in Sec. IIB.
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