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Recent lattice QCD simulations of the scattering lengths of Nambu-Goldstone bosons off the D mesons
are studied using unitary chiral perturbation theory. We show that the lattice QCD data are better described
in the covariant formulation than in the heavy-meson formulation. The D�

s0ð2317Þ can be dynamically
generated from the coupled-channels DK interaction without a priori assumption of its existence. A new
renormalization scheme is proposed which manifestly satisfies chiral power counting rules and has
well-defined behavior in the infinite heavy-quark mass limit. Using this scheme we predict the heavy-quark
spin and flavor symmetry counterparts of the D�

s0ð2317Þ.
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I. INTRODUCTION

Measurements of hadronic states with charm quarks such
as the D�

s0ð2317Þ have led to extensive and still ongoing
discussions about our deeper understanding of mesons and
baryons [1–3], traditionally thought to be composed of a
pair of quark and antiquark or three quarks in the naive
quark model. With its mass (M ¼ 2317:8� 0.6 MeV)
about 100 MeV lower than the lowest cs̄ scalar state in
the naive quark model, the D�

s0ð2317Þ cannot be a conven-
tional qq̄ state [4–17]. One possible interpretation is that of
a compound dynamically generated by the strong DK
interaction in coupled-channels dynamics [14–16]. Such
approaches have provided many useful insights into the
nature of some most intriguing new resonances (see, e.g.,
Refs. [18,19] for some recent applications).
In order to clarify the nature of the D�

s0ð2317Þ, or of any
other meson of similar kind, it is useful to study such objects
from various perspectives and compare the results with
experimental and lattice QCD (LQCD) data. In this respect,
it has been argued that the isospin-breaking decay width
D�

s0ð2317Þ → Dsπ [20,21], the light-quarkmassdependence
[22], and the volume dependence [23] of the D�

s0ð2317Þ
properties can provide valuable information on its nature. At
the same time it should also be noted that, in addition to
theD�

s0ð2317Þ, coupled-channels unitary dynamics predicts
several other states in sectors or channels related to the
D�

s0ð2317Þ by heavy-quark spin and flavor symmetry and
(approximate) chiral symmetry [or broken SU(4) symmetry]
[14–16,24,25].Once themass andwidth of theD�

s0ð2317Þ are
fixed, so are those of the other related states. Future experi-
ments in search for those resonances in the predicted energy
regions are therefore strongly encouraged.

All these predictions are subject to potentially
sizable symmetry-breaking corrections. In particular, a
comprehensive study of recoil corrections is necessary
because the velocity of the charm quark in DðD�Þ mesons
is only about 0.3c, not small enough to allow for a complete
neglect of recoil corrections. For the scattering lengths of
the Nambu-Goldstone bosons off the D mesons, such a
study has been performed in Ref. [26], and it was shown
that indeed recoil corrections are sizable.1 In Refs. [27,28],
covariant chiral perturbation theory (ChPT), supplemented
with the extended-on-mass-shell (EOMS) scheme, was
applied to study the decay constants of the DðD�Þ=
BðB�Þ mesons. It was shown that the covariant ChPT
converges faster than its nonrelativistic (heavy-meson)
counterpart. These findings can, to some extent, be deemed
as repercussions of the one-baryon sector. For instance,
it has been shown that the EOMS formulation of the
baryon ChPT is capable of better describing three-flavor
observables and their light-quark mass evolutions than
its nonrelativistic (heavy-baryon) counterpart; see, e.g.,
Refs. [29–31], and references cited therein.
In the present work we study the interactions of the

heavy-light mesons (D, D�, B, B� and their strange
counterparts) with Nambu-Goldstone bosons (the octet
of the lightest pseudoscalar mesons) in covariant ChPT
and its unitary version. We calculate the interaction
potentials up to next-to-leading order (NLO) and perform
an iteration of these potentials to all orders using the Bethe-
Salpeter equation. It was pointed out that in the covariant
calculation of the loop function appearing in the Bethe-
Salpeter equation, one loses the heavy-quark spin and
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1See Ref. [32] for a related discussion on the scattering lengths
of the pseudoscalar mesons off the heavy-light vector mesons.
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flavor symmetry [22]. We study this problem in detail and
propose a new renormalization scheme, similar in spirit to
the EOMS scheme widely used in the one-baryon sector
[31,33,34] and also used in Refs. [26–28], to recover
heavy-quark spin and flavor symmetry up to 1=MHL correc-
tions, where MHL is a generic heavy-light meson mass. We
applyourapproach todescribe themost recent fullydynamical
LQCD simulations for the scattering lengths of Nambu-
Goldstone bosons off the D mesons [35] and fix the relevant
low-energy and subtraction constants.2 We then solve the
corresponding Bethe-Salpeter equations and search for poles
in the complex energy plane, identified as dynamically
generated states. We show that a number of 0þ and 1þ states
emergenaturally, includingtheD�

s0ð2317Þ, theDs1ð2460Þand
their bottom-quark counterparts.3

This article is organized as follows. In Sec. II, the relevant
terms of the effective chiral Lagrangian are summarized and
the driving potentials up to NLO are constructed. In Sec. III
we propose a new renormalization scheme to be used in the
Bethe-Salpeterequation,whichmanifestlysatisfies thechiral
power counting rules and heavy-quark spin and flavor
symmetries. We discuss the advantage of this scheme in
comparison with others widely used in unitary ChPT. In
Sec. IV,weapplyboth theunitaryheavy-mesonandcovariant
formulations of ChPT to fit the LQCD data and make
predictions for the existence of a number of dynamically
generated resonances in both the charm and the bottom
sectors. A short summary is given in Sec. V.

II. THEORETICAL FRAMEWORK

A. Chiral Lagrangian up to next-to-leading order

Introducing the chiral effective Lagrangians in the
present context, one first has to specify a power counting
rule. In the present work, the Nambu-Goldstone boson
(NGB) masses mϕ and the field gradients ∂μϕ are counted
as OðpÞ as usual, where ϕ denotes a NGB boson of the
pseudoscalar octet. For D mesons, the triplets are P ¼
ðD0; Dþ; Dþ

s Þ and P�
μ ¼ ðD�0; D�þ; D�þ

s Þμ, and for B̄
mesons, they are P ¼ ðB−; B̄0; B̄0

sÞ and P�
μ ¼ ðB�−; B̄�0;

B̄0�
s Þμ. Their field gradients ∂μP and ∂νP�

μ and masses mP

andmP� are counted asOð1Þ. The NGB propagator i
q2−m2

ϕ
is

counted asOðp−2Þ, while the heavy-light pseudoscalar and
vector meson propagators i

q2−m2
P
and i

q2−m2
P�
ð−gμν þ qμqν

m2
P�
Þ

are counted as Oðp−1Þ. The chiral order of the propagators

of the heavy-light mesons can be understood as follows.
As in standard heavy-meson ChPT, one can write the
momentum q as a sum of a large component and a residual
small component, i.e., q ¼ mPνþ k, where ν is the velocity
of the heavy-light meson and k is the small residual
component counted as OðpÞ. Therefore, the heavy-light
pseudoscalar meson propagator becomes i

2mPν·kþk2 ≈
i

2mPν·k
,

which is counted as Oðp−1Þ. The same is true for the
heavy-light vector meson propagator.
The leading order covariant chiral Lagrangian descri-

bing the interactions of the NGBs with the heavy-light
pseudoscalar and vector mesons has the following form:

Lð1Þ ¼ hDμPDμP†i −m2
PhPP†i

− hDμP�νDμP�†
ν i þm2

P� hP�νP�†
ν i

þ i~gPP�ϕhP�
μuμP† − PuμP�†

μ i
þ gP�P�ϕ

2
hðP�

μuα∂βP
�†
ν − ∂βP�

μuαP
�†
ν Þϵμναβi; (1)

where mP and mP� are the P and P� masses in the chiral
limit, respectively, and h…i denotes trace in the u, d, and s
flavor space. The coupling constant ~gPP�ϕ has mass
dimension 1, whereas gP�P�ϕ is dimensionless. The axial
current is defined as uμ ¼ iðξ†∂μξ − ξ∂μξ

†Þ and the chiral
covariant derivative is

DμPa ¼ ∂μPa − Γba
μ Pb;

DμP†
a ¼ ∂μP†

a þ Γμ
abP

†
b (2)

with the vector current Γμ ¼ 1
2
ðξ†∂μξþ ξ∂μξ

†Þ. In these
equations, ξ2 ¼ Σ ¼ expðiΦ=f0Þ with f0 being the NGB
decay constant in the chiral limit and Φ collecting the octet
of NGB fields:

Φ ¼
ffiffiffi
2

p
0
B@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ffiffi
6

p η

1
CA: (3)

The coupling ~gDD�ϕ is known empirically. It can be
determined from the decay width ΓD�þ ¼ ð96� 22Þ keV
together with the branching ratio BRD�þ→D0πþ ¼ ð67:7�
0.5Þ% [40]. At tree level, ΓD�þ→D0πþ ¼ 1

12π

~g2
DD�ϕ
f2
0

jqπ j3
M2

D�þ
, which

gives ~gDD�ϕ ¼ ð1177� 137Þ MeV. The coupling gD�D�ϕ
can be related to ~gDD�ϕ through the heavy-quark spin
symmetry, i.e., gD�D�ϕMD� ¼ ~gDD�ϕ, keeping in mind that
there could be sizable deviations of higher order in 1=mD.
The couplings gBB�ϕ and gB�B�ϕ can be related to their D
counterparts through heavy-quark flavor symmetry.
In a similar way, one can construct the covariant NLO

terms of the effective Lagrangian:

2It should be noted that recently the Dπ, D�π, and DK
scattering lengths have also been calculated on the lattice using
both quark-antiquark and meson-meson interpolating fields
[36,37] and the D�

s0ð2317Þ is found to be a bound state in the
DK channel [37].

3A similar strategy was adopted in Refs. [35,38], but both
studies are limited to the 0þ charm sector, and in addition
Ref. [38] studied the preliminary LQCD results of Ref. [39].
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Lð2Þ ¼ −2½c0hPP†ihχþi − c1hPχþP†i − c2hPP†ihuμuμi − c3hPuμuμP†i þ c4
m2

P
hDμPDνP†ihfuμ; uνgi

þ c5
m2

P
hDμPfuμ; uνgDνP†i þ c6

m2
P
hDμP½uμ; uν�DνP†i� þ 2½~c0hP�

μP�μ†ihχþi − ~c1hP�
μχþP�μ†i

− ~c2hP�
μP�μ†ihuμuμi − ~c3hP�

νuμuμP�ν†i þ ~c4
m2

P�
hDμP�

αDνP�α†ihfuμ; uνgi þ ~c5
m2

P�
hDμP�

αfuμ; uνgDνP�α†i

þ ~c6
m2

P�
hDμP�

α½uμ; uν�DνP�α†i�; (4)

where χþ ¼ ξ†Mξ† þ ξMξ with M ¼ diagðm2
π; m2

π;
2m2

K −m2
πÞ.

In the infinite heavy-quark mass limit, one has ci ¼ ~ci
for i ¼ 0; :::::6 and mP ¼ mP� . For the numerical results
presented in this work, we have fixed the mP and mP�

appearing in Eq. (4), which are needed to make the c4, c5,
and c6 low-energy constants (LECs) dimensionless, to the
following values: mD ¼ mD� ¼ m

∘
D and mB ¼ mB� ¼ m

∘
B

(see Table I), where m
∘
D (m

∘
B) is the SU(3) average of

strange and nonstrange DðBÞ and D�ðB�Þ masses. Such a
choice is taken in order to avoid introducing SU(3)-
breaking corrections to the LECs by hand in the covariant
framework. As a first estimate of the size of spin or flavor
symmetry-breaking effects, one can determine the con-
stants c1 and ~c1 from the masses of strange and nonstrange
D and D� mesons. At the NLO chiral order, the masses of
the D, Ds, D� and D�

s mesons are given by

M2
D ¼ m2

D þ 4c0ðm2
π þ 2m2

KÞ − 4c1m2
π; (5)

M2
Ds

¼ m2
D þ 4c0ðm2

π þ 2m2
KÞ þ 4c1ðm2

π − 2m2
KÞ; (6)

M2
D� ¼ m2

D� þ 4~c0ðm2
π þ 2m2

KÞ − 4~c1m2
π; (7)

M2
D�

s
¼ m2

D� þ 4~c0ðm2
π þ 2m2

KÞ þ 4~c1ðm2
π − 2m2

KÞ; (8)

where the DðD�Þ meson mass in the chiral limit is denoted
as mDðmD� Þ. Inserting the physical masses listed in Table I
leads to c1 ¼ −0.214 and ~c1 ¼ −0.236. Repeating the
same argument for the B̄ mesons, we obtain c1ðBÞ ¼−0.513 and ~c1ðBÞ ¼ −0.534. The heavy-quark flavor
symmetry dictates that c1ð~c1Þ=MHL ¼ const. Using an
SU(3)-averaged mass for MHL for each sector, we

find c1=M̄D¼−0.113GeV−1, ~c1=M̄D� ¼ −0.116 GeV−1,
c1ðBÞ=M̄B ¼ −0.097 GeV−1, and ~c1ðBÞ=M̄B� ¼
−0.100 GeV−1. These numbers provide a hint about the
expected order of magnitude for the breaking of heavy-
quark spin and flavor symmetry: about 3% between D vs
D� and B vs B�, whereas it amounts to about 16% between
D vs B and D� vs B�.

B. Chiral potentials

In this section we derive the chiral potentials contribu-
ting to Pð�Þϕ → Pð�Þϕ scattering up to NLO in both the
covariant and the heavy-meson formulations. The corre-
sponding Feynman diagrams are shown in Figs. 1 and 2.

1. JP ¼ 0þ potential for Pϕ → Pϕ

For the processes Pϕ → Pϕ, the leading order (LO)
potential can be written as

VLO ¼ VWT þ Vs-Ex þ Vu-Ex; (9)

where VWT, Vs-Ex and Vu-Ex are the Weinberg-Tomozawa
term and the s- and t-channel exchange contributions,
respectively. The Weinberg-Tomozawa term VWT has the
following form:

VWTðPðp1Þϕðp2Þ→Pðp3Þϕðp4ÞÞ¼
1

4f20
CLOðs−uÞ; (10)

with the Mandelstam variables s¼ðp1þp2Þ2¼ðp3þp4Þ2
and u ¼ ðp1 − p4Þ2 ¼ ðp3 − p2Þ2. The coefficients CLO
for different strangeness and isospin combinations ðS; IÞ
are listed in Table II. The s=u-channel exchange terms Vs-Ex
and Vu-Ex are suppressed by 1=MHL compared to the
Weinberg-Tomozawa term. At threshold they are in fact
of second chiral order and can be absorbed into the
available Oðp2Þ LECs. In addition, we have checked
numerically that they play a negligible role in the present
study, and hence we neglect their contributions in the
following. The same statements hold for the u-channel
exchange diagrams in the P�ϕ → P�ϕ process. The
s-channel diagrams in the P�φ → P�φ process do not
contribute to S-wave interactions.

TABLE I. Numerical values of isospin-averaged masses and
the pion decay constant f0 (in units of MeV) [40]. The eta meson
mass is calculated using the Gell-Mann-Okubo mass relation:
m2

η ¼ ð4m2
K −m2

πÞ=3.
m
∘
D MD�

s
MD� MDs

MD mπ mK mη

1972.1 2112.3 2008.6 1968.5 1867.2 138.0 495.6 566.7

m
∘
B MB�

s
MB� MBs

MB f0
5331.9 5415.4 5325.2 5366.8 5279.4 92.21
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The NLO potential has the following form:

VNLOðPðp1Þϕðp2Þ→Pðp3Þϕðp4ÞÞ

¼− 8

f20
C24

�
c2p2 ·p4− c4

m2
P
ðp1 ·p4p2 ·p3þp1 ·p2p3 ·p4Þ

�

−
4

f20
C35

�
c3p2 ·p4− c5

m2
P
ðp1 ·p4p2 ·p3þp1 ·p2p3 ·p4Þ

�

−
4

f20
C6

c6
m2

P
ðp1 ·p4p2 ·p3−p1 ·p2p3 ·p4Þ

−
8

f20
C0c0þ

4

f20
C1c1; (11)

where the coefficients Ci can be found in Table II.
The LECs c0;…; c6 in the B and D meson sectors are

related by ci;B=m
∘
B ¼ ci;D=m

∘
D up to corrections in

1=m
∘
Bðm∘ DÞ, where m

∘
D and m

∘
B are the generic D and B

meson masses, respectively, given in Table I. Since the P
and P� masses are very close to each other, one can use
ci;P� ¼ ci;P, again up to corrections in 1=m

∘
P for P ¼ B, D.

In the present case we are only interested in S-wave
interactions and, therefore, can project the potentials
accordingly:

VLO=NLOjs-wave ¼
1

2

Z
1

−1
VLO=NLOd cosðθÞ; (12)

where θ is the angle between the three-momenta of the
initial and final heavy-light mesons.

It should be pointed out that the terms multiplying c6
vanish at threshold. Furthermore, they have negligible
effects on the dynamical generation of bound or resonant
states as long as c6 is of natural size. Therefore we are not
going to consider the c6 terms further in the present work.

2. JP ¼ 1þ potential for P�ϕ → P�ϕ

From the Lagrangian (1,4), one can easily compute the
corresponding LO and NLO potentials

VLOðNLOÞðP�ðp1Þϕðp2Þ → P�ðp3Þϕðp4ÞÞ
¼ −ε�3 · ε1VLOðNLOÞðPðp1Þϕðp2Þ → Pðp3Þϕðp4ÞÞ:

(13)

The polarization vectors are treated by turning to a
representation in terms of helicity states which allows
one to decompose the potentials into subsectors of good
angular momentum and parity. The potentials thus acquire
a matrix structure.4 Such a procedure is explained in detail
in Ref. [41]. In the present work, we are interested in the
JP ¼ 1þ sector and the potential matrix becomes

V̂ ≡
� h1þjVJ¼1j1þi h1þjVJ¼1j0i

h0jVJ¼1j1þi h0jVJ¼1j0i
�
; (14)

(a) (b) (c) (d)

FIG. 1. Feynman diagrams contributing to Pϕ → Pϕ at LO (a)–(c) and NLO (d) chiral order. The pseudoscalar (P) mesons are
represented by solid lines, the vector (P�) mesons by double lines, and the Nambu-Goldstone bosons by dashed lines.

(a) (b) (c)

(d) (e) (f)

FIG. 2. Feynman diagrams contributing to P�ϕ → P�ϕ at LO (a)–(e) and NLO (f) chiral order. The pseudoscalar (P) mesons are
represented by solid lines, the vector (P�) mesons by double lines, and the Nambu-Goldstone bosons by dashed lines.

4It should be pointed out that in the infinite heavy-quark limit,
one has ε�3 · ε1 ¼ −1, which leads to VLOðNLOÞðP�ðp1Þϕðp2Þ →
P�ðp3Þϕðp4ÞÞ ¼ VLOðNLOÞðPðp1Þϕðp2Þ → Pðp3Þϕðp4ÞÞ (see
also, e.g., Ref. [43]).
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where the matrix elements can be straightforwardly com-
puted following the procedure outlined in the Appendix of
Ref. [41]. In order to construct projectors free of kinematic
singularities, the bare helicity states have been rotated,
resulting in the following normalizations [41]:

N¼
�h1þj1þi h1þj0i

h0j1þi h0j0i
�
¼

0
B@

3
2
þ p2

cm
2M2

p2
cm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þp2

cm

pffiffi
2

p
M2

p2
cm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þp2

cm

pffiffi
2

p
M2

p4
cm

M2

1
CA;

(15)

where pcm is the center of mass three-momentum of the
interacting pair. We have checked numerically that the
matrix elements involving the helicity state j0i play a
negligible role in our present study.5 Therefore we only
keep the V̂11 component of the potential, which coincides
with the approach of Ref. [42].

3. Heavy-meson ChPT

In the heavy-meson (HM) ChPT at LO, the Weinberg-
Tomozawa potential VWT reduces to

VWT ¼ m
∘

2f20
ðE2 þ E4ÞCLO (16)

with m
∘

given in Table I. At NLO, with the on-shell
approximation and for S-wave interactions, effectively only
four of the six low-energy constants contribute, i.e.,

VNLO ¼ − 8

f20
C24c24E2E4 − 4

f20
C35c35E2E4 − 8

f20
C0c0

þ 4

f20
C1c1; (17)

where c24 ¼ c2 − 2c4 and c35 ¼ c3 − 2c5 (see,
e.g., Ref. [22]).

III. BETHE-SALPETER EQUATION AND
RENORMALIZATION SCHEME MOTIVATED

BY HEAVY-QUARK SYMMETRY

It is well known that perturbation theory at any finite
order cannot generate bound states or resonances. One way
to proceed is to perform an infinite summation of a leading
subclass of diagrams to all orders using the Bethe-Salpeter
(or Lippmann-Schwinger) equation. In combination with
coupled-channels dynamics, this approach has turned out to
be quite successful in describing a multitude of low-energy
strong-interaction phenomena (see, e.g., Refs. [44–52] for
early references and Refs. [18,19] for some recent appli-
cations). To simplify the calculations, the so-called on-shell
approximation [46,47] is often introduced, with the argu-
ment that the off-shell effects are relegated to higher orders.
See Ref. [53] for a comparison of the on-shell approxi-
mation and the full results with off-shell effects taken into
account. The results presented there show that in the Dϕ
sector, the on-shell and off-shell approaches yield similar
results, indicating that to a large extent the off-shell effects
can be absorbed into the local counterterms. Since the only

TABLE II. Coefficients of the LO and NLO potentials for Dϕ → Dϕ [Eqs. (10), (11), (16), and (17)]. The coefficients for
D�ϕ → D�ϕ or Bð�Þϕ → Bð�Þϕ can be obtained by replacing D=Ds with D�=D�

s or Bð�Þ=Bð�Þ
s .

(S; I) Channel CLO C0 C1 C24 C35 C6

(2,1=2) DsK → DsK 1 mK
2 mK

2 1 1 −1
(1,1) DK → DK 0 mK

2 0 1 0 0
Dsπ → Dsπ 0 mπ

2 0 1 0 0
DK → Dsπ 1 0 1

2
ðmK

2 þmπ
2Þ 0 1 −1

(1,0) DK → DK −2 mK
2 2mK

2 1 2 2
Dsη → Dsη 0 1

3
ð4mK

2 −mπ
2Þ 4

3
ð2mK

2 −mπ
2Þ 1 4

3
0

DK → Dsη − ffiffiffi
3

p
0 5mK

2−3mπ
2

2
ffiffi
3

p 0 1ffiffi
3

p
ffiffiffi
3

p

(0,3=2) Dπ → Dπ 1 mπ
2 mπ

2 1 1 −1
(0,1=2) Dπ → Dπ −2 mπ

2 mπ
2 1 1 2

Dη → Dη 0 1
3
ð4mK

2 −mπ
2Þ mπ

2

3
1 1

3
0

DsK̄ → DsK̄ −1 mK
2 mK

2 1 1 1
Dπ → Dη 0 0 −mπ

2 0 −1 0

Dπ → DsK̄
ffiffi
3
2

q
0 − 1

2

ffiffi
3
2

q
ðmK

2 þmπ
2Þ 0 −

ffiffi
3
2

q
−

ffiffi
3
2

q

Dη → DsK̄ −
ffiffi
3
2

q
0 3mπ

2−5mK
2

2
ffiffi
6

p 0 − 1ffiffi
6

p
ffiffi
3
2

q
(–1,1) DK̄ → DK̄ 1 mK

2 mK
2 1 1 −1

(–1,0) DK̄ → DK̄ −1 mK
2 −mK

2 1 −1 1

5This can be naively understood as follows. In the non-
relativistic limit, the j1i state is built from S-wave interactions
while the j0i state is built fromD-wave interactions. Since we are
not far away from threshold, theD-wave interactions and the S-D
transitions seem to be small, as suggested by the actual numerical
analysis.
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scale of relevance in different sectors is the heavy-light
meson mass, it is reasonable to assume that these LECs in
different sectors, related to each other by the 1=MHL
relation, should be able to take into account the off-shell
effects, without spoiling the heavy-quark spin or flavor
symmetry in any dramatic way. Therefore, we adopt the on-
shell approximation in the present work.
Schematically, the Bethe-Salpeter equation can be

written as

T ¼ V þ VGT; (18)

where V is the potential and G is a loop function defined in
the following way:

Gðs;M2;m2Þ≡ i
Z

dnq
ð2πÞn

1

½ðP−qÞ2−m2þ iϵ�½q2−M2þ iϵ� ;

(19)

where P ¼ ð ffiffiffi
s

p
; 0; 0; 0Þ is the total momentum of

the two particles. M and m are the masses of the
heavy-light meson and of the NGB, respectively, in
the two-particle intermediate state. According to the
power counting rule specified in Sec. II, the loop function
G counts as OðpÞ. An explicit evaluation in n ¼ 4
dimensions with the modified minimal subtraction
scheme yields

GMSðs;M2; m2Þ ¼ 1

16π2

�
m2 −M2 þ s

2s
log

�
m2

M2

�
−

qffiffiffi
s

p flog½2q ffiffiffi
s

p þm2 −M2 − s� þ log½2q ffiffiffi
s

p −m2 þM2 − s�

− log½2q ffiffiffi
s

p þm2 −M2 þ s� − log½2q ffiffiffi
s

p −m2 þM2 þ s�g þ
�
log

�
M2

μ2

�
− 2

��
; (20)

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs−ðmþMÞ2Þðs−ðm−MÞ2Þ

p
2
ffiffi
s

p is the center of mass
(three-)momentum. It is easily seen that the underlined
term in the loop function (20) breaks the chiral power
counting. In addition, the heavy-quark flavor symmetry and,
to a less extent, the heavy-quark spin symmetry are also
broken in the covariant loop function, as noticed inRef. [22].
To take into account nonperturbative physics, the usual
practice in the unitary ChPT (UChPT) is to replace the

underlined term −2 by the so-called subtraction constant
aðμÞ, which we will refer to as the MS scheme.
In the following we propose a renormalization scheme

that restores the chiral power counting and ensures that the
loop function G has a well-defined behavior in theM → ∞
limit. To achieve this, we turn to the HM ChPT, where the
loop function takes the following form (see, e.g.,
Refs. [22,54]):

GHMðs;M2; m2Þ ¼ 1

16π2M
∘
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

HM −m2

q �
arccosh

�
ΔHM

m

�
− πi

�
þ ΔHM

�
log

�
m2

μ2

�
þ a

��
; (21)

where M
∘
is the chiral limit value of the heavy-light meson mass appearing in the loop and ΔHM ¼ ffiffiffi

s
p −M. Comparing

GHM with the loop function of Eq. (20) expanded up to 1=M
∘

Gðs;M2; m2Þ ¼ 1

16π2

�
log

�
M
∘ 2

μ2

�
− 2

�
þ 1

16π2M
∘
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

HM −m2

q �
arccosh

�
ΔHM

m

�
− πi

�
þ ΔHM log

�
m2

M
∘ 2

��
; (22)

one is tempted to introduce the following renormalization scheme:

GHQSðs;M2; m2Þ≡Gðs;M2; m2Þ − 1

16π2

�
log

�
M
∘ 2

μ2

�
− 2

�
þ msub

16π2M
∘
�
log

�
M
∘ 2

μ2

�
þ a

�
; (23)

where msub ¼ m. From now on, we will refer to this loop function as the heavy-quark symmetry (HQS) inspired loop
function. It should be noted that in Eq. (23) we have chosen to renormalize the loop function at the threshold offfiffiffi
s

p ¼ M þm, where ΔHM ¼ mðmsubÞ. The renormalized loop function GHQS satisfies the chiral power counting and also
exhibits a well-defined behavior in the M → ∞ limit.6 At fixed M

∘
and msub the ansatz we propose is equivalent to the MS

approach widely used in UChPT, but it has the advantage of manifestly satisfying the (approximate) heavy-quark spin and
flavor symmetries.

6It is clear that if we drop the nonperturbative term m

16π2M
° ðlog ðM

° 2

μ2
Þ þ aÞ, our proposed renormalization scheme is in spirit similar to

the EOMS scheme widely used in the one-baryon sector to remove the power-counting-breaking terms.
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In our study of the scattering lengths of NGB bosons off
the D mesons, the subtraction constant a can in principle
vary from channel to channel, depending on the intermediate
NGB. A reasonable alternative is to use for msub an SU(3)
average NGB mass, e.g., msub ¼ ð3mπ þ 4mK þmηÞ=8 ¼
0.3704 GeV , and have a common subtraction constant a for
all channels. A variation of this value from mπ to mη can
serve as an estimate of uncertainties as one tries to connect
physics of the D and B sectors. It should be stressed that
using the mass of the intermediate NGB in the subtraction
but keeping a common subtraction constant for all chan-
nels will introduce sizable uncontrolled SU(3)-breaking
corrections that should be avoided.
In Fig. 3, we show the dependence of the loop functions

on the heavy-light meson mass M, calculated in the HQS,
HM and MS schemes with the renormalization scale

μ¼1GeV,7 M
∘ ¼M, m¼mπ¼0.138GeV,

ffiffiffi
s

p ¼ M þm,
and msub ¼ 0.3704 GeV. For the sake of comparison,
we have plotted the loop function defined in the chiral
SU(3) scheme of Ref. [52], which has the following form:

Gχ−SUð3Þ ¼ GMSðs;M2; m2Þ −GMSðM2;M2; m2Þ: (24)

The subtraction constants in the HM, HQS, and MS
schemes are adjusted to reproduce the Gχ−SUð3Þ at
M ¼ 2 GeV. From Eq. (21) one can see that GHM is
inversely proportional toM and thereforeMG is a constant
for the HM loop function. On the other hand, theG function
in the HQS scheme is slightly upward curved while the G
function in the χ-SU(3) downward curved. The naive MS
scheme, on the other hand, changes rapidly with M. It is
clear that without readjusting a for different M, which

could correspond to either a heavy-light B meson or D
meson, heavy-quark flavor symmetry is lost as pointed out
in Ref. [22].
So far, we have concentrated on the 1=M scaling of the

loop function G in different schemes but have not paid
much attention to the chiral series or SU(3)-breaking
effects. In terms of 1=M scaling, the HM, HQS, and
χ-SU(3) approaches all seem reasonable, as shown in
Fig. 3. On the other hand, compared to the HM ChPT
or the χ-SU(3) approach, the subtraction constant in the
HQS scheme has the simplest form consistentwith the chiral
power counting and 1=M scaling. We will see in the
following section that such a choice seems to play a non-
negligible role in describing the light-quark mass depend-
ence of the scattering lengths of the NGBs off theDmesons.

IV. RESULTS AND DISCUSSIONS

A. Fits to the LQCD data of scattering lengths

Now we are in a position to study the latest fully
dynamical LQCD data of Ref. [35]. Up to NLO,8 we have
six unknown LECs and in the case of the UChPT also the
unknown subtraction constant. As explained in Sec. 2, the
constant c1 can be determined from the mass splitting
of the strange and nonstrange D mesons, which yields
c1 ¼ −0.214. The constant c0 can be fixed by fitting the
NLO mass formulas to the LQCD data of Ref. [35]. This
yields c0 ¼ 0.015. Therefore, we have four LECs to be
determined in the ChPT and five in the UChPT. In our
framework, the scattering lengths of channel i with strange-
ness S and isospin I are related to the diagonal T-matrix
elements Tii via

aðS;IÞi ¼ − 1

8πðM1 þm2Þ
TðS;IÞ
ii ðs ¼ ðM1 þm2Þ2Þ: (25)

First, we perform fits to the 15 LQCD data9 with the
NLO HM ChPT and covariant ChPT. The M

∘
appearing in

the HQS loop function of Eq. (23) is set equal to m
∘
D for

the DðD�Þ sector and m
∘
B in the BðB�Þ sector. The results

are shown in Table III. It seems that both approaches fail to
achieve a χ2=d:o:f: of about 1, but the covariant ChPT
describes the LQCD data better than the HM ChPT. The
smaller χ2=d:o:f: in the covariant ChPT should be attrib-
uted to the terms with the coefficients, c4 and c5. These two
terms cannot be distinguished from the terms with coef-
ficients c2 and c3 in the HM ChPT, as mentioned earlier.

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

M
 G

 [
G

eV
]

M [GeV]

µ=1 GeV

HQS

χ-SU(3)

HM

MS
⎯

FIG. 3 (color online). Dependence of loop functions (at thresh-
old) on the heavy-light meson mass in different schemes
with μ ¼ 1 GeV.

7From a theoretical point of view, the renormalization scale μ
should be the chiral-symmetry-breaking scale, Λχ ≈ 4πf0≈
1.2 GeV, which can be immediately seen by examining the
HM ChPT loop function of Eq. (21).

8It should be noted that the scattering lengths of the NGBs off
the D mesons have been calculated up to N3LO in both the
covariant ChPT [26] and HM ChPT [55].

9Unless otherwise specified, to ensure that the NLO (U)ChPT
is applicable to the LQCD data, we restrict ourselves to the
LQCD data obtained with mπ ranging from 301 to 510 MeV and
excluding the heaviest point of mπ ¼ 611 MeV.
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Next we perform fits using the NLO HMUChPTand the
covariant UChPT, with the loop function in the latter
regularized in either the HQS scheme or the χ-SU(3)
scheme. The results are shown in Table IV. A few points

are noteworthy. First, the NLO UChPT describes the
LQCD data better than the NLO ChPT. Second, the
covariant UChPT describes the LQCD data much better
than the HM UChPT. The χ-SU(3) approach gives a

TABLE III. Low-energy constants and the χ2=d:o:f: from the best fits to the LQCD data [35] in the covariant
ChPTand the HM ChPT up to NLO, where c24 ¼ c2 − 2c4 and c35 ¼ c3 − 2c5. The uncertainties of the LECs given
in the parentheses correspond to one standard deviation.

c24 c35 c4 c5 χ2=d:o:f:

Covariant ChPT 0.153(35) −0.126ð71Þ 0.760(186) −1.84ð39Þ 2.01
HM ChPT 0.012(6) 0.167(17) � � � � � � 3.10

TABLE IV. Low-energy constants, the subtraction constants, and the χ2=d:o:f: from the best fits to the LQCD data [35] in the HQS
UChPT, the χ-SU(3) UChPT, and the HM UChPT. The renormalization scale μ is set at 1 GeV. The uncertainties of the LECs given in
the parentheses correspond to one standard deviation.

a c24 c35 c4 c5 χ2=d:o:f:

HQS UChPT −4.13ð40Þ −0.068ð21Þ −0.011ð31Þ 0.052ð83Þ −0.96ð30Þ 1.23
χ-SU(3) UChPT � � � −0.096ð19Þ −0.0037ð340Þ 0.22(8) −0.53ð21Þ 1.57
HM UChPT 2.52 (11) 4.86(30) −9.45ð60Þ � � � � � � 2.69
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FIG. 4 (color online). The nf ¼ 2þ 1 LQCD data [35] vs the NLO covariant UChPT. The black solid and dashed lines show the best
fits to the 15 LQCD points and to the 20 LQCD points, with the blue and red bands covering the uncertainties propagated from those of
the LECs within one standard deviation, respectively.
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χ2=d:o:f: in between those of the HM UChPT and the
covariant UChPT.
These results are consistent with the findings from the

studies of the decay constants of the heavy-light mesons
[27] and the ground-state octet baryon masses in the one-
baryon sector [30]. That is to say, the covariant ChPT
appears to be superior in describing the light-quark mass
evolution of physical observables as compared to its
nonrelativistic counterpart.
In Fig. 4, the LQCD data are contrasted with the NLO

covariant UChPT. The theoretical bands are generated from
the uncertainties of the LECs. The DðDsÞ masses are
described with the NLO mass relations of Eqs. (5) and
(6), where the LECsmD, c0, and c1 are fixed by fitting to the
LQCD masses of Ref. [35]. In addition, the kaon mass is
expressed asm2

K ¼ am2
π þ bwith a and b determined by the

LQCD data of Ref. [35] as well. However, one should notice
that such a comparison is only illustrative because the NLO
mass formulas cannot describe simultaneously both the
LQCD D and Ds masses and their experimental counter-
parts, as also noticed in Ref. [35]. In fact, the χ2=d:o:f:
shown in Tables III and IVare calculated with theD andDs
mass data taken directly from LQCD and not with the fitted
masses of the NLO ChPT. For the sake of comparison, we
show also in Fig. 4 the theoretical results obtained from a fit
to all of the 20 LQCD data.Within uncertainties they tend to
overlap with those calculated with the LECs from the fit to
the 15 LQCD points.

B. Dynamically generated heavy-light mesons

Once the subtraction constant and the LECs are fixed, one
can utilize the UChPT to study whether the interactions
between HL mesons and NGBs are strong enough to
generate bound states or resonances, by searching for poles
in the complex

ffiffiffi
s

p
plane. We notice that the subtraction

constant in theHMUChPT given in Table IVis positive, and
as a result, there is no bound state generated in the ðS; IÞ ¼
ð1; 0Þ channel. On the other hand, using the covariant
UChPT, a bound state is found at

ffiffiffi
s

p ¼ 2317� 10 MeV
in the complex plane. We identify this bound state as the
D�

s0ð2317Þ. In addition, one more state is generated in the
ðS; IÞ ¼ ð0; 1=2Þ channel. All of them are tabulated in
Table V. In calculating the positions of these states, we
have used the physical masses listed in Table I. The
uncertainties in the positions of these states are estimated
by changing the LECs and the subtraction constant within
their 1σ uncertainties given in Table IV. Furthermore, we

predict the heavy-quark spin partners of the 0þ states as
well. The counterpart of the D�

s0ð2317Þ appears atffiffiffi
s

p ¼ 2457 � 17 MeV,10 which we identify as the
Ds1ð2460Þ. It is clear that the heavy-quark spin symmetry
is approximately conserved in the HQS UChPT.
One appealing feature of the renormalization scheme we

proposed in this work is that the heavy-quark flavor
symmetry is conserved up to 1=MHL, in contrast to the
naive MS subtraction scheme. As such, we can calculate
the bottom partners of the D�

s0ð2317Þ and Ds1ð2460Þ with
reasonable confidence. We tabulate in Table VI the bottom
counterparts of the charm states of Table V. It should be
noted that the absolute positions of these resonances are
subject to corrections of a few tens of MeV because of the
uncertainty related to the evolution of the UChPT from
the charm sector to the bottom sector. On the other hand,
the mass differences between the 1þ states and their 0þ
counterparts should be more stable, as has been argued in a
number of different studies (see, e.g., Ref. [22]).
In Table VII we compare the predicted 0þ and 1þ states

from several different formulations of UChPT in the bottom
sector. It is seen that the absolute positions can differ by as
much as 80 MeV, which is not surprising because the
heavy-quark flavor symmetry was implemented differently.
It has been argued that the light-quark mass evolution of

the masses of mesons and baryons can provide important
hints about their nature (see, e.g., Refs. [22,56]). In the left
panel of Fig. 5, we show how the pole positions of the
D�

s0ð2317Þ and the Ds1ð2460Þ evolve as a function of mπ .
The strange-quark mass is fixed to its physical value using

TABLE V. Pole positions
ffiffiffi
s

p ¼ M − i Γ
2
(in units of MeV) of

charm mesons dynamically generated in the HQS UChPT.

ðS; IÞ JP ¼ 0þ JP ¼ 1þ

(1, 0) 2317� 10 2457� 17
(0, 1/2) ð2105� 4Þ − ið103� 7Þ ð2248� 6Þ − ið106� 13Þ

TABLE VI. Pole positions
ffiffiffi
s

p ¼ M − i Γ
2
(in units of MeV) of

bottom mesons dynamically generated in the HQS UChPT.

ðS; IÞ JP ¼ 0þ JP ¼ 1þ

(1, 0) 5726� 28 5778� 26
(0, 1/2) ð5537�14Þ−ið118�22Þ ð5586�16Þ−ið124�25Þ

TABLE VII. Dynamically generated 0þ and 1þ bottom states in
ðS; IÞ ¼ ð1; 0Þ from different formulations of the UChPT. Masses
of the states are in units of MeV.

JP Present
work

NLO HMChPT
[22]

LO UChPT
[15]

LO χ-SU(3)
[14]

0þ 5726� 28 5696� 36 5725� 39 5643
1þ 5778� 26 5742� 36 5778� 7 5690

10The uncertainties are propagated from the uncertainties of
the LECs and the subtraction constant. In addition, we have
assigned a 10% uncertainty for relating the LECs in theD� sector
with those in the D sector by use of heavy-quark spin symmetry.
To relate the LECs betweenD and B sectors, a 20% uncertainty is
assumed, and msub is varied from mπ to mη.
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the leading-order ChPT. The light-quark mass dependences
of the DðDsÞ and D�ðD�

sÞ are given by the NLO ChPT
formulas of Eqs. (6) and (8). The right panel of Fig. 5 shows
the evolution of the D�

s0ð2317Þ and Ds1ð2460Þ pole
position as a function of the kaon mass (or equivalently
the strange-quark mass) as we fix the pion mass to its
physical value. As has been argued in Ref. [22], the feature
of being dynamically generated dictates that the depend-
ences of the masses of these states on mK are linear with a
slope close to unity, which can be clearly seen from Fig. 5.

V. SUMMARY AND CONCLUSIONS

We have studied the latest fully dynamical LQCD sim-
ulations for the scattering lengths of Nambu-Goldstone
bosons off D mesons in covariant chiral perturbation theory
and its unitary version up to next-to-leading order. It is shown
that the covariant (U)ChPT describes the LQCD data better
than its nonrelativistic (heavy-meson) counterpart. In addi-
tion, we show that the D�

s0ð2317Þ can be dynamically
generated without a priori assumption of its existence.
We have proposed a new subtraction scheme to ensure

that the loop function appearing in the Bethe-Salpeter
equation satisfies the chiral power counting rule and has
a well-defined behavior in the limit of infinite heavy-quark

mass. It is shown that this scheme has a similar 1=MHL
scaling as the HMChPT loop function but provides a better
description of the light-quark mass dependence of the
LQCD scattering lengths, in agreement with the findings
in the one-baryon sector. With such a scheme, we have
predicted the counterparts of the D�

s0ð2317Þ in the JP ¼ 1þ
sector and in the bottom sector. The experimental con-
firmation of the dynamically generated states in the bottom
sector can serve as a stringent test of our theoretical model
and the interpretation of the D�

s0ð2317Þ as a dynamically
generated state from the strong DK interaction.
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