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A relativistic light-front quark model is used to describe both the elastic nucleon and nucleon-Roper
transition form factors in a large Q2 range, up to 35 GeV2 for the elastic and up to 12 GeV2 for the
resonance case. Relativistic three-quark configurations satisfying the Pauli exclusion principle on the light
front are used for the derivation of the current matrix elements. The Roper resonance is considered as a
mixed state of a three-quark core configuration and a molecular N þ σ hadron component. Based on this
ansatz we obtain a realistic description of both processes, elastic and inelastic, and show that existing
experimental data are indicative of a composite structure of the Roper resonance.
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I. INTRODUCTION

The last decade has been marked by significant progress
in the experimental study of low-lying baryonic resonances
(the radial/orbital nucleon excitations with JP ¼ 1

2
�, 3

2
�).

Specifically, new insights have been obtained in π [1] and
2π [2] electroproduction on the proton with the polarized
electron beam at JLab (CLAS Collaboration) followed by a
combined analysis of pion- and photoinduced reactions
made by CB-ELSA and the A2-TAPS collaborations [3].
Electro- and photoproduction of these resonances are
recognized as important tools which allow us to study
the relevant degrees of freedom, wave functions and
interactions between constituents and the transition to
perturbative quantum chromodynamics (pQCD).
The structure issue of the lowest-lying nucleon reso-

nance Nð1440Þ with JP ¼ 1
2
þ (the Roper resonance P11 or

simply R) is a longstanding problem of hadron physics.
One indication that the inner structure of the Roper is
possibly more complicated than the structure of the other
lightest baryons was first obtained in the framework of the
constituent quark model (CQM). It was found that the
observed mass of the Roper resonance is much too low and
the decay width is too large when compared to the predicted
values of the CQM. The simplest description of the Roper
consists of the three-quark ð3qÞ configuration sp2½3�X, i.e.
the first (2S) radial excitation of the nucleon ground state
s3½3�X, but it fails to explain either the large decay width
ΓR ≃ 300 MeV or the branching ratios for the πN
(55%–75%) and σN (5%–20%) decay channels [3,4].
Evaluation of these values in the framework of the CQM

is often based on the elementary emission model with
single-particle quark-meson (or quark-gamma) couplings
qqπ, qqσ, qqγ, etc. The calculation of decay widths (or of
the electroproduction cross section at small virtuality of the

photon with Q2 ≃ 0) results in anomalous small values.
These underestimates for the decay matrix elements can
especially be traced to the strict requirement of orthogon-
ality for the ground (0S) and excited state (2S) radial wave
functions of the N and R states belonging to quark
configurations with the same spin-isospin (S ¼ 1=2,
T ¼ 1=2) and symmetry (½3�ST ½3�X) quantum numbers.
To overcome this discrepancy it is suggested that either
the Roper is not an ordinary 3q state or the “true” transition
operators have a more complicated form than the single-
particle operators used in the CQM calculations.
The elementary theory of strong interactions QCD

provides a framework, which is directly usable only at
high momentum transfers. Nevertheless, the discussed data
[1–3] span the range from soft to hard momentum transfers
0 ≤ Q2 ≲ 4 − 5 GeV2 (up to ∼12 GeV2 for the JLab
upgrade). A major challenge for theory is that a quantitative
description of the transition amplitudes must also include
soft nonperturbative contributions. For the soft region there
are important results from lattice QCD with “unquenched”
q̄q degrees of freedom [5,6] but the present computer
capabilities do not allow us yet to extract all the hadron
properties in a systematic way.
Other approaches that are directly connected to QCD are

either based on light cone sum rules [7] (in reality they can
be used at Q2 ≳m2

N�) or on Dyson-Schwinger equations
(DSEs) [8–10]. A DSE study [10] produces a radial
excitation of the nucleon in the quark-diquark basis at
∼1.82 GeV. Pion electroproduction amplitudes in the
resonance region W ≃mR are successfully analyzed in
terms of the dynamical coupled channel model [11–13],
which is used at the Excited Baryon Analysis Center at
JLab. Combining both methods, Refs. [9,11] demonstrate
that the Roper resonance is indeed the first radial excitation
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of the proton, but the Roper “obscures its dressed-quark
core with a dense cloud of pions and other mesons” [9].
The σ meson along with the uncorrelated pion cloud

possibly play a key role in the inner structure of the Roper.
This mechanism was proposed in Ref. [14] where the
authors showed that in πN scattering the intermediate σN
state defines the Roper resonance pole. Thus there is no
need for some special quark configuration of the type
sp2½3�X to describe the Roper resonance contribution to the
physical processes.
It is clear that the nature of the low-lying baryonic

resonances is still an unresolved issue and in this respect the
study of the Q2 behavior of their electroproduction ampli-
tude is of much current interest. Since direct QCD
calculations are difficult in the low-energy regime several
models for the electroexcitation of the Roper resonance
were proposed during the last three decades [15–22] (see
reviews [23,24] for details). Now model predictions can be
compared to the new high-quality photo- and electro-
production data [1–3]. Updated versions [25–28] of the
most realistic models were used to give a good description
of the data at intermediate values of 1.5≲Q2 ≲ 4 GeV2.
However, in the soft region, i.e. at low values of Q2

(0 ≤ Q2 ≲ 1 − 1.5 GeV2), the data qualitatively differ from
theoretical predictions made in the framework of quark
models without a meson cloud.
Recently the electromagnetic nucleon-Roper transition

has been studied in the framework of anti–de Sitter (AdS)
QCD [29,30]. In particular, in Ref. [29] the Dirac form
factor for the electromagnetic nucleon-Roper transition has
been calculated in light-front (LF) holographic QCD. In
Ref. [30] the Roper electroproduction was considered in a
soft-wall AdS/QCD model [31–33] with inclusion of the
leading three-quark (3q) state and higher Fock components.
As a result there are essentially three comprehensive

theoretical approaches to the Roper electroproduction on
the market. One of them (the coupled channel model of the
meson cloud [2,12,13,34]) is successful in the soft region
0 ≤ Q2 ≲ 1 GeV2 and, the other one, the LF three-quark
model [19,20,25,28] or the covariant quark spectatorodel
[26]) is compatible with data in the hard region
Q2 ≳m2

N–2m2
N . The third approach is based on a novel

method to hadronic structure—AdS/QCD [29,30].
In our recent work [35] we obtained a quantitative

description of the Roper electroproduction helicity ampli-
tudes in the region 0 ≤ Q2 ≲ 2 GeV2 where we started with
the following model principles:
(i) “Unquenching” of the constituent quark model, i.e.

taking into account the qq̄ pair effects (e.g. see the discussion
in Ref. [36]) in the soft-Q2 region. This leads to a nonlocal
qqγ coupling depending on the inner momentum of the qq̄
wave function of the intermediate vector meson [the vector
meson dominance (VMD) is implied].
(ii) Smooth transition from the “soft” nonlocal electro-

magnetic coupling to the “hard” one with growing

momentum transfer Q2. In the hard region the nonlocal
qqγ coupling reduces to the standard Q2-dependent quark
form factor characteristic of the VMD model.
(iii) The hadron-molecular N þ σ state is considered as a

possible component of the Roper wave function along with
the radial excitation of the three-quark configuration.
Although nonrelativistic quark configurations were used,

a realistic description of the Q2 dependence of transition
amplitudes was obtained in a large interval of momentum
transfers 0 ≤ Q2 ≲ 1.5 − 2 GeV2. Given the quality of the
suggested model it reinforces the statement that symmetry
principles (e.g. the Pauli principle for quark systems
including the 3qþ qq̄ component, the VMD in the
electromagnetic coupling, etc.) play the decisive role in
the description of the electroexcitation of low-lying
resonances.
Starting from the results of Ref. [35] we developed a

relativistic version of the suggested electroexcitation
mechanism. Wave functions of baryons are set up in a
LF constituent quark model based on the relativistic
Hamiltonian dynamics which was first formulated by
Berestetskii and Terent’ev [37] and applied to various
hadronic processes in Refs. [18,19,25,28,38–42].
The paper is structured as follows. First, in Sec. II, we

briefly discuss the LF formalism relevant for the electro-
production processes. In Sec. III we fit the parameters of
the model to the elastic e − N data (up to Q2 ≈ 35 GeV2)
including the limit Q2 → 0 (magnetic moments). The
quality of fit in describing the nucleon form factors is a
test of our version of the LF approach to the nucleon
electromagnetic coupling. We further use this model in
Sec. III for the description of the quark core contribution to
the electroproduction amplitudes. In the framework of our
model for the Roper resonance considered as a composite
state [35] we calculate the helicity amplitudes A1=2
(transverse) and S1=2 (longitudinal) for the Roper resonance
electroproduction on the nucleon. The results obtained
are compared to the recent CLAS data (up to
Q2 ≈ 4 − 5 GeV2). Predictions for higher values of Q2

(up to 12 GeV2 for the JLab upgrade) are also discussed.
Finally, in Sec. IV, we summarize our results.

II. DEFINITION OF FORM FACTORS IN
TERMS OF THREE-QUARK CONFIGURATIONS

ON THE LIGHT FRONT

The light-front approach [37–40] to elastic and inelastic
nucleon form factors was used in many works in the
last three decades [18–20,24,25,28,36,40–42]. We follow
Refs. [18,19,40–42] where the method was described in
many details. Here we only accentuate some aspects which
are not covered in the literature but which are essential for
us in the study of the nucleon form factors. In addition in
Sec. II C we cite several well-known formulas from
Ref. [40] to allow for easier reading of our manuscript.
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A. Melosh rotation in the 3q system

First of all it should be noted that the Melosh rotation

RðiÞ
M ðxi; k⊥i;M0Þ ¼

mi þ xiM0 − iσ · ½ẑ × k⊥i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmi þ xiM0Þ2 þ k2⊥i

p (1)

(we use standard kinematical parameters mi,xi and k⊥i of
the ith quark, which are defined below) is not a trivial
operation in the case of a three-fermion system which
should satisfy the Pauli exclusion principle. Sometimes the
product of three independent rotations

RM ¼
Y3
i¼1

RðiÞ
M (2)

produces a change in the type of initial permutational
symmetry (the Young scheme) of the 3q wave function.
If one suggests that the wave function is defined

by a certain LF dynamics such a function should
satisfy the Pauli exclusion principle. In reality we start
from the canonical (c) quark spin wave function
defined in the rest frame, where the fully symmetric
spin-isospin (ST) state of three quarks (the Young
scheme ½3�ST) has the following (allowed by the Pauli
principle) form:

j½3�ST; μ0; tic ¼
ffiffiffi
1

2

r
j½21�Syð1ÞS ; μ0icj½21�Tyð1ÞT ; ti

þ
ffiffiffi
1

2

r
j½21�Syð2ÞS ; μ0icj½21�Tyð2ÞT ; ti (3)

[for S ¼ 1=2 (or ½21�S) and T ¼ 1=2 (or ½21�T)]. Here we
use the Yamanuchi symbol yðiÞ (see Ref. [43] for details)
for a compact representation of the sequence of spin
couplings in the 3q states js1s2ðS12Þs3∶S; μ0ic,

j½21�Syð1ÞS ; μ0ic ¼
���� 12

1

2
ð1Þ 1

2
∶
1

2
; μ0

�
c

j½21�Syð2ÞS ; μ0ic ¼
���� 12

1

2
ð0Þ 1

2
∶
1

2
; μ0

�
c
; (4)

(the same notations are used for isospin states).
As usual the z axis is taken as the quantization axis

both for the canonical (c) and the front form (f) spins.
Here and further on, the symbols μ0i; μ

0
12; μ

0 and
μ00i ; μ

00
12; μ

00 denote the canonical spin projections on
the z axis in initial and final states, respectively, while
μi; μ12; μ and μ̄i; μ̄12; μ̄ are the front form spin projec-
tions. Under the Melosh rotations (different for each
quark with label i)

RðiÞ
M

���� 12 ; μ0i
�

c
¼

X
μi

D
ð1
2
Þ

μi;μ0i
ðθðiÞM Þ

���� 12 ; μi
�

f
; (5)

the canonical spin basis functions (4) are transformed
into the front form

RM

���� 12
1

2
ðS012Þ

1

2
∶S0; μ0

�
c
¼

X
S¼1=2;3=2

X
S12¼0;1

×
X
μ

CSS0
S12;S012

ðμ; μ0Þ
���� 12

1

2
ðS12Þ

1

2
∶S; μ

�
f
: (6)

The coefficients CSS0
S12;S012

ðμ; μ0Þ are the matrix elements of

the triple product (2) of Melosh matrices (1) between
the spin basis states in the 3q system (4). Explicit
expressions for the coefficients CSS0

S12;S012
ðμ; μ0Þ are given

in the Appendix. The coefficients CSS0
S12;S012

depend on the

relative momenta of quarks

λ⊥ ¼ x2k⊥1 − x1k⊥2

x1 þ x2
; m ¼ m1 ¼ m2 ¼ m3;

Λ⊥ ¼ x3ðk⊥1 þ k⊥2Þ − ðx1 þ x2Þk⊥3

x1 þ x2 þ x3
¼ −k⊥3; (7)

and on the zþ components of the quark momenta, xi ¼
pþ
i =P

þ ¼ kþi =M0 with

x1 ¼ ξη; x2 ¼ ηð1 − ξÞ; x3 ¼ 1 − η; (8)

where fxi;k⊥ig is the LF momentum of the ith quark
defined through the Lorentz transformation of the ith
quark momentum to the rest frame of the 3q system.
Note that the relative momentum λ is odd with respect to

the permutation P12 of the first and second quark while
momentum Λ is even

P12λ⊥ ¼ −λ⊥; P12Λ⊥ ¼ Λ⊥; (9)

with P12ξ ¼ 1 − ξ, P12η ¼ η. Thus the permutation sym-
metry of the resulting LF state (6) is not trivial and should
be considered in detail.
In our case we have S0 ¼ 1

2
(the canonical nucleon spin),

but after Melosh rotations of the quark spins this value
transforms into two different values, S ¼ 1

2
and 3

2
, which

characterize the two different components of the nucleon
wave function in the front form. For example, if we start
from the canonical spin state j 1

2
1
2
ð0Þ 1

2
∶ 1

2
; μ0ic [which

possesses the fixed permutation symmetry ½21�Syð2ÞS ] we
obtain the front-spin states with other values of S12 or S,

e.g. S12 ¼ 1 and S ¼ 3
2
[i.e. the states j½21�Syð1ÞS ; μ0if and

j½3�S; μ0if] which supposedly violate the initial permutation
symmetry of the 3q system.
However, on the light front this does not lead to a

violation of the Pauli exclusion principle. The reason for
this is that the Melosh rotation of the spin state
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j½21�SyðiÞS ; μic turns into a superposition of combined spin-

orbital (SP) states j½21�PSyðjÞPS; μifðj ¼ 1; 2Þ realized in the
product space of spin ðSÞ and momentum ðPÞ. The
momentum-dependent factors of the coefficients CSS0

00

and CSS0
11 are even with respect to the permutation P12

while the coefficients CSS0
10 and CSS0

01 are odd. Hence, e.g. in

the case of C
1
2
1
2

10, the term
P

μC
1
2
1
2

10ðμ; μ0Þj½21�Syð2ÞS ; μ0if in

Eq. (6) has the same value (yð2ÞPS) of the Yamanuchi symbol

in the (front) SP space as the initial value yð2ÞS in the
(canonical) S space.

Using the coefficients C
1
2
1
2

00, C
1
2
1
2

11, C
3
2
1
2

11, C
1
2
1
2

10, C
3
2
1
2

10 and C
1
2
1
2

01 in
Eq. (6) we obtain the correct basis vectors in the product
space (the LF spin S and the LF momentum P) for the
irreducible representation (IR) ½21�PS of the permutation
group S3

RMj½21�Syð1ÞS ; μ0ic
¼ j½21�PSyð1ÞPS; μ

0if ¼
X
μ

�
C

1
2
1
2

01ðμ; μ0Þ
���� 12

1

2
ð0Þ 1

2
∶
1

2
; μ
�
f

þ C
1
2
1
2

11ðμ; μ0Þ
���� 12

1

2
ð1Þ 1

2
∶
1

2
; μ

�
f

þ C
3
2
1
2

11ðμ; μ0Þ
���� 12

1

2
ð1Þ 1

2
∶
3

2
; μ

�
f

�
(10)

and

RMj½21�Syð2ÞS ; μ0ic
¼ j½21�PSyð2ÞPS; μ

0if ¼
X
μ

�
C

1
2
1
2

00ðμ; μ0Þ
���� 12

1

2
ð0Þ 1

2
∶
1

2
; μ

�
f

þ C
1
2
1
2

10ðμ; μ0Þ
���� 12

1

2
ð1Þ 1

2
∶
1

2
; μ

�
f

þ C
3
2
1
2

10ðμ; μ0Þ
���� 12

1

2
ð1Þ 1

2
∶
3

2
; μ

�
f

�
: (11)

The result of the Melosh rotation of the basis state (3) can
be written as a symmetric SUð6Þ ×Oð3Þ basis state ½3�PST
which satisfies the Pauli exclusion principle for the LF
states:

RMj½3�ST; μ0tic

¼ j½3�PST; μ0tif ¼
ffiffiffi
1

2

r
j½21�PSyð1ÞPS; μ

0ifj½21�Tyð1ÞT ; ti

þ
ffiffiffi
1

2

r
j½21�PSyð2ÞPS; μ

0ifj½21�Tyð2ÞT ; ti: (12)

Here we consider the Clebsch-Gordon combinations of
quark LF spins

���� 12
1

2
ðS12Þ

1

2
∶
1

2
; μif ¼

X
μ12μ3

X
μ1μ2

�
1

2
μ1

1

2
μ2jS12μ12

�

×

�
S12μ12

1

2
μ3j

1

2
μ

����� 12 μ1
�
f

���� 12 μ2
�
f

���� 12 μ3
�
f

(13)

used in the right-hand sides of Eqs. (10) and (11). They are

rather considered as basis vectors j½21�S3y
ðiÞ
S3
; μi of the IR

½21�S3 of the symmetric group S3 than the IR of the rotation
group Oð3Þ [or the spin group SUð2ÞS] which is not a
kinematical subgroup for the LF dynamics. Fortunately, for
three-particle systems the Clebsch-Gordon coefficients of
the symmetric group S3 are the same as the Clebsch-
Gordon coefficients of the rotation group Oð3Þ [or the spin
group SUð2Þ] [43].

B. Nucleon and Roper resonance wave functions

The spin-isospin part of the nucleon wave function is
defined by Eq. (3) as a basis vector of the IR 56 (JP ¼ 1

2
þ)

of the SUð6Þ group. As a result of the Melosh rotation we
obtained in Eq. (12) a relativistic representation of this state
which depends on the light-front spin states defined
in Eq. (13).
The full wave function also possesses a scalar factor

ΦSðM0Þ—the analog of the radial part of the nonrelativ-
istic wave function. To preserve relativistic invariance the
LF wave function ΦS should depend on the invariant mass
of the system of initial quarks:

M2
0 ≡

X3
i¼1

m2
i þ k2⊥i

xi
¼ m2 þ λ2⊥

ηξð1 − ξÞ þ
ηm2 þ Λ2⊥
ηð1 − ηÞ : (14)

The mass M0 only depends on the square of relative
momenta of quarks (7) and on the zþ components (8).
Note that in a special Breit frame where the momentum

qμ transferred to the nucleon only has the transverse
component q⊥ (for definiteness the momentum q⊥ is
directed along the x axis),

qμ ¼ f0; q⊥; 0g; Q2 ¼ −q2 ¼ q2⊥; q⊥ ¼ jq⊥j; (15)

the quark relative momentum λ⊥ is not changed, while the
values of Λ⊥ and M0 become Λ0⊥ and M0

0, respectively,
with

Λ0⊥ ¼ Λ⊥ − ηq⊥; M0
0
2 ¼ M0

2 þ ηq2⊥ − 2q⊥ · Λ⊥
1 − η

:

(16)

Using Eqs. (10) and (11) we can write the nucleon wave
function in the form
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jN1=2þðM0Þ; μ0; tif

¼ ΦSðM0Þ
� ffiffiffi

1

2

r
j½21�PSyð1ÞPS; μ

0ifj½21�Tyð1ÞT ; ti

þ
ffiffiffi
1

2

r
j½21�PSyð2ÞPS; μ

0ifj½21�Tyð2ÞT ; ti
�
: (17)

The Roper resonance wave function jN�
1=2þ ;M0; μ

0; t0i has
the same form, but now the function ΦSðM0Þ corresponds
to a radial excitation of the nucleon. We further denote the
nucleon function as Φ0SðM0Þ and use the notation
Φ2SðM0Þ for the Roper resonance. In analogy to the
harmonic oscillator model we define the radially excited
wave function in the form

Φ2S ¼ N 2S

�
1 − cR

M2
0

β2

�
Φ0S; (18)

where β is the scale parameter. Here the coefficient cR can
be determined by the orthogonality condition

hN�
1=2þ ; μ

0; tjN1=2þ ; μ
0; ti ¼ 0: (19)

In the Breit frame (15) the initial nucleon has momentum
− q⊥

2
and the wave function (17) is denoted by

jN1=2þðM0Þ;− q⊥
2
; μ0; ti. The wave function of the final

state jN0
1=2þðM0

0Þ; q⊥2 ; μ0; ti corresponds to the momentum

þ q⊥
2
and can be obtained from Eq. (17) by the substitutions

Λ⊥ → Λ0⊥ and M0 → M0
0.

C. Matrix elements of the one-particle current

We now will have a look at the well-known basic
formulas following Ref. [40]. We start with the electro-
magnetic current of a free quark considered as a Dirac
particle with charge eq and anomalous magnetic moment
ϰq given as

jμq ¼ eq

�
γμ þ ϰq

2m
iσμνqν

�
: (20)

The zþ component of this current Iþq ¼ j0q þ j3q plays a
decisive role in the LF approach. As has been shown [40] in
the special Breit frame (15), where q0 ¼ q3 ¼ 0, that the
matrix element of any component of the one-particle
current (20) can be expressed in terms of the Iþ matrix
element, provided that current conservation jμqμ ¼ 0 is
obeyed. Hence the nucleon form factors F1 (Dirac) and F2

(Pauli) can be calculated in terms of matrix elements of the
Iþ component of the current

IðiÞþq ¼ eðiÞq

�
If1 − iσðiÞ · ½z × q⊥�

f2
2m

�
(21)

and

IþN ¼ eN

�
IF1 − iσN · ½z × q⊥�

F2

2mN

�
(22)

written in the special Breit frame (15). In both cases the
electric charge (without the factor e ¼ ffiffiffiffiffiffiffiffi

4πα
p

)

eðiÞq ¼ 1

6
þ 1

2
τðiÞ3 ; eN ¼ 1

2
þ 1

2
τN3 (23)

is included in the current. Quark form factors f1 and f2
could be included in addition, but here we consider the
simplest variant without quark form factors (f1 ¼ 1,
f2 ¼ ϰq) assuming that the quark is an elementary
particle.
Current matrix elements between LF spin states

f

�
1

2
; μ̄3

����Ið3Þþq

���� 12 ; μ3
�

f
¼ IDþ

μ̄3μ3 þ IPþμ̄3μ3

¼ eð3Þq

�
δμ̄3;μ3 þ δμ̄3;−μ3ð−1Þ1=2−μ3

q⊥
2m

ϰq

�
; (24)

fhN0
1=2þ ; μ̄jIþN jN1=2þ ; μif

¼ eN

�
δμ̄;μF1 þ δμ̄;−μð−1Þ1=2−μ q⊥

2mN
F2

�
(25)

have a momentum-independent Dirac part IDþ
μ̄3μ3

¼ δμ̄3μ3
which only depends on the spin indices (for definiteness we
take the quark number i ¼ 3).
The canonical spin matrix elements for the electromag-

netic transitions N þ γ� → N0 (N0 ¼ N;N�) are determined
by the LF matrix element (25) using the following
decomposition:

chN0
1=2þ ; μ

00; tjRðNÞ
M

†IþNR
ðNÞ
M jN1=2þ ; μ

0; tic
¼

X
μ̄μ

chN0
1=2þ ; μ

00jRðNÞ
M

†ðμ00; μ̄ÞjN0
1=2þ ; μ̄if

× fhN0
1=2þ ; μ̄; t

0jIþN jN1=2þ ; μ; tif
× fhN1=2þ ; μjRðNÞ

M ðμ; μ0ÞjN1=2þ ; μ
0ic; (26)

where (see, e.g. the first reference in Ref. [40])

RðNÞ
M ðμ; μ0Þ ¼ D

ð1
2
Þ

μμ0 ðθMÞ; (27)

cos
θM
2

¼ 1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ffiffiffiffiffiffiffiffiffiffiffi

1þ τ
p Þ2 þ τ

q ; τ ¼ Q2

4m2
N
: (28)

The observed nucleon electric and magnetic form factors
are calculated with the matrix element (26).
Now we define the nucleon current as a sum of single-

quark currents
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IþNð3qÞ ¼
X3
j¼1

eðjÞq IðjÞþq ; (29)

and calculate the nucleon Dirac/Pauli form factors with the
quark wave functions defined in Eq. (17). For F1 and F2 we
use the following definitions (see Refs. [19,41,42] for
details):

F1 ¼
1

2

X
μ0μ00

δμ0;μ00chN0
1=2þ ; μ

00; tjRM
†IþNð3qÞRMjN1=2þ ; μ

0; tic;

F2 ¼
1

2

X
μ0μ00

δμ0;−μ00 ð−1Þ12−μ0

× chN0
1=2þ ; μ

00; tjRM
†IþNð3qÞRMjN1=2þ ; μ

0; tic: (30)

Here RM is the three-quark Melosh rotation defined in
Eqs. (1) and (2). Further on the standard relation between
the Sachs and Dirac/Pauli form factors

GE ¼ F1 − τF2; GM ¼ F1 þ F2 (31)

can be used.

D. Form factors in terms of the single-quark current

To calculate the nucleon form factors F1, F2 when
starting from the LF quark current (24) we define the
nucleon matrix element (26) in terms of the quark wave
function (17) deduced in Sec. II B. The definition of
the quark matrix element implies integration over the
wave functions involving the six-dimensional momentum
space

c

�
N0

1=2þ ;
q⊥
2
; μ00; t

����RM
†IþNð3qÞRM

����N1=2þ ;− q⊥
2
; μ0; t

�
c

¼ N p

ð2πÞ6
Z

1

0

dξ
Z

1

0

dη
Z

d2Λ⊥
Z

d2λ⊥Jðξ; η;Λ⊥; λ⊥Þ

× 3hN0
1=2þðM0

0Þ; μ00; tjIð3Þþq jN1=2þðM0Þ; μ0; ti:
(32)

The integrand in Eq. (32) includes the combinatorial factor
3 (the number of quarks in the system) and the Jacobian J
which corresponds to the transition from ordinary quark
momenta k1; k2; ks to the relative LF variables (7) and (8)

Jðξ; η;Λ⊥; λ⊥Þ ¼
Pþ

P0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
3
i¼1 ωi

Q
3
j¼1 ω

0
j

q
ξð1 − ξÞηð1 − ηÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M0M0
0

p : (33)

Here a standard definition for the i quark energy ωi is used

ωi ¼
1

2

�
M0xi þ

m2 þ k2⊥i

M0xi

�
; k⊥1 ¼ λ⊥ þ ξΛ⊥;

k⊥2 ¼ −λ⊥ þ ð1 − ξÞΛ⊥; k⊥3 ¼ −Λ⊥; (34)

while the notation ω0
j is reserved for the energy of the jth

quark in the final state [then the substitutions k⊥i → k0⊥j,
Λ⊥ → Λ0⊥ and M0 → M0

0 should be made in Eq. (34)].
The matrix element (32) is normalized with the factor N p
which provides the correct proton charge of unity,
i.e. F1pð0Þ ¼ 1.
The integrand in Eq. (32) consists of two components

which originate from the Dirac (D) and Pauli (P) terms of
the quark current of Eq. (24). For the Dirac component of
the integrand we use the representation

J D
μ00μ0 ðM0

0;M0; tÞ

¼ 3hN0
1=2þðM0

0Þ; μ00; tj
X
μ3μ̄3

���� 12 ; μ̄3
��

1

2
; μ̄3

����
× IDþ

μ̄3μ3

���� 12 ; μ3
��

1

2
; μ3

����N1=2þðM0Þ; μ0; t
�
; (35)

and the same formula with the substitution IDþ
μ̄3μ3 → IPþμ̄3μ3 ¼ðϰqq⊥=2mÞδμ̄3;−μ3ð−1Þ1=2−μ3 is used for the Pauli compo-

nent J P
μ00μ0 ðM0

0;M0; tÞ.
It is rather straightforward to derive explicit expressions

for J D
μ00μ0 and J P

μ00μ0 in terms of the coefficients CSS0
S12;S012

when the wave functions jN1=2þðM0Þ; μ0; ti and
jN0

1=2þðM0
0Þ; μ00; ti are substituted in the form given in

Eq. (17) with the basis vectors (10) and (11) defined in
Sec. II A. The result is

J D
μ00μ0 ðM0

0;M0;tÞ¼3ΦS0 ðM0
0ÞΦSðM0Þ

1

2

X
μμ̄

δμμ̄

×f½C0�
01ðμ̄;μ00ÞC01ðμ;μ0Þ

þC0�
11ðμ̄;μ00ÞC11ðμ;μ0Þ�e1ðtÞ

þ½C0�
00ðμ̄;μ00ÞC00ðμ;μ0Þ

þC0�
10ðμ̄;μ00ÞC10ðμ;μ0Þ�e2ðtÞg; (36)

J P
μ00μ0 ðM0

0;M0; tÞ ¼ 3ΦS0 ðM0
0ÞΦSðM0Þ

1

2

ϰqq⊥
2m

X
μμ̄

Aμ̄;μ

× f½C0�
01ðμ̄; μ00ÞC01ðμ; μ0Þ

þ C0�
11ðμ̄; μ00ÞC11ðμ; μ0Þ�e1ðtÞ

þ ½C0�
00ðμ̄; μ00ÞC00ðμ; μ0Þ

þ C0�
10ðμ̄; μ00ÞC10ðμ; μ0Þ�e2ðtÞg; (37)

where the matrix Aμ̄;μ is given in the Appendix and each
term C0�

S12S012
ðμ̄; μ00ÞCS12S012

ðμ; μ0Þ in the rhs of Eqs. (36) and

(37) is a symbolical expression that implies a sum of two
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terms for the front spins S ¼ 1
2
and 3

2
as it follows from

Eqs. (10) and (11), e.g.

C0�
11ðμ̄;μ00ÞC11ðμ;μ0Þ
≐C

1
2
1
2

11

�ðλ⊥;Λ0⊥; μ̄;μ00ÞC
1
2
1
2

11ðλ⊥;Λ⊥;μ;μ0Þ
þC

3
2
1
2
�
11ðλ⊥;Λ0⊥; μ̄;μ00ÞC

3
2
1
2

11ðλ⊥;Λ⊥;μ;μ0Þ: (38)

In Eqs. (36) and (37) the isospin factors are

e1ðtÞ ¼ h½21�Tyð1ÞT ; tjeð3Þq j½21�Tyð1ÞT ; ti ¼
	
0; t¼þ 1

2
;

1
3
; t¼− 1

2
;

(39)

e2ðtÞ¼ h½21�Tyð2ÞT ;tjeð3Þq j½21�Tyð2ÞT ; ti¼
	 2

3
; t¼þ1

2
;

−1
3
; t¼−1

2
:

(40)

In the following FD
1t and FP

1t denote the contributions of
the Dirac and Pauli quark currents IDþ

μ̄3μ3
and IPþμ̄3μ3 to the

nucleon F1 form factor F1t ¼ FD
1t þ FP

1t, while the same
notations are used for the nucleon F2 form factor
F2t ¼ FD

2t þ FP
2t. These contributions to F1tðF2tÞ are rep-

resented by the following six-dimensional integrals of the
functions defined in Eqs. (36) and (37) with

FD
1t ¼

Z
dVLF

1

2

X
μ0μ00

δμ0;μ00J D
μ00μ0 ðM0

0;M0; tÞ; (41)

FD
2t ¼

Z
dVLF

1

2

X
μ0μ00

δμ0;−μ00 ð−1Þ1=2−μ0

×
2mN

q⊥
J D

μ00μ0 ðM0
0;M0; tÞ; (42)

FP
1t ¼

Z
dVLF

1

2

X
μ0μ00

δμ0;μ00J P
μ00μ0 ðM0

0;M0; tÞ; (43)

FP
2t ¼

Z
dVLF

1

2

X
μ0μ00

δμ0;−μ00 ð−1Þ1=2−μ0

×
2mN

q⊥
J P

μ00μ0 ðM0
0;M0; tÞ: (44)

Here we denote the integration volume in compact form as

dVLF ¼ Jðξ; η;Λ⊥; λ⊥Þdξdηd2Λ⊥d2λ⊥:

III. DESCRIPTION OF DATA ON FORM
FACTORS AND HELICITY AMPLITUDES

A. Nucleon form factors

Previous results enable us to determine the nucleon form
factors in a wideQ2 range from 0 to 35 GeV2. The nucleon

form factors F1=F2 are defined as the sums of matrix
elements (41)–(44) of the Dirac/Pauli quark currents

F1t ¼ FD
1t þ FP

1t; F2t ¼ FD
2t þ FP

2t; (45)

where t ¼ þ1=2 (proton), t ¼ −1=2 (neutron). The Sachs
form factors GE=GM are defined by Eq. (31).
In the LF approaches [18,19,28,41] the “radial” part of

the S-wave quark core of the nucleon is usually described
by the Gaussian Φ0S ¼ N 0S expð−M2

0=2β
2Þ. However, for

large Q2 the elastic or inelastic form factors are suppressed
by the Gaussian, hence the pQCD prediction for their
asymptotic behavior with GE ∼ 1=Q4, GM ∼ 1=Q6 cannot
be provided.
A superposition of several harmonic oscillator wave

functions (up to 20) was used in more advanced approaches
[19,25] to obtain a realistic description of form factors at
low and moderate values of Q2. Nevertheless, the problem
of the asymptotic power behavior of nucleon form factors
can only be solved in such models where many free
parameters are available to be fitted to the data up to high
values of Q2.
Recently, in Ref. [28], a running quark mass [in the pole

form mðQ2Þ ¼ mð0Þ=ð1þQ2=Λ2Þ] was used in the LF
model with a Gaussian shaped wave function. This model
is consistent (at least qualitatively) with the QCD prediction
for the Q2 behavior of the quark mass. The problem is
essentially as follows: in quark models the factor m−1ðQ2Þ
appears in the expression for the nucleon form factor F2.
Therefore, the falloff of the Gaussian in F2 at large Q2 can
be compensated by an increase in m−1ðQ2Þ. As a result a
realistic description of the Q2 behavior of both the nucleon
form factors and the Roper resonance production helicity
amplitudes was obtained in Ref. [28].
Here we suggest an alternative method for solving the

problem of the “non-Gaussian behavior” of form factors at
large Q2. In our opinion a pole form of the nucleon/Roper
wave function

Φ0S ¼ N 0S
1

ð1þM2
0=β

2Þγ (46)

is also workable and correlates well with QCD predic-
tions for the high Q2 behavior of elastic and inelastic
form factors. Two decades ago such a pole form for the
nucleon wave function was considered in Ref. [42]. A
realistic description of nucleon form factors and of
magnetic moments was obtained for a value of
γ ¼ 3.5. At this time the theoretical description of data
on GE;GM was rather reasonable; the case of the Roper
resonance was not discussed because of the absence of
good data. Now a large set of new high-quality data both
on the nucleon form factors [44,45,47–53,55,58,64] and
on the electroproduction of the Roper resonance [1–3] are
available. Hence a precise analysis in terms of a common
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approach both to elastic and inelastic form factors is
possible now.
Here we show that the given LF quark model allows for a

good description of all the new data on nucleon form factors
in a large interval of Q2 from 0 up to 35 GeV2. The model
has only five free parameters [see Eqs. (20) and (46)], γ, β,
m, and ϰq, which are fitted to the data. For the values

γ ¼ 3:51; β ¼ 0:579 GeV; m ¼ 0:251 GeV;

ϰu ¼ −0:017; ϰd ¼ 0:0295; (47)

an optimal description of the elastic nucleon data is obtained
(see Figs. 1–8). We present a comparison with known data
and the soft-wall AdS/QCD approach [33], where elastic
nucleon form factors and nucleon-Roper transition form

FIG. 1. Proton Dirac form factor multiplied with Q4.
Experimental data are taken from Ref. [46]. Prediction of the
light-front quark model is given by the solid line, results from the
AdS/QCD approach [33] are marked by the dotted line.
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2
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Q
4 F 1n (Q
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FIG. 2. Neutron Dirac form factor multiplied with Q4.
Experimental data are taken from Ref. [46]. Prediction of the
light-front quark model is given by the solid line, results from the
AdS/QCD approach [33] are marked by the dotted line.

FIG. 3. Results for Q2Fp
2 ðQ2Þ=Fp

1 ðQ2Þ. Experimental data are
taken from Refs. [47–55]. Prediction of the light-front quark
model is given by the solid line, results from the AdS/QCD
approach [33] are marked by the dotted line.

FIG. 4. Ratio μpG
p
EðQ2Þ=Gp

MðQ2Þ in comparison to the ex-
perimental data taken from Refs. [49,50,56–58]. Prediction of the
light-front quark model is given by the solid line, results from the
AdS/QCD approach [33] are marked by the dotted line.
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factors have been analyzed in detail. The model generates a
Q2 behavior for Q4F1pðQ2Þ, Q4F1nðQ2Þ and Q2F2pðQ2Þ=
F1pðQ2Þ which should tend to a constant at high Q2 (see
Figs. 1, 2 and 3). At low and moderate values of Q2 the
model is compatible not only with the magnetic moments
of the nucleons, μp ¼ F1pð0Þ þ F2pð0Þ ¼ 2.79 and μn ¼
F1nð0Þ þ F2nð0Þ ¼ −1.91 but also with the known negative
slope for the ratio Gp

EðQ2Þ=Gp
MðQ2Þ (Fig. 4). The absolute

theory values for Gp
MðQ2Þ, Gn

MðQ2Þ and Gp
EðQ2Þ do also

correlate well with the data as evident from Figs. 5, 6 and 7,

respectively, where the dipole form factor GD ¼
ð1þQ2=0.71Þ−2 is used as a common denominator.
Only in the case of the neutron charge form factor Gn

E
(Fig. 8) this model is not entirely adequate to describe
data at low and intermediate values of Q2. But in this
Q2 region the pion cloud contribution to Gn

E neglected
in the present work can be considerable. This contri-
bution can also be important for inelastic nucleon form
factors at Q2 ≲ 1 GeV2, as was recently noted in
Ref. [28]. In our recent work [35] we also pointed

FIG. 5. Ratio Gp
MðQ2Þ=ðμpGDðQ2ÞÞ. Experimental data are

taken from Refs. [49,56,57]. Prediction of the light-front quark
model is given by the solid line, results from the AdS/QCD
approach [33] are marked by the dotted line.
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FIG. 6. Ratio Gn
MðQ2Þ=ðμnGDðQ2ÞÞ. Experimental data are

taken from Refs. [59–65]. Prediction of the light-front quark
model is given by the solid line, results from the AdS/QCD
approach [33] are marked by the dotted line.

FIG. 7. Ratio Gp
EðQ2Þ=GDðQ2Þ. Experimental data are taken

from Refs. [47,48,56,66–70]. Prediction of the light-front quark
model is given by the solid line, results from the AdS/QCD
approach [33] are marked by the dotted line.
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FIG. 8. The charge neutron form factor Gn
EðQ2Þ. Experimental

data are taken from Refs. [71–79]. Prediction of the light-front
quark model is given by the solid line, results from the AdS/QCD
approach [33] are marked by the dotted line.
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out the role of the pion cloud in the electroproduction of
the Roper resonance.

B. Helicity amplitudes in the electroexcitation
of the Roper resonance

As was suggested in Refs. [28,35] the σ meson along
with the pion cloud can contribute significantly to the
process pþ γ� → R. In Ref. [35] we considered the con-
tribution of the σ to the electroproduction of the Roper
resonance by assuming a composite structure. In this case the
Roper resonance is set up as a superposition of the radially
excited three-quark configuration 3q� and the hadron
molecule component N þ σ as

jRi ¼ cos θj3q�i þ sin θjN þ σi: (48)

A mixing angle θ is introduced: cos2 θ and sin2 θ represent
the probabilities to find a 3q� and hadronic configuration,
respectively. The parameter θ was adjusted to optimize the
description of the electroproduction data resulting in the
optimal value of cos θ ¼ 0.8 [35].
In Ref. [35] the contribution of a hadronic N þ σ

component to the process pþ γ� → R was calculated in
the framework of a relativistic approach; the related tech-
nique was proposed and extensively used in Ref. [80]. The
interaction vertices of these diagrams are derived using
nonlocal relativistic Lagrangians with NNσ and NRσ
couplings, which are manifestly gauge invariant.
But at the same time a somewhat inconsistent

(nonrelativistic) technique was used for the quarks.
The contribution of the nucleon quark core to the
transition 3qþ γ� → 3q� was calculated in terms of a
nonrelativistic quark shell model with Gaussian wave
functions. Here we remedy this original defect and
recalculate the quark amplitudes with the quark LF wave
functions of the nucleon, Eq. (46), and the Roper
resonance, Eq. (18).
The transverse and longitudinal helicity amplitudes A1=2

and S1=2 for the electroproduction of the Roper resonance
are defined (see, e.g. Ref. [81]) by matrix elements of the
hadronic current Jμ. These matrix elements

hRðp0; λ0ÞjJμð0ÞjNðp; λÞi

¼ ūRðp0; λ0Þ
	
FRN
1 ðQ2Þ

�
γμ − q

qμ

q2

�

þ FRN
2 ðQ2Þ iσμνqν

mR þmN
uNðp; λÞ



(49)

are taken between the helicity states of the initial nucleon
jNðp; λÞi and the final Roper resonance jRðp0; λ0Þi (we use
notations and definitions given in Ref. [81], where formulas
are written in the rest frame of the Roper resonance) with

A1=2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πα

2kRmRmN

r �
R

�
p0;

1

2

�����J · ϵλ¼þ1

����N
�
p;− 1

2

��
;

(50)

S1=2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πα

2kRmRmN

r �
R

�
p0;

1

2

�����J0
����N

�
p;

1

2

��
; (51)

where kR ¼ ðm2
R −m2

NÞ=ð2mRÞ and the transverse polari-

zation vector is fϵλ¼þ1g ¼ −
ffiffi
1
2

q
f1; i; 0g.

It follows from Eqs. (49)–(51) that the amplitudes A1=2
and S1=2 can be expressed in terms of the invariant form
factors FRN

1 ðQ2Þ and FRN
2 ðQ2Þ for which we already have

explicit expressions (41)–(45) in the LF formalism. We
have the relations

A1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πα

kRmRmN

r
Q−ðFRN

1 þ FRN
2 Þ; (52)

S1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πα

2kRmRmN

r
QþQ−
Q2

mR þmN

2mR

×Q−
�
FRN
1 − Q2

ðmR þmNÞ2
FRN
2

�
; (53)

whereQ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmR �mNÞ2 þQ2

p
. FRN

1 ðQ2Þ and FRN
2 ðQ2Þ

are given by Eqs. (41)–(45) with the wave functions ΦS ¼
Φ0S (for the initial nucleon) and ΦS0 ¼ Φ2S (for the final
Roper resonance).
The calculated helicity amplitudes A1=2 and S1=2 are

shown in Fig. 9 for unchanged values of the model
parameters, Eq. (47), previously fitted to the nucleon data.
The only additional free parameter is the mixing angle θ of
Eq. (48). We vary cos θ from 0.7 to 1 where results for the
specific values cos θ ¼ 1 and 0.7 are shown in Fig. 9.
When the Roper wave function corresponds to a 3q� state
(cos θ ¼ 1) predictions for both helicity amplitudes A1=2
and S1=2 (dashed lines) are much too large in comparison
with the data [1,2]. A value of about cos θ ¼ 0.7 (solid
lines) is preferred in the present model where data forQ2 ≲
2 GeV2 of both helicity amplitudes can be roughly repro-
duced. For Q2 in the range from 2 to 4 GeV2 the behavior
of the A1=2 data cannot be explained sufficiently. Note that
in our previous nonrelativistic model [35] (dashed dotted
lines in Fig. 9) a better description of the data was achieved
with an optimal value of cos θ ¼ 0.8.
For comparison we also show in Fig. 9 the results of Ref.

[28] for the LF model with running quark masses (the
double-dotted dashed line). The weight of the three-quark
core in the Roper wave function in that model of cos θ ¼
0.73 is very close to the value cos θ ¼ 0.7 deduced in our
model. Both predictions have a similar behavior for A1=2 at
low and intermediate values of Q2 ≲ 4 − 5 GeV2 but at
higher Q2 the predictions increase relative to present data.
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On the basis of the CLAS data at intermediate Q2≲
4 − 5 GeV2 both models point to the same (about 50%)
probability for the 3q component in the wave function of
the Roper resonance. We can conclude that the quark LF
model might represent a viable approach to the description
of the data at high Q2 if the 3q� component in the Roper
resonance is subleading, maximally with a probability of
not even 50%. The remaining structure is dominated by
more complicated soft components: the meson cloud or qq̄,
qqq̄ q̄, etc. states. The contribution of these configurations
to form factors becomes negligible with growing Q2. Soft
components can also modify theQ2 behavior of the helicity
amplitudes at low and moderate values of Q2, while in the
high Q2 region the 3q� core defines the power asymptotics
of the amplitudes predicted by pQCD.

IV. SUMMARY

We presented a version of the light-front approach to
elastic and inelastic nucleon form factors in which the LF
three-quark configurations [obtained with the Melosh
rotation of the canonical spin states js1s2ðS12Þs3∶ S; μic]
satisfy the Pauli exclusion principle on the LF. Such an
approach is equivalent to a variant where configuration
mixing on the LF is neglected, but it appears to be a good
approximation at least for nucleons. Both N þ γ� → N and
N þ γ� → N� transition amplitudes are described in a
common framework based on a relativistic quark model
satisfying the Pauli exclusion principle on the LF.
A pole form for the “radial” part of the nucleon wave

function allows for a good description of the nucleon form
factors in a large Q2 region from Q2 ¼ 0 (proton and
neutron magnetic moments) to high values of about
30 GeV2 (with the power behavior ∼Q−4, ∼Q−6 for GE,
GM). At the same time the calculated helicity amplitudes
A1=2ðQ2Þ and S1=2ðQ2Þ of electroproduction of the Roper
resonance on the proton occur to be too large in comparison

with recent data at low and moderate values ofQ2. A closer
description of both A1=2ðQ2Þ and S1=2ðQ2Þ amplitudes can
only be obtained if the quark core configuration in the
Roper resonance is suppressed. The remaining part of the
full N� state could be a soft component which is described
in terms of a meson cloud or equivalently in terms of a soft
cloud of qq̄, ðqqÞðq̄ q̄Þ,… etc. pairs.
In a first approximation we assume that this soft

component can be described by a hadronic molecular
N þ σ state, the inner structure of which we have studied
in our recent work [35]. Our evaluation shows that the
contribution of such a component to the inelastic N → R
form factors FRN

1 ðQ2Þ and FRN
2 ðQ2Þ becomes negligible

with growing Q2. The asymptotic Q2 behavior of FRN
1 and

FRN
2 is given by the quark core component 3q� resulting in

a true power law and with a reduced absolute value of the
amplitude (about 50% compared to the full 3q → 3q�
amplitude). At low and moderate values of Q2 the hadronic
molecule component improves the description of the form
factors. At this level the considered model is too simple to
provide strong evidence for a large hadronic N þ σ
component which effectively represents the soft part of
the full wave function.
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APPENDIX: COEFFICIENTS CSS0
S12;S012

The coefficients CSS0
S12;S012

defined in Sec. II Awith Eq. (6)
have the following explicit expression:
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FIG. 9. The helicity amplitudes A1=2 and S1=2 (on the left and right panels, respectively) for electroproduction
of the Roper resonance on the proton. The data are from [1,2]. The predictions of the light-front quark model are given by the
short-dashed (cos θ ¼ 1), and the solid lines (cos θ ¼ 0.7); results from the AdS/QCD approach [33] are marked by the dotted line.
Nonrelativistic results of Ref. [35] (the dashed dotted line) and the result of Ref. [28] for LF model with running quark masses
(the double-dotted dashed line) are also shown for comparison. The A1=2 amplitude for hadronic N þ σ molecular state are marked by
the double-dashed dotted line (adopted from Ref. [35]).
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where λ⊥ and Λ⊥ are defined in Eq. (7) and we use the
following notations:

W⊥ ¼ λ⊥ þ ξΛ⊥; V⊥ ¼ λ⊥ − ð1 − ξÞΛ⊥; (A7)

Γ⊥ ¼ ηð1 − ξÞM0λ⊥ þ ðmþ ð1 − ηÞM0ÞΛ⊥; (A8)

u ¼ ðmþ ηξM0Þðmþ ηð1 − ξÞM0Þ; (A9)

Δ�ðμ; μ0Þ ¼ δμ;−3=2δμ0;1=2 � δμ;3=2δμ0;−1=2; (A10)
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The matrix Aμ̄;μ used in Sec. II D in Eq. (37) has a form
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