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We present in detail a new systematic method which can be used to automatically eliminate the
renormalization scheme and scale ambiguities in perturbative QCD predictions at all orders. We show that
all of the nonconformal β-dependent terms in a QCD perturbative series can be readily identified by
generalizing the conventional renormalization schemes based on dimensional regularization. We then
demonstrate that the nonconformal series of pQCD at any order can be resummed systematically into the
scale of the QCD coupling in a unique and unambiguous way due to a special degeneracy of the β terms in
the series. The resummation follows from the principal of maximum conformality (PMC) and assigns a
unique scale for the running coupling at each perturbative order. The final result is independent of the initial
choices of renormalization scheme and scale, in accordance with the principles of the renormalization
group, and thus eliminates an unnecessary source of systematic error in physical predictions. We exhibit
several examples known to order α4s ; i.e. (i) the electron-positron annihilation into hadrons, (ii) the tau-
lepton decay to hadrons, (iii) the Bjorken and Gross-Llewellyn Smith (GLS) sum rules, and (iv) the static
quark potential. We show that the final series of the first three cases are all given in terms of the anomalous
dimension of the photon field in SUðNÞ, in accordance with conformality, and with all nonconformal
properties encoded in the running coupling. The final expressions for the Bjorken and GLS sum rules
directly lead to the generalized Crewther relations, exposing another relevant feature of conformality. The
static quark potential shows that PMC scale-setting in the Abelian limit is to all orders consistent with QED
scale-setting. Finally, we demonstrate that the method applies to any renormalization scheme and can be
used to derive commensurate scale relations between measurable effective charges, which provide
nontrivial tests of QCD to high precision. This work extends Brodsky-Lepage-Mackenzie (BLM) scale-
setting to any perturbative order, with no ambiguities in identifying β terms in pQCD, demonstrating that
BLM scale-setting follows from a principle of maximum conformality.

DOI: 10.1103/PhysRevD.89.014027 PACS numbers: 12.38.Aw, 11.10.Gh, 11.15.Bt, 12.38.Bx

I. INTRODUCTION

An important goal in high energy physics is to make
perturbative QCD (pQCD) predictions as precise as pos-
sible, not only to test QCD itself, but also to expose new
physics beyond the standard model. Recently, we showed a
systematic method to determine the argument of the
running coupling order by order in pQCD, and in a way
that can be readily automatized [1,2]. The new method
satisfies all of the principles of the renormalization group
[3], and it eliminates an unnecessary source of systematic
error. The resulting predictions for physical processes are

independent of theoretical conventions such as the choice
of renormalization scheme and the initial choice of
renormalization scale. The resulting scales also determine
the effective number of quark flavors at each order of
perturbation theory. The method can be applied to proc-
esses with multiple physical scales and is consistent with
QED scale-setting.
In this paper we review the method in detail and provide

the complete generalization. We show several examples,
based on observables recently published in the literature to
four-loop order in perturbation theory. Finally, we demon-
strate that themethod applies to any renormalization scheme
and can be used to derive commensurate scale relations
between measurable effective charges [4–7]. The method
extends the Brodsky-Lepage-Mackenzie (BLM)method [8]
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to any perturbative order by following the principle of
maximum conformality [9–11], without leaving any ambi-
guity in identifying β terms at any order in pQCD.
Previous attempts made in the literature to extend BLM

scale-setting to higher orders [12–22], have mostly focused
on improving convergence of the perturbative series and
not removing renormalization scheme and scale ambigu-
ities. Therefore they do not in general satisfy the self-
consistency requirements of the renormalization group [3],
nor the initial renormalization scale dependence, which
must be the prerequisite of any scale-setting method. The
main contribution of this work is to provide the systematic
method to eliminate the renormalization scale and scheme
ambiguities to all orders in pQCD.
Other recent proposals similar in spirit are suggested in

Refs. [23,24].
We start our analysis in Sec. II by introducing a

generalization of the conventional schemes used in dimen-
sional regularization in which a constant−δ is subtracted in
addition to the standard subtraction ln 4π − γE of the M̄S
scheme. The δ subtraction defines an infinite set of
renormalization schemes which we call δ-Renormalization
(Rδ) schemes; since physical results cannot depend on the
choice of scheme, predictions must be independent of δ. As
will be described in Sec. III, the Rδ scheme exposes the
general pattern of nonconformal fβig terms, and it reveals a
special degeneracy of the terms in the perturbative coef-
ficients which allows us to resum the perturbative series.
The resummed series matches the conformal series, which
is itself free of any scheme and scale ambiguities as well as
being free of a divergent renormalon series. It is the final
expression one should use for physical predictions. It also
makes it possible to set up an algorithm for automatically
computing the conformal series and setting the effective
scales for the coupling at each perturbative order.
In Sec. IV we provide several examples, based on

observables recently published in the literature to order
α4s ; i.e. (i) the electron-positron annihilation into hadrons,
(ii) the tau-lepton decay to hadrons, (iii) the Bjorken and
Gross-Llewellyn Smith (GLS) sum rules, and (iv) the static
quark potential.We show explicitly that the final series of the
first three cases are all given in terms of the anomalous
dimension of the photon field in SUðNÞ, in accordance with
conformality, and with all nonconformal properties encoded
in the running coupling. Moreover, the final expressions
for the Bjorken and GLS sum rules directly lead to the
generalized Crewther relations, exposing another relevant
feature of conformality. The static quark potential further-
more provides an example of how the method can be
automatized to give the principal of maximum conformality
(PMC) prediction directly from the number of quark flavor
dependence of the initial expression. From this example we
also demonstrate that thePMCprediction in theAbelian limit
is consistentwithQEDscale-setting. Finally,wedemonstrate
in Sec. V that the method applies to any renormalization

scheme and can be used to derive commensurate scale
relations between measurable effective charges, which
provide nontrivial tests of QCD to high precision.

II. THE δ −RENORMALIZATION SCHEME

In dimensional regularization logarithmically divergent
integrals are regularized by computing them in d ¼ 4 − 2ϵ
dimensions [25–27]. This requires the following trans-
formation of the integration measure and introduction of an
arbitrary mass scale μ:Z

d4p → μ2ϵ
Z

d4−2ϵp: (1)

Divergences are then separated as 1=ϵ poles and can be
absorbed into redefinitions of the couplings. The choice of
subtraction procedure is known as the renormalization
scheme and is chosen at the theorist’s convenience. To
avoid dealing with coupling constants changing dimen-
sionality as a function of ϵ one rescales the couplings as
well with the mass scale μ in the d ¼ 4 − 2ϵ theory. In
particular, for QCD one rewrites the bare gauge coupling
a0 ¼ α0=4π ¼ g2=ð4πÞ2 as

a0 ¼ μ2ϵZaSaS; (2)

where aS is the renormalized gauge coupling under a
specific renormalization scheme S and ZaS is the renorm-
alization constant of the coupling. The mass scale μ is now
understood as the renormalization scale. The bare coupling
must be independent of the arbitrary scale μ, thus

μ2
da0
dμ2

¼ 0: (3)

Using this and the expansions

μ2
daS
dμ2

¼ −ϵaS þ βðaSÞ; (4)

βðaÞ ¼ −a2X∞
i¼0

βiai; (5)

Za ¼ 1þ
X∞
i¼1

ziai; (6)

it is easily derived that

Za ¼ 1−β0
ϵ
aþ

�
β20
ϵ2

−β1
2ϵ

�
a2−

�
β30
ϵ3

−7

6

β0β1
ϵ2

þβ2
3ϵ

�
a3

þ
�
β40
ϵ4

−23β1β
2
0

12ϵ3
þ5β2β0

6ϵ2
þ3β21
8ϵ2

−β3
4ϵ

�
a4þ��� ; (7)

and the βi coefficients are known up to β3, or four loops [28].
The coefficients βi are renormalization-scheme dependent;
however, it is easy to demonstrate by a general scheme
transformation that the first two coefficients β0 and β1 are
universal for all mass-independent renormalization schemes.
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In the minimal subtraction (MS) scheme [29], one
absorbs the 1=ϵ poles appearing in loop integrals which
come in powers of

ln
μ2

Λ2
þ 1

ϵ
þ c; (8)

where c is the finite part of the integral. Since anything can
be hidden into infinity, one can subtract any finite part as
well with the pole. This is equivalent to redefining the
arbitrary scale μ in Eq. (1). The MS scheme [30] differs
from the MS scheme by an additional absorption of the
term lnð4πÞ − γE, which corresponds to redefining μ to

μ2 ¼ μ2
MS

expðln 4π − γEÞ: (9)

Wewill generalize this by defining the δ-Renormalization
scheme, Rδ, where one absorbs lnð4πÞ − γE − δ, i.e.

μ2 ¼ μ2δ expðln 4π − γE − δÞ; (10)

where δ is an arbitrary finite number, and by appropriate
choice will connect all MS-type schemes. In particular,1

R0 ¼ MS; (11a)

Rln 4π−γE ¼ MS; (11b)

R−2 ¼ G; (11c)

where we also provided the connection to the G scheme,
which is yet another MS-like scheme proposed in the
literature [31].
The scheme transformation between different Rδ corre-

sponds simply to a displacement in their corresponding
scales, i.e.

μ2δ2 ¼ μ2δ1 expðδ2 − δ1Þ: (12)

In particular,

μ2δ ¼ μ2
MS

expðδÞ: (13)

Since all Rδ’s are connected by scale displacements, the
β functions of aRδ

defined in Eq. (4) are the same for allRδ

to any order. The index δ on aRδ
is thus redundant and we

denote it instead as aR. Where it will not be ambiguous, we
will simply use a≡ aR.
We can find a power series solution in 1= lnðμ=ΛÞ

for a by solving the renormalization group equation
perturbatively. It is simplest to use the extended renorm-
alization group prescription [32,33] where one works with
a rescaled coupling and a rescaled logarithm; respectively

â ¼ β1
β0

a; Lδ ¼
β20
β1

lnðμδ=ΛÞ:

The solution up to OðL−5
δ Þ reads [2,9]

âðμδÞ¼
1

Lδ
þ 1

L2
δ

ðC− ln LδÞþ
1

L3
δ

½C2þCþc2

− ð2C− ln Lδþ1Þ ln Lδ−1�

þ 1

L4
δ

�
C
�
C2þ5

2
Cþ3c2−2

�
−1−c3

2

−
�
3C2þ5Cþ3c2−2−

�
3C− ln Lδþ

5

2

�
ln Lδ

�

× ln Lδ

�
þO

�
1

L5
δ

�
; (14)

where ci ¼ βiβ
i−1
0 =βi1 are the rescaled β-function coeffi-

cients and C is an arbitrary integration constant which inRδ

is set to C ¼ ln β20=β1 in order to reproduce the standard
ΛMS scale [2,9,33]. Note that we take the asymptotic scale
Λ ¼ ΛMS to be the same for any Rδ. Alternatively, one can
take the scale μ to be the same for any Rδ, having instead
different asymptotic scales Λδ.
This solution for âðμδÞ holds for massless QCD or as

long as the active quark masses are below Λ. In the case
where there are active quarks with masses higher than Λ,
one must take the quark threshold effects into account when
running the coupling from Λ to μδ. This can be done by e.g.
solving the renormalization group equation with an analytic
β function that takes quark masses into account [34] or by
using matching equations at each quark mass threshold
when running the coupling to μδ [35].

III. OBSERVABLES IN Rδ

Consider an observable in pQCD in some scheme which
we put as the reference scheme R0 with the following
expansion:

ρ0ðQ2Þ ¼ aðμ0Þn
X∞
k¼0

rkþ1ðQ2=μ20Þaðμ0Þk; (15)

where μ0 stands for some initial renormalization scale and
Q is the kinematic scale of the process. The full pQCD
series is formally independent of the choice of the initial
renormalization scale μ0, if it were possible to sum the
entire series. However, this goal is not feasible in practice,
especially because of the k!βkαks renormalon growth of the
nonconformal series. When a perturbative expansion is
truncated at any finite order, it generally becomes renorm-
alization scale and scheme dependent; i.e., dependent on
theoretical conventions. This can be exposed by using the
Rδ scheme. Since results in any Rδ are related by scale
displacements, we can derive the general expression for ρ in
Rδ by using the displacement relation between couplings in
any Rδ scheme:

1Note that we have chosen MS as the reference scheme forR0.
This is done since most results today are known in this scheme;
however, there is nothing special about MS, and R0 can be
redefined to be any other MS-like scheme.
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aðμ0Þ ¼ aðμδÞ þ
X∞
n¼1

1

n!
dnaðμÞ

ðd ln μ20Þn
����
μ¼μδ

ð−δÞn; (16)

where we used ln μ20=μ
2
δ ¼ −δ. It is useful to derive the

general displacement relation for aðμ0Þk for any k as an
expansion in a up to order akþ3:

aðμ0Þk ¼ aðμδÞkþkβ0δaðμδÞkþ1þk

�
β1δþ

kþ1

2
β20δ

2

�
aðμδÞkþ2þk

�
β2δþ

2kþ3

2
β0β1δ

2þðkþ1Þðkþ2Þ
3!

β30δ
3

�
aðμδÞkþ3:

(17)

Inserting this expression into Eq. (15) at each order aðμ0Þk we find the expression for ρ for an arbitrary δ to order a4, that is
in any Rδ scheme, to be

ρδðQ2Þ ¼ r1a1ðμδÞn þ ½r2 þ nβ0r1δ1�a2ðμδÞnþ1 þ
�
r3 þ nβ1r1δ1 þ ðnþ 1Þβ0r2δ2 þ

nðnþ 1Þ
2

β20r1δ
2
1

�
a3ðμδÞnþ2

þ
�
r4 þ nβ2r1δ1 þ ðnþ 1Þβ1r2δ2 þ ðnþ 2Þβ0r3δ3 þ

nð3þ 2nÞ
2

β0β1r1δ21 þ
ðnþ 1Þðnþ 2Þ

2
β20r2δ

2
2

þ nðnþ 1Þðnþ 2Þ
3!

β30r1δ
2
1

�
a4ðμδÞnþ3 þOða5Þ; (18)

where μ2δ ¼ Q2eδ, the initial scale is for simplicity set to
μ20 ¼ Q2, and we have defined in Eq. (15) rið1Þ ¼ ri. An
artificial index was introduced on each a and δ to keep track
of which coupling each δ term is associated with. They are
not an indication of different variables; i.e. a1 ¼ a2 ¼ …
and δ1 ¼ δ2 ¼ …. The use of the artificial indices will be
made clear in a moment.
The above expression shows the scheme dependence

explicitly; e.g. if R0 ¼ M̄S, then choosing δ ¼ δi ¼
ln 4π − γE will give the result in the MS scheme. The
initial scale choice is arbitrary and is not the final argument
of the running coupling; the final scales will be independent
of the initial renormalization scale.
In a conformal (or scale-invariant) theory, where

fβig ¼ f0g, the δ dependence vanishes in Eq. (18).
Therefore by absorbing all fβig dependence into the
running coupling at each order, we obtain a final result
independent of the initial choice of scale and scheme. The
coefficients in the final expression will thus be equal to
those of the conformal theory. The use of Rδ allows us to
put this on rigorous grounds. From the explicit expression
in Eq. (18) it is easy to confirm that

∂ρδ
∂δ ¼ −βðaÞ ∂ρδ∂a : (19)

The scheme invariance of the physical prediction requires that
∂ρδ=∂δ ¼ 0. Therefore the scales in the running coupling
must be shifted and set such that the conformal terms
associated with the β function are removed; the remaining
conformal terms are by definition renormalization scheme
independent. The numerical value for the prediction at finite
order is then scheme independent as required by the renorm-
alization group. The scheme-invariance criterion is a theo-
retical requirement of the renormalization group; it must be
satisfied at any truncated order of the perturbative series, and
is different from the formal statement that the all-orders
expression for a physical observable is renormalization scale
and scheme invariant; i.e. dρ=dμ0 ¼ 0. The final series
obtained corresponds to the theory for which βðaÞ ¼ 0;
i.e. the conformal series. This demonstrates to any order the
concept of the principal of maximum conformality (PMC)
[9], which states that all nonconformal terms in the pertur-
bative series must be resummed into the running coupling.
The expression in Eq. (18) exposes the pattern of fβig

terms in the coefficients at each order. It is possible to infer
more from Eq. (18); since there is nothing special about a
particular value of δ, we conclude that some of the coef-
ficients of the fβig terms are degenerate; e.g. the coefficient
of β0aðQÞ2 and β1aðQÞ3 can be set equal. Thus for any
scheme, the expression for ρ can be put to the form

ρðQ2Þ ¼ r1;0aðQÞn þ ½r2;0 þ nβ0r2;1�aðQÞnþ1 þ
�
r3;0 þ nβ1r2;1 þ ðnþ 1Þβ0r3;1 þ

nðnþ 1Þ
2

β20r3;2

�
aðQÞnþ2

þ
�
r4;0 þ nβ2r2;1 þ ðnþ 1Þβ1r3;1 þ ðnþ 2Þβ0r4;1 þ

nð3þ 2nÞ
2

β0β1r3;2 þ
ðnþ 1Þðnþ 2Þ

2
β20r4;2

þ nðnþ 1Þðnþ 2Þ
3!

β30r4;3

�
aðQÞnþ3 þOðanþ4Þ; (20)

where the ri;0 are the conformal parts of the perturbative coefficients; i.e. ri ¼ ri;0 þOðfβigÞ.
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TheRδ scheme not only illuminates the fβig pattern, but
it also exposes a special degeneracy of coefficients at
different orders. The degenerate coefficients can them-
selves be functions of fβig, hence Eq. (20) is not to be
understood as an expansion in fβig, but at a pattern of fβig
with degenerate coefficients that must be matched.
The artificial indices in the expansion in Eq. (18) reveals

how the fβig terms must be absorbed into the running
coupling: The different δk’s keep track of the power of the
1=ϵ divergence of the associated diagram at each loop order

in the following way; the δpk a
m term indicates the term

associated to a diagram with 1=ϵ1þm−n−k divergence for
any power p of δ. Grouping the different δk terms, one
recovers in the Nc → 0 Abelian limit [36] the dressed
skeleton expansion. Resumming the series according to this
expansion thus correctly reproduces the QED limit of the
observable and matches the conformal series with the
running coupling evaluated at effective scales at each order.
Using this information we can rearrange the expression in
Eq. (20) in the skeleton-like expansion:

ρðQ2Þ¼ aðQÞn
�
r1;0þnðβ0aðQÞþβ1aðQÞ2þβ2aðQÞ3Þr2;1þ

n
2
ððnþ1Þβ20aðQÞ2þð3þ2nÞβ0β1aðQÞ3Þr3;2

þnðnþ1Þðnþ2Þ
3!

β30r4;3aðQÞ3
�
þaðQÞnþ1

�
r2;0þðnþ1Þðβ0aðQÞþβ1aðQÞ2Þr3;1þ

ðnþ1Þðnþ2Þ
2

β20r4;2aðQÞ2
�

þaðQÞnþ2½r3;0þðnþ2Þβ0r4;1aðQÞ�þaðQÞnþ3½r4;0�þOðanþ4Þ: (21)

A. Systematic all-orders PMC scale-setting

It is easy to see from Eq. (21) that we can resum all ri;1
terms, which come with a linear factor of βj, to all orders
by defining new scales Qi at each order as follows (for
simplicity, we treat the higher-power βj terms later):

r1;0aðQ1Þn ¼ r1;0aðQÞn − naðQÞn−1βðaÞr2;1;
r2;0aðQ2Þnþ1 ¼ r2;0aðQÞnþ1 − ðnþ 1ÞaðQÞnβðaÞr3;1;
r3;0aðQ3Þnþ2 ¼ r3;0aðQÞnþ2 − ðnþ 2ÞaðQÞnþ1βðaÞr4;1;

..

.

rk;0aðQkÞk ¼ rk;0aðQÞk − kaðQÞk−1βðaÞrkþ1;1: (22)

From the scale displacement equation (16) for a it is
straightforward to see that

aðQkÞk¼aðQÞkþkaðQÞk−1βðaÞln Q2
k

Q2

þk
2
aðQÞk−2

�
β
∂β
∂aaðQÞþðk−1ÞβðaÞ2

�
ln2

Q2
k

Q2

þ��� : (23)

It follows from identifying Eq. (22) with (23) that to absorb
all linear βj terms, the scales Qk must satisfy

−rkþ1;1

rk;0
¼ ln

Q2
k

Q2
þ1

2

�∂β
∂aþðk−1Þβ

a

�
ln2

Q2
k

Q2
þ�� � ; (24)

where rk;0 are the conformal coefficient and rkþ1;1 are the
degenerate coefficients of linear βj terms. This leads to the
self-consistency equation for Qk:

ln
Q2

k

Q2
¼ −rkþ1;1=rk;0

1þ 1
2
½∂β∂a þ ðk − 1Þ βa� ln

Q2
k

Q2 þ � � �
: (25)

To leading logarithmic order (LLO) we have

ln
Q2

k;LLO

Q2
¼ − rkþ1;1

rk;0
: (26)

This resums all linear βj terms, but introduces higher-power
βj terms beyond the order akþ1. For example, suppose that
we are computing an observable to order ap. The scales Qk
must resum all βjrkþ1;1 terms without introducing higher
order ones up to order ap. This means that Qk must be
computed to the p − ðkþ 1Þ logarithmic order
ðNp−ðkþ1ÞÞLLO. Let us explicitly perform the resummation
up to a4 for the first scale Q1, that is, up to next-to-next-to-
leading logarithmic order (NNLLO). The general expres-
sion for the NLLO scale reads

ln
Q2

k;NLLO

Q2
¼ −rkþ1;1=rk;0

1þ 1
2
½∂β∂a þ ðk − 1Þ βa�ð− rkþ1;1

rk;0
Þ : (27)

To find the NNLLO scale, we first write the self-consis-
tency equation (exposing one higher logarithmic order in
the denominator):

ln
Q2

k

Q2
¼ −rkþ1;1=rk;0

1þ 1
2
½∂β∂a þ ðk − 1Þ βa� ln

Q2
k

Q2 þ 1
3!
½β ∂2β

∂a2 þ ð∂β∂aÞ2 þ 3ðk − 1Þ βa ∂β
∂a þ ðk − 1Þðk − 2Þ β2a2�ln2

Q2
k

Q2 þ � � �
: (28)

Then we replace the logarithms in the denominator with the expansion of its NLLO expression in Eq. (27):
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ln
Q2

k;NLLO

Q2
¼ − rkþ1;1

rk;0

�
1þ 1

2

�∂β
∂aþ ðk − 1Þ β

a

�
rkþ1;1

rk;0
þ � � �

�
: (29)

We thus get

ln
Q2

k;NNLLO

Q2
¼ −rkþ1;1=rk;0

1þ 1
2
½∂β∂a þ ðk − 1Þ βa�ð− rkþ1;1

rk;0
Þ þ 1

3!
½β ∂2β

∂a2 − 1
2
ð∂β∂aÞ2 − ðk−1Þðkþ1Þ

2
β2

a2�ð
rkþ1;1

rk;0
Þ2
: (30)

This procedure iterates to any desired order.
For observables, where the higher-power βj coefficients

vanish, i.e. r3;2 ¼ r4;2 ¼ r4;3 ¼ 0 (this is the case in e.g. the
Adler D function), these scales give the final PMC
expression for the observable, which is invariant under
any scheme transformation:

ρðQ2Þ ¼ r1;0aðQn;NNLLOÞn þ r2;0aðQnþ1;NLLOÞnþ1

þ r3;0aðQnþ2;LLOÞnþ2 þ r4;0aðQÞnþ3 þOðanþ4Þ:
(31)

This is the conformal series with coefficients that are
independent of the renormalization scheme. Note that
the last scale remains ambiguous. This ambiguity only
affects the highest order term. The final expression and
coefficients are therefore not affected by the ambiguity of
the last scale and thus the renormalization scheme depend-
ence has been eliminated and the renormalization scale
dependence only resides in the highest power coupling of
the perturbative series. We note that one does not need the
full expression of the a5 coefficient to set the last scale,
Qnþ3, but only the coefficient r5;1.
Let us now generalize to observables that do depend on

higher powers in βj. This is for example the case in
Reþe−→hadronsðsÞ. One can use the procedure just described,
but instead of Eq. (22) we use its generalization:

rk;0aðQkÞk ¼ rk;0aðQÞk−kaðQÞk−1βðaÞrkþ1;1

þk
2

�
aðQÞk−1 dβ

d ln μ2
þðk−1ÞaðQÞk−2βðaÞ2

�

×rkþ2;2þ��� : (32)

It is easy to verify that these expressions, which define the
PMC scales Qk, correctly resum all fβig terms in ρ.
Equation (32) is systematically derived by replacing the
lnj Q2

1=Q
2 by rk;j in the logarithmic expansion of aðQkÞk in

Eq. (23) up to the highest known rk;n coefficient in pQCD.
We introduce a short-hand notation of Eq. (32):

aðQkÞk ¼ aðQÞk þ kaðQÞk−1βðaÞfRk;1 þ Δð1Þ
k ðaÞRk;2

þ Δð2Þ
k ðaÞRk;3 þ � � � þ ΔðnÞ

k ðaÞRk;nþ1g; (33)

where

Rk;j ¼ ð−1Þj rkþj;j

rk;0
; (34a)

Δð1Þ
k ðaÞ ¼ 1

2

�∂β
∂aþ ðk − 1Þ β

a

�
; (34b)

Δð2Þ
k ðaÞ ¼ 1

3!

�
β
∂2β

∂a2 þ
�∂β
∂a

�
2

þ 3ðk − 1Þ β
a
∂β
∂a

þ ðk − 1Þðk − 2Þ β
2

a2

�
;…: (34c)

Following the same procedure as before, one finds the final
expressions for Qk;LLO, Qk;NLLO, and Qk;NNLLO to be

ln
Q2

k;LLO

Q2
¼ Rk;1; (35a)

ln
Q2

k;NLLO

Q2
¼ Rk;1 þ Δð1Þ

k ðaÞRk;2

1þ Δð1Þ
k ðaÞRk;1

; (35b)

ln
Q2

k;NNLLO

Q2
¼ Rk;1 þ Δð1Þ

k ðaÞRk;2 þ Δð2Þ
k ðaÞRk;3

1þ Δð1Þ
k ðaÞRk;1 þ ðΔð1Þ

k ðaÞÞ2ðRk;2 − R2
k;1Þ þ Δð2Þ

k ðaÞR2
k;1

;…: (35c)
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These final expression are generic and can be used directly.
We thus have a procedure which systematically sets the
PMC scales to all orders.It is easy to see that the leading
order values of the effective scales are independent of the
initial renormalization scale μ0. This follows since taking
μ0 ≠ Q we must replace Rk;1 → Rk;1 þ ln Q2=μ20 and thus
the leading order effective scales read ln Q2

k;LO=μ
2
0 ¼

Rk;1 þ ln Q2=μ20, where μ0 cancels and Eq. (35a) at LLO
is recovered. This generalizes to any order. Since the β
function is not known to all orders, a higher order residual
renormalization-scale dependence will enter through the
running coupling. This residual renormalization-scale
dependence is strongly suppressed in the perturbative
regime of the coupling [37,38].
The effective scales contain all the information of the

nonconformal parts of the initial pQCD expression for ρ in
Eq. (20); this is exactly the purpose of the running coupling.
The quotient form of Eq. (35c) sums up an infinite set of
terms related to the known rj;k≠0 which appear at every
higher order due to the special degeneracy of Eq. (20). The
method systematically sums up all known nonconformal
terms, in principle to all orders, but is in practice truncated
due to the limited knowledge of the β function.
In earlier PMC scale-setting [9–11], and its predecessor,

the Brodsky-Lepage-Mackenzie (BLM) method [7,8,14],
the PMC/BLM scales have been set by using a perturbative
expansion in a and only approximate conformal series have
been obtained. Here, we have been able to obtain the
conformal series as revealed in dimensional regularization
schemes. The final scales in Eq. (35) have naturally become
functions of the coupling through the β function, in
principle, to all orders.

B. Automation

In many cases the coefficients in a pQCD expression for
an observable are computed numerically, and the fβig
dependence is not known explicitly. It is, however, easy to
extract the dependence on the number of quark flavors Nf,
since Nf enters analytically in any loop diagram compu-
tation. To use the systematic method presented in this
paper, one puts the pQCD expression into the form of
Eq. (20). Due to the special degeneracy in the coefficient of
the fβig terms, the Nf series can be matched to the rj;k
coefficients in a unique way.2 This allows one to automate
the scale-setting process algorithmically.
The nth order coefficient in pQCD has an expansion in

Nf which reads

rn ¼ cn;0 þ cn;1Nf þ � � � þ cn;n−1Nn−1
f : (36)

By inspection of Eq. (20) it is seen that there are exactly as
many unknown coefficients in the fβig expansion at the
order an as the Nf coefficients, cn;j. This is realized due to
the special degeneracy found in (20). The ri;j coefficients in
Eq. (20) can thus be expressed in terms of the cn;j
coefficients. The highest power in Nf at any order should
always be associated with the same power in β0. The first β0
appears at order anþ1. We derive the relations between cn;j
and ri;j for a general gauge group, where we define CA and
CF as the quadratic Casimir coefficients of the adjoint and
quark representations and T as the generator trace nor-
malization. For QCD these coefficients read CA ¼ Nc,
CF ¼ ðN2

c − 1Þ=2Nc, and T ¼ 1=2. Using that β0 ¼
11=3CA − 4=3TNf we can find r2;0 and r2;1:

r2 ¼ r2;0 þ nβ0r2;1 ¼
�
r2;0 þ r2;1

11nCA

3

�
− r2;1

4n
3
TNf:

This leads to

r2;1 ¼ − 3

4T
c2;1
n

; r2;0 ¼ c2;0 þ
11CA

4T
c2;1: (37)

At the next order we have

r3 ¼ r3;0 þ nβ1r2;1 þ ðnþ 1Þβ0r3;1 þ
nðnþ 1Þ

2
β20r3;2;

where r2;1 is already known. Expanding as before in terms
of Nf (with the higher order βi coefficient given in [28]) we
find the matching:

r3;2 ¼
9

8T2

c3;2
nðnþ 1Þ ; (38a)

r3;1 ¼
1

8ðnþ1ÞT2
½6Tc2;1ð5CAþ3CFÞ−33c3;2CA−6Tc3;1�;

(38b)
r3;0 ¼ c3;0 þ

1

16T2
½11CAð11c3;2CA þ 4Tc3;1Þ

− 12Tc2;1CAð7CA þ 11CFÞ�: (38c)

Similarly, we can find the r4;j coefficients:

r4;3 ¼
�
− 3

4T

�
3 3!

nðnþ 1Þðnþ 2Þ c4;3; (39a)

r4;2 ¼
1

32ðnþ 1Þðnþ 2ÞT3

�
2nT2c2;1ð79CA þ 66CFÞ

− 9

�
4ð3þ 2nÞ
nþ 1

Tc3;2ð5CA þ 3CFÞ − 33c4;3CA

− 4Tc4;2

��
; (39b)

2In principle, one must treat the Nf terms unrelated to
renormalization of the gauge coupling as part of the conformal
coefficient; e.g., the Nf terms coming from light-by-light
scattering in QED and the Nf terms unrelated to the renormal-
ization of the tri-gluon and quartic-four-gluon vertices belongs to
the conformal series.
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r4;1 ¼
1

64ðnþ 2ÞT3

�
4T2c2;1ð−ð37nþ 360ÞCACF þ 2ð91n − 150ÞC2

A − 18ðnþ 6ÞC2
FÞ þ 48T2c3;1ð5CA þ 3CFÞ

þ 12Tc3;2
nþ 1

CAðð152nþ 173ÞCA þ 33ð4nþ 5ÞCFÞ − 33CAð33c4;3CA þ 8Tc4;2Þ − 48T2c4;1

�
; (39c)

r4;0 ¼ c4;0 þ
1

64T3
½2T2c2;1CAð8ð228 − 77nÞCACF þ ð840 − 1127nÞC2

A þ 132ðnþ 6ÞC2
FÞ − 48T2c3;1CAð7CA þ 11CFÞ

− 2904Tc3;2C2
ACF þ 176T2c4;1CA − 1848Tc3;2C3

A þ 484Tc4;2C2
A þ 1331c4;3C3

A�: (39d)

Using these relations automatically gives the effective
scales in Eq. (35c).
The automation process can be outlined as follows:
(1) Choose any δ-Renormalization scheme and scale.
(2) Compute the physical observable in pQCD and

extract the Nf coefficients, ck;j.
(3) Find the βi coefficients, rk;j from the ck;j coefficients

and compute the PMC scales, Qk.
(4) The final pQCD expression for the observable reads

ρfinalðQÞ ¼
X
k¼0

rkþ1;0aðQkþ1Þnþk: (40)

This procedure demonstrates that the Nf terms can be
unambiguously associated to the fβig terms to all orders. It
also shows that PMC is the underlying principle of BLM
scale-setting.
The PMC method can be used to set separate scales for

different skeleton diagrams; this is particularly important
for multiscale processes. In general, the fβig coefficients
multiply terms involving logarithms in each of the invar-
iants [11]. For instance, in the case of qq̄ → QQ̄ near the
heavy quark threshold in pQCD, the PMC assigns different
scales to the annihilation process and the rescattering
corrections involving the heavy quarks’ relative velocity
[39]. It also can be used to set the scale for the “lensing”
gluon-exchange corrections that appear in the Sivers,
Collins, and Boer-Mulders effects. Moreover, for the cases
when the process involves several energy regions, e.g. hard,
soft, etc., one may adopt methods such as the nonrelativistic
QCD effective theory [40] and the soft-collinear effective
theory [41,42] to set the PMC scales; i.e., one first sets the
PMC scales for the higher energy region, then integrate it
out to form a lower energy effective theory and sets the
PMC scales for this softer energy region, etc. In this way
one obtains different effective PMC scales for each energy
region, at which all the PMC properties also apply.
As an important remark, one should keep in mind that

the determination of the factorization scale is a separate
issue from renormalization scale-setting since it is present
even in a conformal theory when β ¼ 0. Nevertheless, in
the literature the factorization scale in hadronic processes is
often set to be equal to the renormalization scale. In
principle, the factorization scale can be determined if

one has knowledge of the nonperturbative light-front wave
functions of the initial or final state hadrons. However, the
PMC can also be used to set the scale of the coupling
that appears in the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) or Efremov-Radyushkin-Brodsky-Lepage
(ERBL) evolution equations, and it is consistent with the
usual factorization properties for hard-process cross sec-
tions in QCD. It is therefore important to separate the
renormalization and factorization scales in hadronic
processes [2].

IV. EXAMPLES

We now consider three examples based on the Adler
function [43],D, which can be measured indirectly through
the dispersion relation:

DðQ2Þ ¼ Q2

Z
∞

4m2
π

Reþe−ðsÞ
ðsþQ2Þ2 ds; (41)

where Reþe− is the ratio for electron-positron annihilation
into hadrons.
The Adler function is particularly instructive to consider,

since its conformal and nonconformal parts can be sepa-
rated by using renormalization group (RG) arguments.
Explicitly, the Adler function can be written in terms of the
photon field anomalous dimension, γ, and the vacuum
polarization function, Π, as follows [44,45]:

D̄ðQ2Þ ¼ κ−1DðQ2Þ ¼ γðaÞ − βðaÞ d
da

ΠðQ2; aÞ; (42)

where βðaÞ is the β function of the running coupling and we
have defined the normalized Adler function D̄ where κ ¼
dF

P
fQ

2
f and dF is the dimension of the quark color

representation, which in QCD reads dF ¼ Nc. We will
work with this normalization throughout the related exam-
ples. In perturbation theory we define

γðaÞ ¼ κ
X∞
n¼0

γnaðQÞn; (43)

ΠðaÞ ¼ κ
X∞
n¼0

ΠnaðQÞn; (44)

STANLEY J. BRODSKY, MATIN MOJAZA, AND XING-GANG WU PHYSICAL REVIEW D 89, 014027 (2014)

014027-8



which are now known to four-loop order [45–54]. The
PMC procedure then follows by absorbing all β-dependent
terms, which following Sec. III A becomes a trivial exercise
once the degenerate coefficients ri;j have been identified.
As a fourth example, we consider a case where the

explicit conformal and nonconformal parts are not known.
Here we make explicit use of the automation procedure to
derive the special degeneracy as described in Sec. III B.

A. eþe− → hadrons

The ratio for electron-positron annihilation into hadrons,
Reþe− can inversely to Eq. (41) be computed from the Adler
function, D, as follows:

R̄eþe−ðsÞ ¼
1

2πi

Z −sþiϵ

−s−iϵ
D̄ðQ2Þ
Q2

dQ2: (45)

It is easy to show that to order a4 the perturbative
expression for R̄eþe− in terms of γn and Πn reads

R̄eþe−ðQÞ¼ γ0þγ1aðQÞþ½γ2þβ0Π1�aðQÞ2

þ
�
γ3þβ1Π1þ2β0Π2−β20

π2γ1
3

�
aðQÞ3

þ
�
γ4þβ2Π1þ2β1Π2þ3β0Π3

−
5

2
β0β1

π2γ1
3

−3β20
π2γ2
3

−β30π
2Π1

�
aðQÞ4: (46)

As expected, this expression has exactly the form of
Eq. (20), with the following identification of the coeffi-
cients ri;j:

ri;0 ¼ γi; (47a)

ri;1 ¼ Πi−1; i ≥ 2; (47b)

ri;2 ¼ − π2

3
γi−2; i ≥; 3 (47c)

ri;3 ¼ −π2Πi−3; i ≥ 4: (47d)

The expressions for the coefficients γi and Πi can be found
in Refs. [45,54], and the four-loops β function is given in
Ref. [28]. The γi contain Nf terms, but since they are
independent of δ to any order, they are kept fixed in the
scale-setting procedure. Notice that this is a feature in
dimensional regularization.
Now it is easy to set the exact PMC scales from Eq. (35c)

using that Rk;j ¼ ð−1Þjrkþj;j=γk;

ln
Q2

3

Q2
¼ −Π3

γ3
; (48a)

ln
Q2

2

Q2
¼ −Π2 þ 1

2
½∂β∂a þ β

a� π
2

3
γ2

γ2 − 1
2
½∂β∂a þ β

a�Π2

; (48b)

ln
Q2

1

Q2
¼ −ðΠ1 þ 1

2
∂β
∂a

π2

3
γ1 − 1

3!
½β ∂2β

∂a2 þ ð∂β∂aÞ2�π2Π1Þ
γ1 − 1

2
∂β
∂aΠ1 þ 1

3!
½β ∂2β

∂a2 − 1
2
ð∂β∂aÞ2�

Π2
1

γ1
− 1

4
ð∂β∂aÞ2 π2

3
γ1

:

(48c)

The final resummed expression for R̄eþe− reads

R̄eþe−ðQÞ ¼ γ0 þ γ1aðQ1Þ þ γ2aðQ2Þ2
þ γ3aðQ3Þ3 þ γ4aðQ4Þ4: (49)

The scaleQ4 is unknown since it requires the knowledge of
the order a4 coefficient of Π; to leading order it reads

ln
Q2

4;LLO

Q2
¼ −Π4

γ4
; (50)

however, it is possible to estimate this value. This is so,
since Π4 can be written as

Π4 ¼ −
3

4
β30Π2;3 þ

9

4
β20Π3;2 þ

7

8
β1β0Π2;2

−
9

4
β0Π4;1 − 1

4
β2Π2;1 − 3

4
β1Π3;1 þ

3Π5;0

4
; (51)

where Πi;j are the coefficients of the bare vacuum polari-
zation function Π0:

Π0ðQ; a0Þ ¼
X∞
l¼1

al−10

�
μ2

Q2

�
lϵ X∞

k¼−l
ϵkΠl;k; (52)

and where ϵ is the dimensional regularization parameter,
d ¼ 4 − 2ϵ. In Eq. (51) only Π5;0 is unknown . We can thus
compute Q4;LLO as a function of Π5;0 and for five active
flavors we find

Q4;LLO ¼ 0.9e0.00013×Π5;0Q: (53)

Because of the small partner it is reasonable to setQ4 ¼ Q.
The final result in numerical form in terms of α ¼ αs=π for
QCD with five active flavors reads

R̄eþe−ðQÞ ¼ 3

11
Reþe−ðQÞ ¼ 1þ αðQ1Þ þ 1.84αðQ2Þ2

− 1.00αðQ3Þ3 − 11:31αðQ4Þ4: (54)

This is a more convergent result compared to previous
estimates, and it is free of any scheme and scale ambiguities
(up to strongly suppressed residual ones).
From this expression we can determine the asymptotic

scale Λ from the empirical data [55]:
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3

11
Rexp
eþe−ð

ffiffiffi
s

p ¼ 31:6 GeVÞ ¼ 1.0527� 0.0050:

To this end we use the logarithmic expansion for a in
Eq. (14) and the known expressions for the γi and Πi
coefficients. For five active flavors we find

Λδ ¼ ΛMS ¼ 419þ222−168 MeV; (55)

which gives us the numerical values for the PMC scales:
Q1 ¼ 1.3Q, Q2 ¼ 1.2Q, Q3 ¼ 5.3Q. These final scales
determine the effective number of quark flavors at each
order of perturbation theory [34].
Finally, the QCD coupling at the MZ scale, αsðMZÞ can

be computed using again the power expansion for a in
terms of 1= lnðμ=ΛÞ. We find

αsðMZÞ ¼ 0.132þ0.010−0.011: (56)

The error on this result is a reflection of the experimental
uncertainty on Rexp

eþe− , which cannot be eliminated. This
value is somewhat larger than the present world average
αsðMZÞ ¼ 0.1184� 0.0007, which is a global fit of all
types of experiments. However, it is consistent with the
values obtained from eþe− colliders, i.e. αsðMZÞ ¼ 0.13�
0.005� 0.03 by the CLEO collaboration [56] and
αsðMZÞ ¼ 0.1224� 0.0039 from the jet shape analysis
[57]. Moreover, in computing αsðMZÞ we have assumed
massless quarks. The estimate will decrease when taking
threshold effects properly into account3 as shown in [35].

B. τ → ντþ hadrons

It is straightforward to apply our results to the τ decay
into hadrons ratio Rτ ¼ στ→ντþhadrons=στ→ντþν̄eþe− , which
can be computed from Reþe− [58]:

RτðMτÞ¼ 2

Z
M2

τ

0

ds
M2

τ

�
1− s

M2
τ

�
2
�
1þ 2s

M2
τ

�
~Reþe−ðsÞ; (57)

where ~Reþe− is equal to Reþe− but with κ ¼ dF
P

Q2
f

replaced by κ0 ¼ dF
P jVff0 j2, where Vff0 are the

Cabbibo-Kobayashi-Maskawa (CKM) matrix elements
and ðPQfÞ2 ¼ 0, since light-by-light scattering does
not contribute. We define in the same way ~γ and ~Π (i.e.
with no light-by-light contributions). In terms of Eq. (20),
the coefficients for the normalized R̄τ ¼ Rτ=κ0 read

ri;0 ¼ ~γi; (58a)

ri;1 ¼ ~Πi−1 þ
19

12
~γi−1; i ≥ 2; (58b)

ri;2 ¼
�
265

72
− π2

3

�
~γi−2 þ

19 ~Πi−2
6

; i ≥ 3; (58c)

ri;3¼
�
265

24
−π2

�
~Πi−3þ

�
3355

288
−19π2

12

�
~γi−3; i≥ 4:

(58d)

The final expression reads

R̄τðMτÞ ¼ ~γ0 þ ~γ1aðQ1Þ þ ~γ2aðQ2Þ2
þ ~γ3aðQ3Þ3 þ ~γ4aðQ4Þ4: (59)

Since there are three active quark flavors for
Mτ ≈ 1.777 GeV), we find from the CKM matrix that
κ ¼ 3ðjVudj2 þ jVusj2Þ ≈ 3. The effective scales read
Q1 ¼ 0.67Q, Q2 ¼ 0.71Q, Q3 ¼ 582Q and for the same
reason as in the case of Reþe− we setQ4 ¼ Q. The scale Q3

has been computed to NLLO since its LLO value is smaller
than the asymptotic scale Λ. The final result in numerical
form for three active quark flavors reads

1

3
RτðMτÞ ¼ 1þ αðQ1Þ þ 2.15αðQ2Þ2

þ 3.44αðQ3Þ3 þ 6.64αðQ4Þ4; (60)

with α ¼ αs=π. Using the asymptotic scale found from
Reþe− we estimate the QCD contribution to the τ decay to
be

RτðMτÞ ¼ 3.66þ0.15−0.22 : (61)

This prediction is in good agreement with the exper-
imental result from the OPAL collaboration [59];
Rexp
τ ðMτÞ ¼ 3.593� 0.008.

C. Bjorken and GLS sum rules

The Bjorken sum rule [60] and the Gross-Llewellyn
Smith (GLS) sum rule [61] obey well-known identities in
conformal field theory, known as the Crewther relations
[53,54,62–65], which through the Adler function can be
used to expose the conformal terms. In this example, we
show that both sum rules after PMC scale-setting have
perturbative expansions that match exactly the inverse of
the anomalous dimension, γ−1, and is what one expects in a
conformal field theory.
The Bjorken sum rule expresses the integral over the spin

distributions of quarks inside of the nucleon in terms of its
axial charge times a coefficient function CBjp:

Γp−n
1 ðQ2Þ ¼

Z
1

0

½gep1 ðx;Q2Þ − gen1 ðx;Q2Þ�dx

¼ gA
6
CBjpðaÞ þ

X∞
i¼2

μp−n2i ðQ2Þ
Q2i−2 ; (62)

3We thank Ali N. Khorramian for comments on this point.
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where gep1 and gen1 are the spin-dependent proton and
neutron structure functions, gA is the nucleon axial charge
as measured in neutron β decay. The sum in the second line
of Eq. (62) describes for the nonperturbative power
corrections (higher twist) which are inaccessible for
pQCD. Focusing on the perturbative part, we define

CBjpðQ2Þ ¼ 1 − 3CFaðQ2Þ þ
X∞
n¼2

~CnaðQ2Þn: (63)

The Gross-Llewellyn Smith (GLS) sum rule,

1

2

Z
1

0

Fνpþν̄p
3 ðx;Q2Þdx ¼ 3CGLSðaÞ; (64)

relates the lowest moment of the isospin singlet structure
function Fνpþν̄p

3 ðx;Q2Þ to a coefficient CCLSðasÞ, which
appears in the operator product expansion of the axial and
vector nonsinglet currents. We are again only considering
the perturbative contribution and define

CGLSðQ2Þ ¼ 1 − 3CFaðQ2Þ þ
X∞
n¼2

CnaðQ2Þn: (65)

The (extended) Crewther relation [62–65] states that
there exists a relation between the two sum rules through
the Adler function DðQ2Þ given in Eq. (A1) as follows:

~̄DðQ2ÞCBjpðaÞ ¼ 1þ βðaÞ
a

~KðaÞ;
~KðaÞ ¼ a ~K1 þ a2 ~K2 þ a3 ~K3 þ � � � ; (66)

and

D̄ðQ2ÞCGLSðaÞ ¼ 1þ βðaÞ
a

KðaÞ;
KðaÞ ¼ aK1 þ a2K2 þ a3K3 þ � � � : (67)

The tilde on D̄ and K indicates the corresponding expres-
sions without the light-by-light type terms, i.e.

D̄ ¼ ~̄Dþ D̄lbl; (68a)

K ¼ ~K þ Klbl: (68b)

The term proportional to the β function describes the
deviation from the limit of exact conformal invariance, with
the deviations starting at order a2. Both sum rules have been
explicitly computed to four loops [30,53,54,66–68] and
shown to obey the extended Crewther relations [53,54].4

We can use the Crewther relations to extract the
conformal and nonconformal parts of CBjp and CGLS.
Denoting the power expansion of D̄ by

D̄ðQ2Þ ¼ 1þ
X∞
n¼1

dnaðQ2Þn; (69)

and expanding its inverse perturbatively gives us

CGLSðaÞ¼1−d1aþa2½d21−d2−β0K1�
þa3½2d1d2−d31−d3þβ0ðd1K1−K2Þ−β1K1�
þa4½d41þd22−d4−3d21d2þ2d1d3þβ1ðd1K1−K2Þ
þβ0ð−d21K1þd1K2þd2K1−K3Þ−β2K1�:

(70)

The expression for CBjp is the same after putting tildes on
the coefficients. The di are given in terms of γi, Πi, and βi
as follows:

d1 ¼ γ1 ¼ 3CF; (71a)

di≥2 ¼ γi þ
Xi−2
k¼0

ði − 1 − kÞβkΠi−1−k: (71b)

We use this to find the degenerate ri;j coefficients of
Eq. (20):

r2;1 ¼ −K1 − Π1; (72a)

r3;1 ¼ −K2

2
− Π2 þ

�
K1

2
þ Π1

�
γ1; (72b)

r4;1 ¼ −K3

3
− Π3 þ ðK2 þ 4Π2Þ

γ1
3

−
�
K1

3
þ Π1

�
γ21 þ ðK1 þ 2Π1Þ

γ2
3
; (72c)

r4;2 ¼
1

3
ðK1Π1 þ Π2

1Þ; (72d)

r3;2 ¼ 0; r4;3 ¼ 0: (72e)

The degeneracy allows us to resum the series as described
earlier. The final result is

CGLSðaÞ ¼ 1 − aðQ1Þγ1 þ aðQ2Þ2ðγ21 − γ2Þ
þ aðQ3Þ3ð−γ31 þ 2γ2γ1 − γ3Þ þ aðQ4Þ4ðγ41
− 3γ2γ

2
1 þ 2γ3γ1 þ γ22 − γ4Þ þOða5Þ; (73)

exposing the ri;0 coefficients. This expression is simply the
inverse of the anomalous dimension:

4There is a recent claim [69] that the existing four-loop
coefficient of the Bjorken sum rule [53,54] is missing some
singlet-diagram contributions. This is relevant only for the
explicit evaluation of ~K3, and does not change the results of
this section.
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CGLSðaÞ ¼ γ−1ðQ1; Q2; Q3;…Þ; (74)

where we used that γ0 ¼ 1. The arguments of γ−1 on the
right-hand side indicate the effective scales at each order in
perturbation theory, once the inverse is Taylor expanded.
All the above expressions also apply to the Bjorken sum
rules, with the coefficients replaced by the ones with tilde.
In particular, CBjpðaÞ ¼ ~γ−1ð ~Q1; ~Q2; ~Q3;…Þ.
Since, the Adler function itself after PMC scale-setting is

simply given by the anomalous dimension:

DðQÞ ¼ γðQ1; Q2; Q3;…Þ; (75)

and correspondingly for ~D, the Crewther relations can be
expressed as

~̄Dð ~QÞCBjpðμÞ ¼ ~γð ~Q1; ~Q2;…Þ
~γð ~μ1; ~μ2;…Þ ¼ 1; (76a)

D̄ðQÞCGLSðμÞ ¼ γðQ1; Q2;…Þ
γðμ1; μ2;…Þ ¼ 1; (76b)

where the last equality follows due to conformality. These
are the generalized Crewther relations, which set the
commensurate scale relations between the scale of the
Adler function and those of the sum rules.

D. Static quark potential

As a last example we consider the potential between two
static quarks, where the degeneracy is not explicitly
apparent in the literature. The static quark potential is
known to order a4 in the MS scheme as an expansion in the
number of massless flavors, Nf [70–75]:

VðQ2Þ ¼ −
ð4πÞ2CF

Q2
aðQ2Þ

�
1þ ðc2;0 þ c2;1NfÞaðQ2Þ

þ ðc3;0 þ c3;1Nf þ c3;2N2
fÞaðQ2Þ2

þ ðc4;0 þ c4;1Nf þ c4;2N2
f þ c4;3N3

fÞaðQ2Þ3

þ 8π2C3
A ln

μ2IR
Q2

aðQ2Þ3
�
þOða5Þ; (77)

where we have chosen the initial scale of the running
coupling μ2 ¼ Q2, but kept the explicit IR divergent
logarithm ln μ2IR=Q

2, which is not related to coupling
constant renormalization, but is coming from the non-
Abelian gluon “H-diagram”. This IR divergence is a feature
of pQCD and is canceled by nonperturbative contributions
from the “ultrasoft” region [75,76], which is controlled by
the domain of color confinement. The regularization comes
from the energy difference between color-singlet and octet
intermediate states [76].
The degenerate coefficients ri;j are determined from the

ci;j coefficients as given in Sec. III B for n ¼ 1. From the

explicit expression for ci;j given in Refs. [73–75] we find
the degenerate coefficients of the static potential to be

rV2;0 ¼ −
8

3
CA; (78a)

rV2;1 ¼
5

3
; rV3;2 ¼

�
5

3

�
2

; rV4;3 ¼
�
5

3

�
3

;…;

rVnþ1;n ¼
�
5

3

�
n
; (78b)

rV3;0 ¼
CA

36
½ð532 − 1584ζ3 − 9π4 þ 144π2ÞCA

þ 33ð48ζ3 − 35ÞCF�; (79a)

rV3;1 ¼
�
7ζ3 − 217

36

�
CA þ

�
35

8
− 6ζ3

�
CF; (79b)

rV4;0¼
11

36
CA

�
ð456ζ3−1440ζ5þ571ÞC2

F

−9 ·56:83ð1Þd
abcd
F dabcdF

TNA

�
þ
�
−758ζ3

3
þ220ζ5

þ3709

54

�
C2
ACFþC3

A

�
3077ζ3

3
−1293:54ð1Þþ484π4

135

�

−136:39ð12Þd
abcd
F dabcdA

NA
; (79c)

rV4;1 ¼
�
392ζ3
3

− 20ζ5 − 66769

648

�
CACF

þ C2
A

�
196:58 − 192ζ3 − 88π4

135

�

þ
�
40ζ5 − 38ζ3

3
− 571

36

�
C2
F þ 56:83ð1Þ d

abcd
F dabcdF

4TNA
;

(79d)

rV4;2 ¼
�
23ζ3 þ

4π4

45
− 2981

144

�
CA þ

�
5171

216
− 26ζ3

�
CF:

(79e)

The static potential can then be written without any explicit
dependence on Nf:

VðQ2Þ ¼−
ð4πÞ2CF

Q2
aðQ2Þ

�
1þðrV2;0þ rV2;1β0ÞaðQ2Þ

þ ðrV3;0þ β1rV2;1þ 2β0rV3;1þ β20r
V
3;2ÞaðQ2Þ2

þ
�
rV4;0þ β2rV2;1þ 2β1rV3;1þ

5

2
β1β0rV3;2þ 3β0rV4;1

þ 3β20r
V
4;2þ β30r

V
4;3

�
aðQ2Þ3þ8π2C3

A ln
μ2

Q2
aðQ2Þ3

�

þOða5Þ: (80)
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Next, we reduce the expression to the conformal series by
using the PMC scales, which are read off from Eq. (35):

VðQ2Þ ¼ −
ð4πÞ2CF

Q2

�
aðQ2

1Þ þ rV2;0aðQ2
2Þ2 þ rV3;0aðQ2

3Þ3

þ rV4;0aðQ2
4Þ4 þ 8π2C3

A ln
μ2

Q2
aðQ2Þ4

�
þOða5Þ:

(81)

The expression in the bracket defines the effective charge
aVðQ2Þ. Its IR divergence can be removed by adding the
ultrasoft contributions to the static potential. The final
expression for the effective charge αV ¼ 4πaV in a SUð3Þ
gauge theory with Nf light quarks read

αVðQ2Þ ¼ αðQ1Þ − 0.64αðQ2Þ2 − 0.78αðQ3Þ3

þ
�
3.49þ 27

8π
ln

μ2

Q2

�
αðQ2

4Þ4; (82)

with

Q2
1;all orders ¼ Q2 exp ð−5=3Þ; (83a)

Q2
2;NLLO ¼ Q2 exp ð0.42þ 0.57β0αðQ2ÞÞ; (83b)

Q2
3;LLO ¼ Q2 expð−5.87Þ; (83c)

where β0 ¼ 11− 2
3
Nf. Note that the PMC scale for Q1

holds to all orders, which follows since rnþ1;n ¼ ð5=3Þn at
any order n. The scales for Q2 and Q3 have been expanded
in α to the order consistent with the pQCD truncation. We
note that the third PMC scale Q3 is greatly suppressed
compared to the kinematic scale Q. This is to be expected
physically, since the kinematically accessible region
shrinks with the loop order. This indicates the breakdown
of perturbation theory in higher order QCD, which is also
explicitly evident by the IR divergent term appearing in the
a4 coefficient. At these higher orders nonperturbative
effects must be taken into account.
Finally, we can now explicitly show that PMC scale-

setting is consistent with the Gell Mann-Low (GM-L)
scheme and the effective coupling in QED. It is well known
that the effective QED coupling in the massless limit, is to
leading order related to the MS coupling by a scale
displacement; αGM−LðQ2Þ ¼ αMSðQ2e−5=3Þ. The effective
QED coupling is precisely defined as the effective charge of
the QED static potential between two (formally) infinitely
charged particles. By inspection of Eqs. (78a), (79a), and
(79c) it can be seen all the higher order conformal
coefficients, ri≥2;0 are proportional to non-Abelian group
invariants, which vanish in the Abelian limit [36]; e.g.
CA → 0. This generalizes to any order. This means that the
PMC expression for the effective charge of the static
potential is given to all orders in perturbation theory by

αV;QEDðQ2Þ ¼ αðQ2e−5=3Þ: (84)

Thus PMC reproduces the correct result in the
Abelian limit.

V. COMMENSURATE SCALE RELATIONS

We demonstrate that the generic expression in Eq. (20)
extends to any scheme, that is, the special degeneracy in the
Rδ scheme of an observable is inherited in all physical
schemes. This is done by relating different observables in
pQCD using the effective charge method [4–7]. These
commensurate scale relations must be independent of the
choice of scheme. The scales are given by the systematic
scale-setting method just described.
Any observable ρ can be used to define an effective

charge aρ. Considering the case where the Born level
result for the observable is just a constant such as Reþe− ; i.e.
n ¼ 0 in Eq. (15), the effective charge is defined by the
relation

ρðQ2Þ ¼ ρ0ðQ2Þ½1þ aρðQ2Þ�; (85)

where ρ0 is the Born (tree-level) result and Q2 is the
measured scale. Thus, aρ can be understood in perturbation
theory as summing up the entire perturbative series into one
effective coupling; the effective charge of the process.
It follows that the effective charge has an expansion in

theRδ coupling aR similar to the expansion in Eq. (20) (we
put back the index R on the coupling in this section to
avoid confusion). By normalizing running coupling such
that at leading order the running coupling is equal to the
effective charge, i.e.

aρ ¼ âR þ r2
r21
â2R þ r3

r31
â3R þ � � � ; (86)

where âR ¼ r1aR, the effective charge itself can be
considered as a running coupling of a physical scheme
related to the corresponding observable. The above expan-
sion then defines the scheme transformation from the Rδ

scheme to the ρ scheme. Since any two effective charges aA
and aB can be computed in the Rδ scheme, it follows that
aA can be written as an expansion in aB by scheme
transformations. Thus, any effective charge defines a
physical renormalization scheme. The β functions of such
schemes are different from the β function of the Rδ

schemes, but are related by the identity

βAðaAÞ ¼
∂aA
∂âR βRðâRÞ; (87)

where A is some physical scheme corresponding to the
effective charge aA. From this identity it follows that the
first two coefficients of the β function are universal [77].
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The expansion of aA in âR can be put to the form

aAðQ2Þ ¼ âRðQ2Þ þ ½rA2;0 þ β̂0rA2;1�âRðQ2Þ2
þ ½rA3;0 þ β̂1rA2;1 þ 2β̂0rA3;1 þ β̂20rA3;2�âRðQ2Þ3

þ
�
rA4;0 þ β̂R2 r

A
2;1 þ 2β̂1rA3;1 þ

5

2
β̂1β̂0rA3;2 þ 3β̂0rA4;1

þ 3β̂20rA4;2 þ β̂30rA4;3

�
âRðQ2Þ4 þOðâ5RÞ; (88)

where rAi;j are related to the coefficients ri;j of the
observable A, by

rAi;j ¼
ri;j
ri−j1

; (89)

and β̂i are here the coefficients of the beta function of âR,
which are related to the usual βi in Eq. (5) by

β̂i ¼
βi
riþ1
1

: (90)

The renormalization scheme dependence of β̂2 is denoted
with a superscript. The coefficient βA2 can be found in terms
of β̂0, β̂1 and β̂R2 from Eq. (88) using Eq. (87):

βA2 ¼ β̂R2 − β̂1rA2;0 þ β̂30ðrA3;2 − rA2;1
2Þ þ 2β̂20ðrA3;1 − rA2;0r

A
2;1Þ

− β̂0ðrA2;02 þ rA3;0Þ: (91)

Using this, it can be shown that the special degeneracy in
Eq. (88) is preserved when relating the effective charge aA
with another effective charge aB, i.e.

aAðQ2Þ ¼ aBðQ2Þ þ ½rAB2;0 þ β̂0rAB2;1�aBðQ2Þ2
þ ½rAB3;0 þ β̂1rAB2;1 þ 2β̂0rAB3;1 þ β̂20rAB3;2�aBðQ2Þ3

þ ½rAB4;0 þ βB2 r
AB
2;1 þ 2β̂1rAB3;1 þ

5

2
β̂1β̂0rAB3;2

þ 3β̂0rAB4;1 þ 3β̂20rAB4;2 þ β̂30r
AB
4;3�aBðQ2Þ4; (92)

where the coefficients rABi;j are related to theRδ coefficients
as follows:

rAB2;0 ¼ rA2;0 − rB2;0; (93a)

rAB2;1 ¼ rA2;1 − rB2;1; (93b)

rAB3;0 ¼ rA3;0 − rB3;0 − 2rB2;0r
AB
2;0; (93c)

rAB3;1 ¼ rA3;1 − rB3;1 − rB2;0r
AB
2;1 − rB2;1r

AB
2;0; (93d)

rAB3;2 ¼ rA3;2 − rB3;2 − 2rB2;1r
AB
2;1; (93e)

rAB4;0 ¼ rA4;0 − rB4;0 − 3rB2;0r
AB
3;0 − ðrB2;02 þ 2rB3;0ÞrAB2;0; (93f)

rAB4;1 ¼ rA4;1 − rB4;1 − 2rB2;0r
AB
3;1 − 2rB2;1r

AB
3;0 þ rA3;0r

B
2;1

− rA2;1r
B
3;0 − 4

3
ðrB3;1 þ 2rB2;0r

B
2;1ÞrAB2;0; (93g)

rAB4;2 ¼ rA4;2 − rB4;2 − 2rB2;1r
AB
3;1 − 2rB3;1r

AB
2;1 − rB2;0r

AB
3;2

− 1

3
ðrB2;12 þ 2rB3;2ÞrAB2;0; (93h)

rAB4;3 ¼ rA4;3 − rB4;3 − 3rB2;1r
AB
3;2 − 3rB3;2r

AB
2;0: (93i)

This demonstrates that the special degeneracy of the fβig
coefficients is not a prerogative of the Rδ schemes, but is a
general feature of perturbation theory. Since any two
effective charges are related by the same perturbative
pattern of Eq. (20), we can directly use the systematic
scale-setting method presented in the previous section to
eliminate the initial scale ambiguity in Eq. (92). This
explicitly shows the renormalization scheme invariance
of the scale-setting method to all orders in perturbation
theory. The final relation between any two effective charges
is thus

aAðQ2Þ ¼ aBðQ2
1Þ þ rAB2;0aBðQ2

2Þ2
þ rAB3;0aBðQ2

3Þ3 þ rAB4;0aBðQ2
4Þ4 þOða5BÞ; (94)

where the commensurate scale relations between the two
charges are exactly the PMC scales Qi as given by Eq. (35)
with the β function being that of aB. For completeness we
provide also the expression for the four-loop β-function
coefficient of an effective charge A:

βA3 ¼ β̂R3 − 2β̂R2 r
A
2;0 þ 5β̂1β̂

2
0ðrA3;2 − rA2;1

2Þ
þ 4β̂1β̂0ðrA3;1 − rA2;0r

A
2;1Þ þ β̂1rA2;0

2

þ 2β̂40ð2rA2;13 − 3rA3;2r
A
2;1 þ rA4;3Þ

þ 6β̂30ð2rA2;0rA2;12 − 2rA3;1r
A
2;1 − rA2;0r

A
3;2 þ rA4;2Þ

þ 6β̂20ð2rA2;1rA2;02 − 2rA3;1r
A
2;0 − rA2;1r

A
3;0 þ rA4;1Þ

þ 2β̂0ð2rA2;03 − 3rA3;0r
A
2;0 þ rA4;0Þ: (95)

As a particularly simple example, we relate the effective
charge of Rτ; aτ, to that of Reþe− ; aR and apply the
systematic scale-setting method to derive commensurate
scale relations between the two effective charges. The final
result is completely independent of the intermediate
renormalization scheme and scale used to compute aτ
and aR.
The degenerate coefficients of aτ and aR in the Rδ

scheme can be read off from Eqs. (58) and (47), from which
we compute rτ;Ri;j . Using Eqs. (93) and (94) we can readily
express aτ as a perturbative series in aR:
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aτðQ2Þ ¼ aRðQ2
R;1Þ − γ3;lbl

γ31
aRðQ2

R;3Þ3

−
γ1γ4;lbl − 3γ2γ3;lbl

γ51
aRðQ2

R;4Þ4; (96)

where the PMC scales QR;i are given by the systematic
method and where γi;lbl is the light-by-light part of γi; i.e.
the two effective charges are equivalent up to light-by-light
terms. The corrections start at order a3, since there is no
light-by-light contribution to γ2. The PMC scales expanded
in aτðQÞ read

ln
Q2

R;1

Q2
¼−

19

12
−169

144
β̂0aRðQ2Þ−

�
761β̂20
192

þ169β̂1
96

�
aRðQ2Þ2;

(97a)

ln
Q2

R;3

Q2
¼

�
19

12
þ Π1

γ1

�
γ3;lbl
γ3

− Π3;lbl

γ3
: (97b)

By definition the scalewhere the expression for the effective
charge aτ applies is Q2 ¼ M2

τ . At this scale, the number of
light flavors is Nf ¼ 3. Light-by-light diagrams are propor-
tional to ðPfQfÞ2, which vanishes exactly when summing
over the three light quarks. Therefore in three-flavor QCD
the two effective charges are identical to all orders; i.e. using
aR=τ ¼ γ1αR=τ=ð4πÞ ¼ αR=τ=π, we have

ατðM2
τÞ

π
¼ αRðQ2

R;1Þ
π

; (98)

where the commensurate scale foraR up to four-loop order is
given by

ln
Q2

R;1

M2
τ
¼ −

19

12
− 169

64

αRðM2
τÞ

π
− 83273

3072

αRðM2
τÞ2

π2
: (99)

This relation (at one lower order) has been shown to be in
very good agreement with experiment [78] demonstrating a
highly nontrivial consistency check of QCD, free of any
scheme and scale ambiguities.

VI. CONCLUSION

In this paper we have shown that a generalization of the
conventional M̄S scheme is illuminating. It enables one to
determine the general (and degenerate) pattern of non-
conformal fβig terms and to systematically determine the
argument of the running coupling order by order in pQCD,
in a way which is readily automatized. The resummed
series matches the conformal series, in which no factorially
divergent n!βnαns “renormalon” series appear and which is
free of any scheme and scale ambiguities. Thus using the
PMC/BLM procedure, all nonconformal contributions in
the perturbative expansion series are summed into the
running coupling by shifting the renormalization scale in

αs from its initial value, and one obtains unique, scale-
fixed, scheme-independent predictions at any finite order.
The resulting PMC scales and finite-order PMC predictions
are both to high accuracy independent of the choice of
initial renormalization scale. The PMC procedure also
provides scale-fixed, scheme-independent commensurate
scale relations, relations between observables which are
based on the underlying conformal behavior of QCD such
as the generalized Crewther relation. Furthermore, we have
shown that PMC is consistent with QED scale-setting,
where there is no ambiguity in choosing the final scale of
the effective coupling. The PMC satisfies all of the
principles of the renormalization group: reflectivity, sym-
metry, and transitivity, and it thus eliminates an unneces-
sary source of systematic error in pQCD predictions.
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APPENDIX: ON THE DISCREPANCY BETWEEN
THE NEW PMC RESULTS AND PREVIOUS BLM

BASED RESULTS

In this Appendix we address the question raised by A. L.
Kataev in [79]5 about the discrepancy of the new PMC
result for the Adler function in this work and Refs. [1,2] and
previous results based on BLM. Let us immediately stress
that the discrepancy occurs due to the still unsettled
question of which nf terms in the perturbative coefficients
should be treated as conformal terms and which should be
related to renormalization (nonconformal terms). This
statement applies to perturbative QCD in general and
therefore also applies to the PMC results given in this
work for Reþe−, Rτ→νþh, the Bjorken sum rule and the GLS
sum rule.
Let us first remind that the purpose of BLM/PMC scale-

setting is to set the scales of perturbative QCD in such a
way that the scheme and scale ambiguities of the final
expression are essentially eliminated. This goal can be
reached by understanding the separation of the conformal
and nonconformal contributions to the perturbative series.

5We note that in the second version of this paper, the criticism
on our work was withdrawn. Nevertheless, this Appendix might
still be helpful to avoid future confusion.
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Note that the definition we are using for the conformal
series is the one in which all fβig ¼ 0. The definition used
in [79] seems to be different. On the other hand, the same
definition is used in some of the previous BLM literature,
so why is there a discrepancy? The reason is that in the
previous literature the explicit nf series has been used to
identify the nonconformal terms, while in our recent papers
we have used the Rδ scheme. We believe that the latter is
more correct for the following reason: Using the explicit nf
series, one is forced to relate all nf terms to renormalization
of the coupling which is strictly incorrect, but a good
approximation, at least to the orders known in pQCD.
Instead, one should treat the nf terms unrelated to renorm-
alization of the coupling as part of the conformal coef-
ficient; e.g., the nf terms coming from light-by-light
scattering in QED and the nf terms unrelated to the
renormalization of the trigluon and quartic-four-gluon
vertices belongs to the conformal series (see e.g. [80]).
Using the Rδ scheme, one can instead derive the fβig-

series expansion of the perturbative coefficients, thereby
avoiding the use of the nf-series expansion. So far no
known pQCD results have been computed in the Rδ

scheme. However, for the particular cases of the Reþe− ,
Rτ→νþh, the Bjorken sum rule and the GLS sum rule we
have been able to derive the fβig-series expansion. This is
possible because they are all related to the Adler function,
which can be explicitly written as a sum of conformal and
nonconformal contributions:

DðQ2Þ ¼ γðaÞ þ βðaÞ d
da

ΠðQ2; aÞ: (A1)

Thus, we have suggested that the PMC result for the Adler
function reads

DðQ2Þ¼ γ0þγ1αðQ1Þþγ2αðQ2Þ2þγ3αðQ3Þ3þ��� ; (A2)

which in numerical form, known up to four loops [45],
reads (we neglect for simplicity the light-by-light or singlet
type terms)

DðQ2Þ ¼
Xnf
f¼1

Q2
f½1þ αðQ1Þþ ð2.60− 0.15nfÞαðQ2Þ2

þð9.74− 2.04nf − 0.02n2fÞαðQ3Þ3
þð41:09− 13:00nf − 0.49n2f þ 0.005n3fÞαðQ4Þ4�
þOðα5Þ; (A3)

where α ¼ αs=π and the PMC scales Qi are functions of Q
and are derived as given in Sec. III A. Their values are
unimportant for the purpose of this Appendix. Notice that
nf terms enter already from NLO and beyond. We propose
that these nf terms should not be absorbed into the running
coupling since they are independent of which

renormalization scheme is used in dimensional regulariza-
tion. The appearance of these nf terms is the reason behind
the discrepancy.
On the other hand, as also described in Sec. III B, when

one is confronted with not knowing the fβig-series expan-
sion, the explicit nf series can be used as an approximation
to get the PMC result.
Suppose we did not have Eq. (A1) in hand and instead

only knew the Adler function in perturbation theory with its
nf series for each coefficient. This reads

DðQ2Þ ¼
Xnf
f¼1

Q2
f½1þ αðQÞþ ð1.99− 0.12nfÞαðQÞ2

þð18:24− 4.22nf þ 0.086n2fÞαðQÞ3
þð135:87− 34:52nf þ 1.88n2f þ 0.01n3fÞαðQÞ4�;
þOðα5Þ; (A4)

where we have set the initial renormalization scale μ ¼ Q.
From Sec. III B we then find the PMC result to be

DðQ2Þ ¼
Xnf
f¼1

Q2
f½1þ αðQ̂1Þ þ 0.083αðQ̂2Þ2

− 23:22αðQ̂3Þ3 þ 81:24αðQ̂4Þ4� þOðα5Þ: (A5)

Notice that up to NLO this, as expected, agrees with all the
previous BLM literature including the recent paper of A. L.
Kataev [79]. For the higher order terms a careful treatment
of the light-by-light terms must be made. We stress again
that in this result the effective PMC scales Q̂i include
absorption of nf terms that are unrelated to renormalizing
the running coupling, and the expression is therefore only
an approximation.
For Reþe− both methods were used in Ref. [2], where it

was found that the final numerical results of the two
methods are consistent with each other. Furthermore, a
recent analysis on the Higgs boson inclusive decay
channels H → bb̄ and H → gg up to four loops [81]
shows that also here the two treatments are consistent
with each other and even with the BLM scale-setting
approach proposed in Ref. [23], which also resorts to the
explicit use of the nf series. Thus, the explicit nf-series
treatment seems to be a good approximation for phe-
nomenological applications.
This explicit treatment should explain the discrepancies

between the conformal coefficients in this work and the
previous ones [1,2] (based on the Rδ scheme) and those
found previously in the BLM literature (based on the nf-
series expansion). Here, we have explained why we
believe the former treatment is formally more correct,
while in some applications the results are effectively
the same.
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