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We present a relativistic quark model for the baryons that combines three related relativistic formalisms.
The three-body constraint formalism of Sazdjian is used to recast three relativistic two-body equations for
the three pairs of interacting quarks into a single relativistically covariant three-body equation for the bound
state energies, having a Schrodinger-like structure. The two-body equations are the two-body Dirac
equations of constraint dynamics derived by Crater and Van Alstine for combined world vector and scalar
interactions providing the necessary spin dependent and spin independent interaction terms. The minimal
quasipotential formalism of Todorov is used to provide an invariant framework for the vector and scalar
dynamics used in the two-body Dirac equations into which is inserted a local simplified version of the
Richardson potential. The spectral results are analyzed and compared to experiment using a best fit method
and several different algorithms, including a gradient approach, and a Monte Carlo method.
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I. INTRODUCTION

Recent quark model calculations done by Crater et al.
[1–3] using covariant two-body Dirac equations (TBDE) in
a relativistic constraint dynamics formalism have given a
good description of the meson masses for both light and
heavy quarks. The good quality of the fit has been
attributed to the exact two-body kinematics merged with
a QCD interaction potential based on vector and scalar
potentials that uses a minimal number of variable param-
eters. The vector potential, in turn, has a structure originally
derived from the classical electrodynamics of Wheeler and
Feynman [4]. This structure can also be obtained from
quantum electrodynamics by using a covariant three-
dimensional truncation of the Bethe-Salpeter equation [5]
based on the Todorov quasipotential approach [6], which is
then compared to the TBDE. [7] The comparison is done in
order to identify the appropriate invariant potential func-
tions that will be used in the potential model. These
nonperturbative (numerical) results hold up well when
compared to other methods for meson spectroscopy.
In this paper, we extend the Hamiltonian constraint

dynamics formalism for the two-body system to the
three-body quark problem for baryon spectroscopy [8].
In taking the two-body equations to a three-body system we
still regard the system as the naive quark model in that the
interactions are between each pair of quarks and there is no
overarching three-body interaction to be considered and no
consideration of the effects of baryon decays on their
masses, but the system now has three sets of interactions
instead of just one. Thus, all of our interactions are still
two-body interactions, but for three sets of quarks.
The Hamiltonian constraint dynamics formalism [9]

allows for a relativistic method of accounting for two-body
effects. In addition, constraint dynamics as developed by
Crater and Van Alstine [10] provides not only the usual spin
interaction dependence seen in the Dirac equation but also

additional terms needed to make the approach mathemati-
cally consistent. It is useful in both a classical and a quantum
mechanical formalism as well as correctly accounting for
fine and hyperfine structures in positronium and muonium
systems [7,11]. We review the two-body formalism with an
eye toward its adaptation to the three-body system using
Sazdjian’s approach to relativistic N-body problem [12].
In our adaptation of the two-body formalism to the

numerical solution of three quark bound states, the varia-
tional principle is used together with a new type of
Gaussian basis wave functions of total JM to solve our
eigenvalue equation. We show how this new Gaussian basis
is used in conjunction with a variational approach in
obtaining the appropriate eigenvalues with the matrix being
truncated after a reasonable limit is reached (in theory an
infinitely large variational matrix would give the exact
reflection of the states of the model). Since the effective
potentials are dependent on the center of momentum (c.m.)
total energy eigenvalue w ¼ m1 þm2 þm3 þ E, the stan-
dard approach to using the variational principle must be
modified to include a recursion algorithm with an
embedded E dependence in the matrix elements of the
effective Hamiltonian H. This E will change as we
approach convergence. The program then is designed to
iteratively solve these equations until a desired level of
convergence is reached. The matrix elements of our
Hamiltonian can be determined exactly for the kinematics
but including the interacting potentials requires, of course,
a numerical treatment. Also as in the two-body case, the
interacting potentials we used [2] depend only on three
parameters characterizing just two invariant functions,
embodying the world vector and scalar potentials appearing
in the TBDE. The numerical fitting routine uses a chi-
squared minimization Monte Carlo routine combined with
a simplified gradient approach to acquire a best fit for the
spectrum of known baryons. We have compared our
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numerical results to both experimental data and to other
theories, most notably the approach of Capstick and Isgur
[13], while also comparing the quark masses and potential
parameters we obtained in our fit with those found in the
meson spectral results of [2].

II. REVIEW OF RELATIVISTIC TWO-BODY
CONSTRAINT APPROACH

In this and in the following subsections we present a
review of the constraint formalism in preparation for its
implementation in the three-body problem.1 The relativistic
two-body bound state problem has a natural origin from
quantum field theory in the form of the Bethe-Salpeter
equation [5]. However, this equation is not usually applied
in its full four-dimensional form due to the difficulty of
treating the relative time coordinate [14]. Numerous three-
dimensional truncations of the Bethe-Salpeter equation
have been proposed for the relativistic two-body problem
[6,15]. Some of these types of approximate methods have
previously been applied with considerable success to the qq̄
meson spectrum [16–22],[1] and [23–28].
The TBDE of constraint dynamics provide a manifestly

covariant three-dimensional truncation of the Bethe-
Salpeter equation that more efficiently distills two-body
bound state and elastic scattering results. Sazdjian [29] has
shown that the Bethe-Salpeter equation can be algebraically
transformed into two independent equations. The first
yields a covariant three-dimensional eigenvalue equation
which for spinless particles takes the form

ðH10 þH20 þ 2ΦÞΨðx1; x2Þ ¼ 0; (2.1)

where Hi0 ¼ p2
i þm2

i . He finds that the quasipotential
2 Φ

is a modified geometric series in the Bethe-Salpeter kernel
K such that in lowest order in K

Φ ¼ πiwδðP · pÞK; (2.2)

where P ¼ p1 þ p2 is the total momentum, p ¼ η2p1 −
η1p2 is the relative momentum, w is the invariant total
center of momentum (c.m.) energy with P2 ¼ −w2. The ηi
must be chosen so that the relative coordinate x ¼ x1 − x2
and p are canonically conjugate, i.e. η1 þ η2 ¼ 1. The
second independent equation overcomes the difficulty of
treating the relative time in the c.m. system by setting an
invariant condition on the relative momentum p,

ðH10 −H20ÞΨðx1; x2Þ ¼ 0 ¼ 2P · pΨðx1; x2Þ: (2.3)

Note that this implies pμΨ ¼ pμ
⊥Ψ≡ ðημν þ P̂μP̂νÞpνΨ in

which P̂μ ¼ Pμ=w is a timelike unit vector ðP̂2 ¼ −1Þ in
the direction of the total momentum.
One can further combine the sum and the difference of

Eqs. (2.1) and (2.3) to obtain a set of two relativistic
equations one for each particle with each equation speci-
fying two generalized mass-shell constraints

HiΨðx1; x2Þ ¼ ðp2
i þm2

i þΦÞΨðx1; x2Þ ¼ 0; i¼ 1;2;

(2.4)

including the interaction with the other particle by way of
the quasipotential Φ. These constraint equations were
originally derived using Dirac’s Hamiltonian constraint
dynamics [9,31]. Dirac’s constraint dynamics stipulate that
these two constraints must satisfy the compatibility con-
dition, ½H1;H2�Ψ ¼ 0, that is, they must be first class.3

With no external potentials, the coordinate dependence
of the quasipotential Φ would be through x and the
compatibility condition becomes ½p2

1 − p2
2;Φ�Ψ ¼

Pμ∂Φ=∂xμ ¼ 0. In order for this to be true in general, Φ
must depend on the relative coordinate x only through its
component, x⊥; perpendicular to P,

xμ⊥ ¼ ðημν þ P̂μP̂νÞðx1 − x2Þν: (2.5)

Since the total momentum is conserved, the single com-
ponent wave functionΨin coordinate space is a product of a
plane wave eigenstate of P and an internal part ψ [32],
depending on this x⊥.4
We find a plausible structure for the two-body quasipo-

tential Φ by examining how scalar and vector interactions
are introduced in the one-body Klein-Gordon equation
ðp2 þm2Þψ ¼ ðp2 − ε2 þm2Þψ ¼ 0. This takes the form
ðp2 − ε2 þm2 þ 2mSþ S2 þ 2εA − A2Þψ ¼ 0 when one
introduces a scalar interaction and timelike vector inter-
action via m → mþ Sand ε → ε − A. In the two-body
case, separate classical [33] and quantum field theory
[34] arguments show that when one includes world
scalar and vector interactions between the two particles,
then Φ depends on two underlying but unspecified
invariant functions SðrÞ and AðrÞ through the two-body

1This section follows closely the corresponding review section
given in [1].

2An earlier description of the connection of the constraint
approach to the quasipotential approach involving Lippmann-
Schwinger type of equations is given by Todorov [30] and Crater
et al. [7] (see also [23]).

3These constraint equations were originally proposed in the
form of classical generalized mass shell first class constraints
Hi ¼ ðp2

i þm2
i þ ΦiÞ ≈ 0, and their quantizationHiΨ ¼ 0 with-

out reference to a quantum field theory. For the classicalHi to be
compatible, their Poisson bracket with one another must either
vanish strongly or depend on the constraints themselves,
fH1;H2g ≈ 0. The simplest solution of this equation is
Φ1 ¼ Φ2, a kind of relativistic third law condition, together with
their common transverse coordinate dependence Φwðx⊥Þ, just as
with its quantum version.

4We use the same symbol P for the eigenvalue so that the w
dependence in Eq. (2.6) is regarded as an eigenvalue dependence.
The wave function Ψ can be viewed as a relativistic 2-body wave
function.
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Klein-Gordon-like potential form with the same general
structure, that is

Φ ¼ 2mwSþ S2 þ 2εwA − A2: (2.6)

Those field theory based arguments point to the following
c.m. energy dependent forms

mw ¼ m1m2=w; (2.7)

and

εw ¼ ðw2 −m2
1 −m2

2Þ=2w: (2.8)

They were first introduced by Todorov [35] as the
relativistic reduced mass and effective particle energy for
the two-body body system. Similar to what happens in the
nonrelativistic two-body problem, in the relativistic case we
have the motion of this effective particle taking place as if it
were in an external field (here generated by S and A). The
two kinematical variables (2.7) and (2.8) are related to one
another by the Einstein condition

ε2w −m2
w ¼ b2ðwÞ; (2.9)

where the invariant

b2ðwÞ≡ ðw4 − 2w2ðm2
1 þm2

2Þ þ ðm2
1 −m2

2Þ2Þ=4w2;

(2.10)

is the c.m. value of the square of the relative momentum
expressed as a function of w. One also has

b2ðwÞ ¼ ε21 −m2
1 ¼ ε22 −m2

2; (2.11)

in which ε1 and ε2 are the invariant c.m. energies of the
individual particles satisfying

ε1 þ ε2 ¼ w; ε1 − ε2 ¼ ðm2
1 −m2

2Þ=w: (2.12)

In terms of these invariants, the relative momentum
appearing in Eqs. (2.2) and (2.3) is given by

pμ ¼ ðε2pμ
1 − ε1p

μ
2Þ=w; (2.13)

so that η1 þ η2 ¼ ðε1 þ ε2Þ=w ¼ 1. In [36] the forms for
these two-body and effective particle variables are given
sound justifications based solely on relativistic kinematics,
supplementing the dynamical arguments of [33] and [34].
In summary, the wave function Ψðx1; x2Þ for spinless two
body systems satisfies

P · pΨðx1; x2Þ ¼ 0;

ðp2 þ ΦÞΨðx1; x2Þ ¼ b2Ψðx1; x2Þ: (2.14)

Originally, the two-body Dirac equations of constraint
dynamics arose from a supersymmetric treatment of two
pseudoclassical constraints (with Grassmann variables in
place of gamma matrices) which were then quantized [10].
Sazdjian later derived [29] different forms of these same
equations, just as with their spinless counterparts above, as
a covariant three-dimensional truncation of the Bethe-
Salpeter equation. The forms of the equations are varied
but the one that is the most familiar is the “external
potential” form similar in structure to the ordinary Dirac
equation.5 For two particles interacting through world
scalar and vector interactions they are

S1ψ ≡ γ51ðγ1 · ðp1 − ~A1Þ þm1 þ ~S1ÞΨ ¼ 0;

S2ψ ≡ γ52ðγ2 · ðp2 − ~A2Þ þm2 þ ~S2ÞΨ ¼ 0.
(2.15)

Here Ψ is a 16 component wave function consisting of an
external plane wave part that is an eigenstate of P and an
internal part ψ ¼ ψðx⊥Þ. The vector potential ~Aμ

i is taken to
be an electromagnetic-like four-vector potential with the
time and spacelike portions both arising from a single
invariant function A.6 The tilde on these four-vector
potentials as well as on the scalar ones ~Si indicate that
these are not only position dependent but also spin
dependent by way of the gamma matrices. The operators
S1 and S2 must commute or at the very least ½S1;S2�ψ ¼ 0
since they operate on the same wave function.7

This compatibility condition gives restrictions on the spin
dependence which the vector and scalar potentials

~Aμ
i ¼ ~Aμ

i ðAðrÞ; p⊥; P̂; w; γ1; γ2Þ;
~Si ¼ ~SiðSðrÞ; AðrÞ; p⊥; P̂; w; γ1; γ2Þ (2.16)

are allowed to have8 in addition to requiring that they
depend on the invariant separation r≡ ffiffiffiffiffiffi

x2⊥
p

through the

5So-called hyperbolic forms of the two-body Dirac equations
display more directly the connection between the source of the
interactions and the matrix structure of the three point vertex
interactions of quantum field theory. See [37] and [38].

6In a perturbative context, i.e. for weak potentials, that would
mean that this aspect of ~Aμ

i is regarded as arising from a Feynman
gauge vertex coupling of a form proportional to γμ1γ2μA.7The γ5 matrices for each of the two particles are designated by
γ5i i ¼ 1, 2. The reason for putting these matrices out front of the
whole expression is that including them facilitates the proof of the
compatibility condition, see [10].

8The dependence of the scalar potentials ~Si on the invariant
AðrÞ responsible for the electromagneticlike potential is seen in
[32] and [34] to result from the way the scalar and vector fields
combine. That combination leads to a two-body Klein-Gordon-
like potential portion of Φw to be of the form given in Eq. (2.6).
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invariants AðrÞ and SðrÞ. The covariant constraint (2.3) can
also be shown to follow from Eq. (2.15). We give the
explicit connections between ~Aμ

i , ~Si and the invariants AðrÞ,
and SðrÞ in Appendix A of [39]. The Pauli reduction of
these coupled Dirac equations lead to a covariant Schrö-
dinger-like equation for the relative motion with an explicit
spin-dependent potential Φ;

ðp2⊥ þ ΦðAðrÞ; SðrÞ; p⊥; P̂; w; σ1; σ2ÞÞψþ ¼ b2ðwÞψþ;
(2.17)

with b2ðwÞ playing the role of the eigenvalue.9 This
eigenvalue equation can then be solved for the
four-component effective particle spinor wave func-
tion ψþ related to the 16 component spinor ψðx⊥Þ
(See Appendix A of [1]). In Ref. [1] a number of important
and desirable features of the set of Eq. (2.15) and the
equivalent Schrödinger-like equation (2.17) are discussed.
In [22] we presented details of the application of this

formalism to meson spectroscopy using a covariant version
of the Adler-Piran static quark potential. Note especially
that the equations used there displayed a single
ΦðAðrÞ; SðrÞ; p⊥; P̂; w; σ1; σ2; Þ in Eq. (2.17). It depends
on the quark masses through factors such as those that
appear in Eq. (2.6). However its dependence is the same for
all quark mass ratios—hence a single structure for all the
QQ̄, qQ̄, and qq̄ mesons in a single overall fit. We found
that the fit provided by the TBDE for the entire meson
spectrum (from the pion to the excited bottomonium states)
competes with the best fits to partial spectra provided by
other approaches and does so with the smallest number of
interaction functions [just AðrÞ and SðrÞ] without addi-
tional cutoff parameters necessary to make those
approaches numerically tractable. We also found that the
pion bound state displays some characteristics of a
Goldstone boson. That is, as the quark mass tends to
zero, the pion mass (unlike the ρ and the excited π)
vanishes, in contrast to almost every other relativistic
potential model.
In Appendix A of [1] we outline the steps needed to

obtain the explicit c.m. form of Eq. (2.17). That form is
[22,40,41],

fp2 þ Φðr;m1; m2; w; σ1; σ2Þgψþ
¼ fp2 þ 2mwSþ S2 þ 2εwA − A2 þ ΦD

þL · ðσ1þσ2ÞΦSO þ σ1 · r̂σ2 · r̂L · ðσ1 þ σ2ÞΦSOT

þ σ1 · σ2ΦSS þ ð3σ1 · r̂σ2 · r̂ − σ1·σ2ÞΦT

þL · ðσ1 − σ2ÞΦSOD þ iL · σ1 × σ2ΦSOXgψþ
¼ b2ψþ: (2.18)

Thus is derived a relativistic two-body Schrödinger-like
equation for world scalar and vector interactions. The
minimal 2mwSþ S2 þ 2εwA − A2 portion is the classical
interaction potential part (which also appears in the spinless
Klein-Gordon equations), the L · ðσ1�σ2Þ terms represent
magnetic dipole moment interactions with an effective
magnetic field and Thomas precession, and σ1 · r̂σ2 · r̂ σ1 ·
σ2 terms arise from dipole-dipole interactions and their
relativistic corrections. A main focus of this work will be to
derive a similar equation to Eq. (2.18) for the three-body
baryon system as a whole. The detailed forms of the
separate quasipotentials Φ are given in Appendix A of [1].
The subscripts of most of the quasipotentials are self-
explanatory 10. After the eigenvalue b2 of (2.18) is
obtained, the invariant mass of the composite two-body
system w can then be obtained by inverting Eq. (2.10). It is
given explicitly by

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þm2

2

q
: (2.19)

The structure of the linear and quadratic terms in Eq. (2.18)
as well as the Darwin and spin-orbit terms, are plausible in
light of the discussion given above Eq. (2.6) and in light of
the static limit Dirac structures that come about from the
Pauli reduction of the Dirac equation. Their appearance as
well as that of the remaining spin structures are direct
outcomes of the Pauli reductions of the simultaneous
TBDE Eq. (2.15).
This is the framework for the two-body system in a fully

relativistic formalism, so from here we go to larger systems.
Sazdjian [12] has done considerable work on the N-body
system, which will be reviewed shortly. Although he does
not deal with spin dependence with as much detail as done
here, he does provide a very useful framework for the
N-body problem in a constraint formalism.

A. Two-body Dirac equations: Explicit forms
of the potentials

Since the forms of the potentials in the three-body case
are similar to those in the two-body case, it is of use to
briefly describe the two-body interacting potentials and
how they affect the wave function. This section then
contains a review of how the operators of the tensor,
spin-spin, spin-orbit, spin-orbit difference, and spin-orbit
exchange work on a hjlsnj state coupling, where n is the

9Due to the dependence of Φw on w, this is a nonlinear
eigenvalue equation.

10The subscript on quasipotential ΦD refers to Darwin. It
consists of what are called Darwin terms, those that are the two-
body analogue of terms that accompany the spin-orbit term in the
one-body Pauli reduction of the ordinary one-body Dirac equa-
tion, and ones related by canonical transformations to Darwin
interactions [33,42], momentum dependent terms arising from
retardation effects. The subscripts on the other quasipotentials
refer respectively to SO (spin-orbit), SOD (spin-orbit difference),
SOX (spin-orbit cross terms), SS (spin-spin), T (tensor), SOT
(spin-orbit-tensor).
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radial quantum number. In the three-body case there will be
two n0s, one for each relative coordinate, but here there is
just one.
First, our quasipotential (energy-dependent effective

potential) is defined by

Φ ¼ ΦSI þ ΦD þL · ðσ1þσ2ÞΦSO

þ σ1 · r̂σ2 · r̂L · ðσ1þσ2ÞΦSOT þ σ1·σ2ΦSS

þ ð3σ1 · r̂σ2 · r̂ − σ1·σ2ÞΦT þL · ðσ1þσ2ÞΦSOD

þ iL · σ1×σ2ΦSOX;

ΦSI ¼ 2mwSþ S2 þ 2εwA − A2; (2.20)

where the potential terms ΦD, ΦSO, ΦSOT, ΦSS, ΦT , ΦSOD,
ΦSOX described earlier are all collections of two-body terms
depending on the masses, distances between the two
particles, invariant c.m. energies of the two particles, and
the invariant energy of the total two-body system system.
The explicit forms of these are therefore not important
to the current discussion of the operators and so will be left
in this form for simplicity’s sake. The spin-independent and
Darwin terms have no spin operators and so when used on a
hjlsnj state they just give

hjlsnjΦSIjjl0s0n0i ¼ δll0δss0 hnjΦSIjn0i;
hjlsnjΦDjjl0s0n0i ¼ δll0δss0 hnjΦSIjn0i: (2.21)

The spin-orbit gives

hjlsnjL · ðσ1þσ2ÞΦSOjjl0s0n0i
¼ ½jðjþ 1Þ − lðlþ 1Þ − 2�δll0δss0δs1hnjΦSOjn0i:

(2.22)

As we will show later, while in the two-body case this l, j,
and s are for the entire system, in the three-body problem it
is just for each pair of particles and so this spin-orbit
function requires additional (and extensive) manipulation
in order to reach a completely coupled jJLSi state for each
set of particles. The emphasis here is important as this is the
main difficulty in going from the two-body formalism to a
three-body one, in this work as well as others.
The tensor and spin-orbit tensor terms allow for coupling

of different l states as well as identical l states, as shown in
[7], while the spin-orbit difference and spin-orbit exchange
only allow couplings between different spin states. The
exact derivations of these potential terms are done in [1–3].
Since one of the goals of this work is to compare essentially
the same methods that worked well for the meson spectrum
to the baryon spectrum, we use these same potential terms
in mostly the same form as they appear in the pure two-
body case. The two-body operators are therefore defined
and described in preparation for their adaptation to the
three-body potential. Now we will give definitions for the

scalar and vector potentials used in our model and from that
define the two-body potentials ΦD, ΦSO, ΦSOT, ΦSS, ΦT ,
ΦSOD, and ΦSOX.

B. Explicit forms of the QCD model potentials

The authors of [22] have used a sophisticated form of the
static quark potential developed by Adler and Piran [43],
one that has ties at all length scales to field theoretic data
and from this obtained good agreement with the quarko-
nium spectrum from experimental data. However, it is
much more common in nonrelativistic treatments to use the
static quark Cornell potential [44] for potential model
studies,

VðrÞ ¼ − αc
r
þ br; (2.23)

as in [45,46]. Although not displaying asymptotic freedom,
it does give the dominant Coulomb-like behavior as well as
the linear quark confinement. Early on a model was
proposed by Richardson for a static potential which both
depends only a single scale size Λ and interpolates in a
simple way between asymptotic freedom and linear con-
finement [47]. Richardson’s model for the static interquark
potential in momentum space is

~VðqÞ ¼ − 16π

27

1

q2 lnð1þ q2=Λ2Þ ; (2.24)

arising from the assumption that

~VðqÞ ¼ − 4αsðq2Þ
3q2

; (2.25)

(including the color factor −4=3). It is important to note
that this is for a qq̄ color singlet state for the meson
spectrum. In order to properly account for asymptotic
freedom, we must have q2=Λ2 ≫ 1; which gives

αsðq2Þ → 8π

27

1

lnðq2=Λ2Þ : (2.26)

On the other hand, the property of linear confinement
requires that for Λr ≫ 1, VðrÞ ∝ r or equivalently that for
q2=Λ2 ≪ 1 one must impose αsðq2Þ ∼ q−2. The interpo-
lation of Eq. (2.24) is not tied at all in the intermediate
region and only roughly tied in the large r region to any
field theoretic data. Nevertheless it provides a convenient
one-parameter form for the static quark potential. In
coordinate space it has the form

VðrÞ ¼ 8πΛ2r
27

− 8πfðΛrÞ
27r

; (2.27)
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where fðΛrÞ is given by a complicated integral transform11

that displays the asymptotic freedom behavior for r → 0 of

fðΛrÞ → − 1

ln Λr
; (2.28)

while for r → ∞,

fðΛrÞ → 1. (2.29)

A simpler model for the potential function fðrÞ, which
we use in this paper and one which displays the same large
and small r behavior is12

VðrÞ ¼ 8πΛ2r
27

− 16π

27r lnðe2 þ 1=ðΛrÞ2Þ : (2.30)

It amounts to replacing Richardson’s fðΛrÞ by
2=lnðe2þ1=ðΛrÞ2Þ, having the same limits ðe¼expð1ÞÞ.
The slightly modified forms of the scalar and vector
invariant potentials, including the electromagnetic part

S¼ 8πΛ2r
27

; A¼− 16π

27r log
�
Ke2þ B

ðΛrÞ2
�þ e1e2

4πr

(2.31)

are used to construct all of the individual Φ terms. Their
explicit forms, derived from the above A and S are given in
Appendix A of [39]. In the case of the baryons these are
slightly changed due to a different color factor [48]
(−4αs=3 becomes −2αs=3 due to this being quark-quark
and not quark-antiquark interactions as with mesons) to

S ¼ 4πΛ2r
27

; A ¼ − 8π

27r log
�
Ke2 þ B

ðΛrÞ2
�þ e1e2

4πr

(2.32)

and also of course there is no longer just one interaction but
three, so r becomes r12, r13, or r23, depending on which
potential we are currently discussing. The scalar confining
interaction, unlike the vector one, is not regarded as coming
from fundamental vertices or potentials involving current
quarks. If it were treated as fundamental then the scalar
interaction would be repulsive within baryons if it is
attractive within mesons. Instead we treat the confining
interaction as arising from effective potentials between
constituent quarks and use this freedom to allow us, for

phenomenological reasons, to choose the sign of the qq
scalar potential to be the same sign as the qq̄ scalar
potential13.
The technique that Crater et al. used in the two body

problem [7] for finding the eigenvalues is called the inverse
power method and its application depends on the variables
being separable. Unlike the two-body problem, the varia-
bles are not separable in the three-body problem. This
requires the use of the variational principle, which in turn
requires a basis which we will describe in a later section.
We turn now to a discussion of the three-body problem.

III. THE THREE-BODY PROBLEM

Now that we have completed our review of constraint
dynamics and associated potentials for the relativistic two-
body problem, we move on to the relativistic three-body
one. The approach to the N-body problem that we use are
those developed H. Sazdjian [12]. They are not directly
solvable for more than N ¼ 2, except for confined systems
in which the problems of cluster decomposition do not need
to be addressed. In this paper we adapt our two-body
constraint formalism to his formalism for N ¼ 3 and
from there we obtain to a Schrödinger-like form for the
three-body system, as we did in the two-body problem.

A. Sazdjian’s N body formalism and the
three-body problem

This section will focus on reviewing Sazdjian’s work on
the two-body and N-body systems [12]. We describe his
derivations for the N-body problem and distill them down
to a three-body formalism that we can then use for bound
states of quarks in baryons. Sazdjian begins by applying the
covariant formalism with N constraints for the N-particle
case of the form

Haψ ¼ ðp2
a þm2

a þ ΦaÞψ ¼ 0. (3.1)

The compatibility condition is then

½Ha;Hb�Ψ ¼ 0 ða; b ¼ 1;…; NÞ; (3.2)

which are NðN − 1Þ=2 in number and give conditions on
the interaction potentials (Φa). However, these equations,
unlike the two-body ones (where Φ is a function of x⊥)
have no closed form solutions. Furthermore, the two body

11In addition to the spin independent nonrelativistic
model presented in [47] see also a relativistic extension of it
given in [49].

12An earlier coordinate space form that displays asymptotic
freedom as well as linear quark confinement proposed in [50] is
V ¼ ð8π=27Þð1 − λrÞ2=ðr ln λrÞ:

13The problem with vector confining interactions is that (i) they
will generate long distance spin-spin interactions and (ii) in the
context of Dirac-like equations produce anticonfining (−A2)
terms. See [48] for a more detailed discussion of this problem.
See also [51] where it is shown that the Dirac structure of
confinement for mesons could be of a timelike-vector nature in
the heavy quark limit of QCD. This would alleviate the problem
of (i). Further, they find that nonperturbative mixing between
ordinary and hybridQQ̄ states seems to allow spin orbit effects as
if arising from confining scalar interactions.
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potentials would become nonlocal operators, due to the
two-body momentum operators Pab ¼ pa þ pb no longer
representing the total momentum of the system; since they
would not be constants of the motion they would not
possess corresponding eigenvalues. On the other hand,
the total momentum in the two-body case is a number
(an eigenvalue). Sazdjian abandons this approach and
instead takes a simpler one that works only for confined
systems where questions of correct cluster decompositions
do not have to be addressed.
Sazdjian begins by working with the free N-body system

where one can be guided by the simplifying features of the
two-body system. Since the system must reduce to that of
the free case in the absence of interactions, he found it
useful to begin with the N-body system without any
interacting potentials. A review of the details of his
approach is given in Appendix B of [39], but the end
result is a single N-body wave equation for the system as a
whole and set of N equations for the individual invariant
c.m. particle energies εa, This latter equation is

Nεa −
X
b

ðm2
a −m2

bÞ
ðεa þ εbÞ

¼ w; ða ¼ 1;…; NÞ; (3.3)

where w is the total invariant c.m. energy

w ¼
X
b

εb: (3.4)

These equations cannot be solved exactly for the εb simply
except in the two-body case, which reduce down to
Eq. (2.12)

ε1 − ε2 ¼
m2

1 −m2
2

w
; (3.5)

as expected. He shows it is possible, however, to find an
approximate solution for the εb by using successive
iterations in the general case given by

εa¼
w
N
þ 1

N

XN
b≠1

ðma−mbÞ
½1þðw−MÞ=2mamb

P
N
c¼1 1=2mc�

;

a¼1;…N: (3.6)

The full N-body equation which utilizes these c.m. energy
eigenvalues is

XN
a¼1

�
−ε2a þ N

p2
a⊥=ð2εaÞP
N
b¼1 1=2εb

þm2
a

�
ψ ¼ 0. (3.7)

This equation (3.7) determines the total c.m. energy w in
terms of the masses and the transverse momenta. For

N ¼ 2, this becomes the free form of the two-body system
earlier given in Eq. (2.14)

ðp2⊥ − b2Þψ ¼ 0.b2 ¼ ε21 −m2
1 ¼ ε22 −m2

2 (3.8)

Finally, he also gives the system of N Klein-Gordon
equations

�
−ε2a þ

�XN
b¼1

p
2

b⊥
ð2εbÞ

�
=
�X

c¼1

1

2εc

�
þm2

a

	
Ψ ¼ 0

ða ¼ 1;…; NÞ: (3.9)

Sazdjian finds that in the interacting case, the structure of
these N nonindependent wave equations as well as
Eq. (3.7) are kinematic in nature and should not be
modified by the interactions. For example, particle a
“feels” an interaction potential Φa that enters additively
into its kinetic energy term by the relation

p2⊥a → p2⊥a þ Φa: (3.10)

Equation (3.7) then becomes

X
a

�
−ε2a þ N

ðp2
a⊥ þ ΦaÞ=ð2εaÞP

b1=2εb
þm2

a

�
ψ ¼ 0; (3.11)

which in the two-body case is

2

�
p2
1⊥ þ Φ1

w
ε2

�
þ 2

�
p2
2⊥ þ Φ2

w
ε1

�
ψ

¼ ðε21 −m2
1 þ ε22 −m2

2Þψ : (3.12)

Since p2
1⊥ ¼ p2

2⊥ and Φ1 ¼ Φ2 this reduces to
Eq. (2.14). In the general N-body case, the individual
wave equations (3.9) become

�
− ε2a þ

�XN
b¼1

ðp2
b⊥ þ ΦbÞ
ð2εbÞ

�
=

�X
c

1

2εc

�
þm2

a

	
Ψ ¼ 0

ða ¼ 1;…; NÞ: (3.13)

A sufficient condition for compatibility of these wave
equations is to take

Φa ¼
XN
b≠a

Φabðxab⊥Þ;

xμab⊥ ¼ ðxμa − xμbÞ − PμP̂ · ðxμa − xμbÞ; (3.14)
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where again, P is the total momentum14

P ¼
XN
a¼1

pa: (3.15)

We choose the Φab in this equation [Eq. (3.14)] to have
the same functional dependence on S and A as in Eq. (2.20)
our two-body Dirac approach. Sazdjian does not deal
directly with the explicit form of the potential. Our choice
in this work is to use the potential from the TBDE in the
Sazdjian three-body equations. In this paper we do not
include three body forces.

1. Our adaptation of Sazdjian’s three-body generalization

In order to apply the work done by Sazdjian to our
problem, we have to specialize his N-body equations to the
three-body system and derive the appropriate effective
Hamiltonian, eventually ending up with an equation that
looks very much like a nonrelativistic three body
Schrödinger equation, reducing to it in the nonrelativistic
limit. We obtain the following approximation for the three-
body eigenvalue equation, which comes from specializing
the expanded three-body version of Eq. (3.11) as follows:

0 ¼
�
ε21 −m2

1 − 3
p2
1⊥ þ Φ1

ε1ð1=ε1 þ 1=ε2 þ 1=ε3Þ
þ ε22 −m2

2

− 3
p2
2⊥ þ Φ2

ε2ð1=ε1 þ 1=ε2 þ 1=ε3Þ
þ ε23 −m2

3

− 3
p2
3⊥ þ Φ3

ε3ð1=ε1 þ 1=ε2 þ 1=ε3Þ
�
ψðx12⊥; x23⊥; x31⊥Þ;

(3.16)

in which the epsilons, representing the c.m. energy of each
quark, are given to a good approximation by Eq. (3.6). The
potentials Φi are linear combinations of the two-body
interacting potentials

Φ1 ¼ Φ12ðx12⊥; ε1; ε2Þ þ Φ23ðx23⊥; ε2; ε3Þ;
Φ2 ¼ Φ23ðx23⊥; ε2; ε3Þ þ Φ31ðx31⊥; ε3; ε1Þ;
Φ3 ¼ Φ31ðx31⊥; ε3; ε1Þ þ Φ12ðx12⊥; ε1; ε2Þ: (3.17)

This Eq. (3.16) is essentially the three-body version of the
two-body equation:

H ¼ ðp2
1 þm2

1 þ ΦÞ
2ε1

þ ðp2
2 þm2

2 þ ΦÞ
2ε2

; (3.18)

as long as one restricts oneself to confining interactions.
In the above Eq. (3.16)

pi⊥ ¼ pi þ pi · P̂ P̂;

xij⊥ ¼ xij þ xij · P̂ P̂;

P̂ ¼ Pffiffiffiffiffiffiffiffiffi−P2
p ;

P ¼ p1 þ p2 þ p3: (3.19)

We define

E ¼ w −M≡ ε1 þ ε2 þ ε3 −m1 −m2 −m3; (3.20)

in order to bring (3.16) into a more usable and familiar
(Schrödinger-like) form. This form is given by

Hψ ≡ 1

F

�
p2
1⊥ þ Φ12 þ Φ13

2ε1ðE;m1; m2; m3Þ
þ p2

2⊥ þ Φ23 þ Φ12

2ε2ðE;m1; m2; m3Þ

þ p2
3⊥ þ Φ31 þ Φ23

2ε3ðE;m1; m2; m3Þ
�
ψ

¼ Eψ ; (3.21)

where the function F ¼ Fðw;m1; m2; m3Þ; an invariant
function of the total energy of the system and the masses
of the particles [52], is the result of an algebraic manipu-
lation (details and explicit form given in Appendix C of
[39]). The functional forms of the εi are given in Eq. (3.6).
The effects of spin are included by choosing for the Φij
given in Eq. (2.20). Equation (3.21) serves as our basic
three-body bound state equation for quarks in the baryon.
Even though the structure of the equation is nonrelativistic
it is Lorentz invariant as it is composed of invariant
portions. They are of two sorts, the square of spacelike
and timelike vectors represented, respectively, by p2

i⊥ and
x2ij⊥ one the one hand, and P2 ¼ −w2 on the other. In the
c.m. frame the former become the squares p2

i and x2
ij of

three vectors. In the nonrelativistic limit when jEj ≪ mi,
then the invariant F → 1, εi → mi and the operator
H in Eq. (3.21) becomes an ordinary nonrelativistic
Hamiltonian.
So now, we have gone from Sazdjian’s N-body formal-

ism to a condensed three-body one that is easy to work with
in the constraint dynamics approach, as the Hamiltonian is
now in a familiar form. This equation has the distinct
advantage that it is like (for the purposes of solving it
anyway) a nonrelativistic Schrödinger equation. It is, of
course, still relativistic, but it is now in a form that is much
more easily recognizable and usable than Eq. (3.13). It is
important to note the recursive nature of this equation as

14Note that this dependence of the potential on the part of the
potential that depends on component of the relative coordinates
perpendicular to the momentum of the total system, is allowed as
long as the issue of cluster decomposition need not be addressed.
In that event, where one could separate out a part of the system
from the remaining part, it is not meaningful to require the
potentials to depend on the total momemtum of the total system
instead of that of its pairs of subconstituents.
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this becomes highly relevant in the numerical studies. The
Φ’s are dependent on the ε0s and w and so we must begin
with an initial guess and solve the equation iteratively until
an acceptable level of convergence of w is met.

IV. THE RELATIVISTIC THREE-BODY
PROBLEM FOR BARYONS

It should be noted that models such as our two body
and its three-body relativistic generalizations are often
referred to as “naive quark models” in that they do not
account for the swarm of gluons and sea quark-antiquark
pair interactions directly. Rather, the model has all of
the interacting forces existing only between each
quark-quark pair.
The process of going from a two-body system to a three-

body one is not as straightforward as one might expect.
Since the interacting potentials are limited to each quark-
quark pair, there are now three times as many terms.
Additionally, there are three sets of coordinates (r1 − r2,
r2 − r3, r1 − r3) instead of just one distance between the
quarks as in the two-body case. This is best treated with a
relative coordinate substitution that reduces the number of
relative coordinates from three to two. The coordinate
transform used in this work is similar to and uses the same
notation as Capstick and Isgur’s ([13]) work, but is not an
identical transformation due to treating the more general
case of all three quarks as possibly having different masses,
in particular not choosing the u and d quarks to be identical
in mass. It also uses invariant c.m. energies εa in place of
masses.
The sections that follow describe the methods used in

going from a two-body system to a three-body one, mostly
dealing with the potentials and coordinate transforms. We
also describe our Gaussian basis functions and the reason-
ing behind them. Referring to Eq. (2.20), the ΦSI and
Darwin (ΦD) terms now expand simply from one term to
three (to account for all three two-body interactions) and
their matrix elements are no more complicated in principle
than what occurs in the two body problem. However,
matrix elements for the spin-spin (ΦSS), spin-orbit
(ΦSO, ΦSOT, ΦSOX), and tensor (ΦT) terms require manip-
ulations related to total J, total L, and total S and are
considerably more complex than what appears in the that
the two-body system.

A. Spin-flavor-space states

Here we list all of the spin-flavor states for all the
baryons in our fit. They are composed of products of spin
wave functions, denoted χ, and flavor wave functions,
denoted as φ [48]. The flavor wave functions are not listed
for charmed or bottom baryons as those are the same wave
functions with a b or c quark in place of a u, d, or s,
depending on the baryon. The spin wave functions are,
explicitly

χs
�
Sz ¼

3

2

�
¼ ↑↑↑;

χ0
�
Sz ¼

1

2

�
¼ 1ffiffiffi

2
p ð↑↓↑ − ↓↑↑Þ;

χ00
�
Sz ¼

1

2

�
¼ 1ffiffiffi

6
p ð2↑↑↓ − ↑↓↑ − ↓↑↑Þ: (4.1)

There are four different flavor wave functions, denoted as
φ0, φ00, φs, φa, corresponding here to the ground state octet
and decimet baryons and their extensions to include
charm and bottom quarks (see Table I). Note that φs is a
symmetric linear combination of the listed quarks (e.g.
uud ¼ 1ffiffi

3
p ½uudþ uduþ duu�Þ and the singlet state

φa ¼ 1ffiffiffi
6

p ðudsþ dsuþ sud − dus − usd − sduÞ (4.2)

φ and φ0 combinations are chosen so that for the overall
state [not including the antisymmetric color state) is totally
symmetric. There are eleven possible combinations of these
spin and flavor states for (most of) the known baryons with
FSS standing for flavor, spin, and space and N referring to
the SU(3) representation (see Table II). The wave function
ψ0 is a total L¼ lρ ¼ lλ¼ 0 wave function and ψ 0 and ψ 00
are total L ¼ 1 and lρ ¼ 1 or lλ ¼ 1 wave functions,
respectively (L ¼ 1 states have parity of −1, so lρ and
lλ cannot both be 1). In addition, φ0, φ00, φs, and φa are all
purely flavor wave functions and χ0, χ00, χs are all purely
spin wave functions, having total S ¼ 1=2, 1=2, and 3=2,
respectively. These merely contain all possible combina-
tions of flavor or spin so that the product of the two gives all
possible spin-flavor couplings so that, (not counting color)
the total wave function is symmetric. All of these wave
functions are orthogonal to the others in the set (that is, χ0 is
orthogonal to χ00 and χs, etc.).
These wave functions then define a grouping of baryons

and the individual baryons themselves are defined by the
flavor state from there, as given below in Table III. Before
discussing the orbital and radial parts of the wave function
we introduce the coordinate system including relative
coordinates for our three-body problem.

B. Coordinate system transforms

This section provides a description of how the coordinate
system is set up for the relativistic three-body problem.
One of the simplest and most common ways to begin
handling a three-body system is to redefine the coordinate
system so that there are only two relative coordinates
instead of three. In the following section we describe the
way the coordinate system is defined for the three-body
system and then reduced to two relative coordinates, plus a
“center of mass.” We then address how those are further
simplified with additional coordinate transforms in order to
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analytically solve as much of the problem as possible
before going to numerical methods.
Let us return to Eq. (3.21). Our goal is to create a

coordinate system in which the kinetic terms can be
evaluated analytically and the variational principle will
be used to solve for the energy eigenvalues. The general
form of each Φij is

Φij ¼ ΦSIij þ ΦDij þL · ðσiþσjÞΦSOij

þ σi · r̂ijσj · r̂ijL · ðσ1þσ2ÞΦSOTij

þ σi·σjΦSSij þ ð3σi · r̂ijσj · r̂ij−σi·σjÞΦTij

þL · ðσi−σjÞΦSODij; (4.3)

and the various Φ terms are all functions of Sij, Aij

Sij ¼
4πΛ2rij

27
;

Aij ¼ − 8π

27rij ln

�
Ke2 þ B

ðΛrijÞ2

�þ e1e2
4πrij

; (4.4)

and their derivatives (explicit forms given in Appendix A of
[39]). Note here how they still account for the asymptotic
freedom and linear confinement mentioned earlier. The
scalar term goes to infinity as r goes to an infinite value,

providing confinement, while the logarithm in the vector
term becomes large at short distance, giving asymptotic
freedom (this causes the vector term to behave
like ∼α=r ln r).
We now define a coordinate system such that in place of

the three coordinates rij we have two relative coordinates
that can be written in terms of the original rij distances
between each quark pair. The notation used is the same as
from [13], with the actual transformation having individual
particle masses mi replaced by their corresponding c.m.
energies εi given in Eq. (3.6). A total center of energy
system, ε1r1 þ ε2r2 þ ε3r3 ¼ wR ¼ 0, has been used to
eliminate one of the coordinates, which is why r1 does not
appear in the equations below for ρ and λ.

ρ ¼ r2 − r3;

λ ¼ wε2
ðε2 þ ε3Þε1

r2 þ
wε3

ðε2 þ ε3Þε1
r3;

r1 − r2 ¼ − ε3
ε2 þ ε3

ρ − λ;

r1 − r3 ¼ − ε2
ε2 þ ε3

ρþ λ;

r2 − r3 ¼ ρ;

ερ ¼
ε1ðε2 þ ε3Þ

w
; ελ ¼

ε2ε3
ε2 þ ε3

: (4.5)

TABLE I. Baryon flavor wave functions.

φs φ0 φ00

p 1ffiffi
2

p ðudu − duuÞ 1ffiffi
6

p ð2uud − duu − uduÞ
n 1ffiffi

2
p ðudd − dudÞ 1ffiffi

6
p ðdud − udd − 2dduÞ

Λ 1

2
ffiffi
3

p ðusdþ sdu − sud − dsu − 2dusþ 2udsÞ 1
2
ðsudþ usd − sdu − dsuÞ

Δþþ uuu
Δþ uud
Δ0 udd
Δ− ddd
Σþ uus 1ffiffi

2
p ðsuu − usuÞ 1ffiffi

6
p ðsuu − usu − 2uusÞ

Σ0 uds 1
2
ðsudþ sdu − usd − dsuÞ 1

2
ffiffi
3

p ðusdþ sduþ sudþ dsu − 2dus − 2udsÞ
Σ− dds 1ffiffi

2
p ðsdd − dsdÞ 1ffiffi

6
p ðsdd − dsd − 2ddsÞ

Ξ0 uss 1ffiffi
2

p ðsus − ussÞ 1ffiffi
6

p ð2ssu − sus − ussÞ
Ξ− dss 1ffiffi

2
p ðsds − dssÞ 1ffiffi

6
p ð2ssd − sds − ddsÞ

Ω− sss
Σc uuc 1ffiffi

2
p ðcuu − ucuÞ 1ffiffi

6
p ðcuu − ucu − 2uucÞ

Σb uub 1ffiffi
2

p ðbuu − ubuÞ 1ffiffi
6

p ðbuu − ubu − 2uubÞ
Λc

1

2
ffiffi
3

p ðucd þ cdu − cud − dcu − 2ducþ 2udcÞ 1
2
ðcud þ ucd − cdu − dcuÞ

Λb
1

2
ffiffi
3

p ðubdþ bdu − bud − dbu − 2dubþ 2udbÞ 1
2
ðbudþ ubd − bdu − dbuÞ

Ξc usc 1ffiffi
2

p ðsuc − uscÞ 1ffiffi
6

p ð2scu − suc − uscÞ
Ξb usb 1ffiffi

2
p ðsub − usbÞ 1ffiffi

6
p ð2sbu − sub − usbÞ

Ωc ssb 1ffiffi
2

p ðssc − scsÞ 1ffiffi
6

p ðcss − scs − 2sscÞ
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Again, w is the total baryon energy eigenvalue and the
epsilons are the individual c.m. energies of each quark,
such that

w ¼ ε1 þ ε2 þ ε3; (4.6)

and the ερ, and ελ can be regarded as reduced energy
terms (similar to reduced mass, but using c.m. energies
instead of masses). The corresponding conjugate momenta
are given by

pρ ¼
ε3p2 − ε2p3

ε2 þ ε3
; pλ ¼

ε1
w
ðp2 þ p3Þ: (4.7)

In this new system of relative coordinates, the original
Hamiltonian of Eq. (3.21) now becomes

H ¼ 1

F

�
p2
ρ

2ερðE;m1; m2; m3Þ
þ p2

λ

2ελðE;m1; m2; m3Þ

þ Φ12 þ Φ13

2ε1ðE;m1; m2; m3Þ
þ Φ23 þ Φ12

2ε2ðE;m1; m2; m3Þ

þ Φ31 þ Φ23

2ε3ðE;m1; m2; m3Þ
�
: (4.8)

C. Variational principle and the Gaussian-like
basis functions

Here we will briefly detail how our wave functions are
used to construct the basis for use with the variational
theorem. In order to expand Eq. (3.21) into a general matrix
eigenvalue equation, we define

jΨi ¼
X
n

cnjΨni;

hΨjHjΨi ¼
X
n;m

cnc�mhΨmjHjΨni ¼
X
n;m

cnc�mHmn;

hΨjΨi ¼
X
n;m

cnc�mhΨmjΨni≡
X
n;m

cnc�mBmn: (4.9)

Since the basis we will choose for the baryons is not
orthogonal, B is not the usual Kronecker delta. Using the
method of Lagrange multipliers we arrive at the eigenvalue
equation in matrix form (where H and B are matrices, c is a
vector, and E our scalar eigenvalue)

Hc ¼ EBc: (4.10)

As for the radial wave functions themselves, we use a
Gaussian-like basis detailed in the appendix and given by

ulρðρÞ
ρ

ulλðλÞ
λ

;

ulρðρÞ
ρ

¼ ρlρ
X2N−1

n¼1

en

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3

ffiffiffiffiffi
f3n
π3

rs
exp

�
− fna2ρ2

2

�
;

ulglðλÞ
λ

¼ ρlλ
X2N−1

n¼1

en

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3

ffiffiffiffiffi
f3n
π3

rs
exp

�
− fna2λ2

2

�
;

fn ¼
1

n
; 1 ≤ n ≤ N:

fn ¼ nþ 1 − N; N þ 1 ≤ n ≤ 2N − 1. (4.11)

These display an advantage over the usual Gaussian basis
in that for a given choice of the inverse length scale factor a
they span both large and small distances, important when
relativistic potentials are included, having broadly different
length scales. Allowing nρ and nλ to stand for fn the total
angular and radial portions for the combined typical wave
function are given by

ψnρnλlρlλLML
¼
X
mρmλ

hlρlλmρmλjLMLi

×N ρlρλlλe−nρα2ρρ2=2−nλα2λλ2=2Ymρ

lρ
Ymλ
lλ
; (4.12)

whereN is a normalization constant. The general state jΨi
and the sum given in Eq. (4.9) [as well as (4.14) below]
would include the above wave function attached to the
appropriate flavor, color, and spin portions with the index
in the summation and coefficients given in that equation
including the summations and en coefficients given
in Eq. (4.11).
In the two-body problem with tensor coupling as appears

in Φij above, the states l ¼ j − 1 and l ¼ jþ 1 are mixed,
so we need a mixed wave function

jΨi ¼
X
n

cþn jΨnþi þ
X
n

c−n jΨn−i;

− → l ¼ j − 1;

þ → l ¼ jþ 1. (4.13)

Using this Ψ in Eq. (4.9) gives

hΨjHjΨi ¼
X
n;m

ðc�þm cþnHþþ
mn þ c�−m cþnH−þ

mn

þ c�þm c−nHþ−
mn þ c�−m c−nH−−

mn Þ;
hΨjΨi≡X

n;m

ðc�þm cþn Bþþ
mn þ c�−m c−n B−−

mn Þ (4.14)

in which
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Bþþ
mn ¼ hΨmþjΨnþi; B−−

mn ¼ hΨm−jΨn−i;
Hþþ

mn ¼ hΨmþjHjΨnþi; H−−
mn ¼ hΨm−jHjΨn−i;

Hþ−
mn ¼ hΨmþjHjΨn−i; H−þ

mn ¼ hΨm−jHjΨnþi;
(4.15)

and similar to before, this leads to the eigenvalue equation
with the matrix structure�

Hþþ Hþ−
H−þ H−−

��
cþ

c−
�

¼ E

�
Bþþ 0

0 B−−
��

cþ

c−
�
:

(4.16)

As outlined above, we use the variational principle

hΨjHjΨi ¼ EhΨjΨi; (4.17)

to find the eigenvalues of our Hamiltonian, with the wave
function of total J, L and S as

jJLðlρlλÞSðS1S2S3ÞMnρnλi≡ jΨni: (4.18)

where total L is composed of the angular momenta
associated with the ρ and λ coordinates and total S is
composed of the individual spins of each of the three
quarks, with S1, S2, and S3 corresponding to the spins of
quarks 1, 2, and 3, respectively. Therefore a typical matrix
element of the Hamiltonian would be

hΨnjHjΨmi ¼ hJLðlρlλÞSðS1S2S3Þ
×MnρnλjHjJL0ðl0ρl0λÞS0ðS01S02S03ÞMn0ρn0λi:

(4.19)

One major advantage of this particular choice of coor-
dinates is that the kinetic terms can be analytically
evaluated. The matrix elements for the kinetic term

hψnρnλ jTjψn0ρn0λ
i ¼ hψnρnλ j

1

F

�
p2
ρ

2ερðE;m1; m2; m3Þ

þ p2
λ

2ελðE;m1; m2; m3Þ
�
jψn0ρn0λ

i (4.20)

are functions of lρ, lλ, nρ, nλ and the Gaussian parameters
αρ and αλ(see Appendix E of [39]).
The matrix elements for the potentials, however, must be

evaluated numerically. For simplicity, here we just show the
matrix elements for the spin-independent components of
the potential (this leaves out the Clebsch-Gordon coeffi-
cients and spherical harmonics since they norm to 1). With
the current substitution, the r23 term is relatively simple
since r23 ¼ ρ. The matrix elements for the spin-indepen-
dent Φ23ðr23Þ quasipotentials (ΦSI23ðr23ÞÞ and ΦD23ðr23Þ)
reduce down to a single radial integral

hψnρnλ jΦ23ðρÞjψn0ρn0λ
i ¼

Z
Φ23ðρÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnρα2ρÞð2lρþ3Þ=2ðnλα2λÞð2lλþ3Þ=2

Γ½ð2lρ þ 3Þ=2�Γ½ð2lλ þ 3Þ=2�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0ρα2ρÞð2l0ρþ3Þ=2ðn0λα2λÞð2l

0
λþ3Þ=2

Γ½ð2l0ρ þ 3Þ=2�Γ½ð2l0λ þ 3Þ=2�

s

×
Γ½ðlλ þ l0λ þ 3Þ=2�

2½ðnλ þ n0λÞα2λ �ðlλþl0λþ3Þ=2 × ρðlρþl0ρþ2Þe−ðnρþn0ρÞα2ρρ2=2dρ:

Thus we are left with a function of one variable that can easily be numerically integrated regardless of what Φ23ðρÞ happens
to be. However, this is not the case for the other two terms.
The matrix elements of the r12 and r13 spin-independent interactions are, respectively

hψnρnλ jΦ12ðr12Þjψn0ρn0λ
i ¼

Z
Φ12ðρ; λÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnρα2ρÞð2lρþ3Þ=2ðnλα2λÞð2lλþ3Þ=2

Γ½ð2lρ þ 3Þ=2�Γ½ð2lλ þ 3Þ=2�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0ρα2ρÞð2l0ρþ3Þ=2ðn0λα2λÞð2l

0
λþ3Þ=2

Γ½ð2l0ρ þ 3Þ=2�Γ½ð2l0λ þ 3Þ=2�

s

× ρðlρþl0ρÞλðlλþl0λÞe−ðnρþn0ρÞα2ρρ2=2−ðnλþn0λÞα2λλ2=2d3ρd3λ; (4.21)

with a similar expression for hψnρnλ jΦ13ðr13Þjψn0ρn0λ
i

and so as the potentials are now in terms of two
variables, it is much more difficult and time-consuming
to numerically evaluate this integral. We therefore
wish to make another variable change in the r12 and r13
systems in order to rewrite them in terms of a single
variable as well.

What now follows is a brief description of the variable
change simplification using the simplest nontrivial case of
l ¼ 1; more explicit and general details can be found in
Appendix E of [39]. The variable change used is based on
properties of the spherical harmonics and how they relate to
spherical tensors and similarly for the other spherical har-
monics. We specialize our discussion to l ¼ 1 and use
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Y0
1r ¼

1

2

ffiffiffi
3

π

r
z; Y�1

1 r ¼ ∓ 1

2

ffiffiffiffiffiffi
3

2π

r
ðx:� iyÞ: (4.22)

Therefore, since part of our wave function is a spherical
harmonic (which is a trigonometric function) and a coor-
dinate, thewave function can be rewritten in spherical tensor
form as

Ψn ¼
4

3
ffiffiffi
π

p n5=4ρ α5=2ρ n5=4λ α5=2λ ρλe−nρα2ρρ2=2−nλα2λλ2=2

×
X
mρmλ

h11mρmλj00iYmρ

1 Ymλ
1

¼ 4

3
ffiffiffi
π

p n5=4ρ α5=2ρ n5=4λ α5=2λ e−nρα2ρρ2=2−nλα2λλ2=2

×
X
mρmλ

h11mρmλj00iρmρ
λmλ

; (4.23)

where

ρmρ
¼ ρY

mρ

1 ðρ̂Þλmλ
¼ λYmλ

1 ðλ̂Þ: (4.24)

Additional manipulations are still needed in order to
work out the expectation values explicitly. For the r12
integration, a new set of variables is defined as

ρ0 ¼ r12 ¼ r1 − r2;

λ0 ¼ wε1
ε3ðε1 þ ε2Þ

r1 þ
wε2

ε3ðε1 þ ε2Þ
r2;

(4.25)

and then are rewritten in terms of new primed variables
and as tensors, using the same tensor substitution done
above

ρ¼ ε1
ε1 þ ε2

ρ0 þ λ0; ρmρ
¼ ε1

ε1 þ ε2
ρ0mρ

þ λ0mρ
; (4.26)

λ ¼ wε2
ðε2 þ ε3Þðε1 þ ε2Þ

ρ0 − ε3
ε2 þ ε3

λ0;

λmλ
¼ wε2

ðε2 þ ε3Þðε1 þ ε2Þ
ρ0mλ

− ε3
ε2 þ ε3

λ0mλ
: (4.27)

Note that this is not a new coordinate system but rather a
change of integration variables. This means that, while we
are currently working out the new integral for the r12
system, we can use a similar substitution for the r13 system
and acquire a nearly identical equation with only a few
constants changed (constants in terms of the integration
variable, not overall constants for the full calculation).
Before the new substitution of the primed coordinates, the
expectation value of the potential Φ12ðρ0 ¼ r12Þ is

hψnρnλ jΦ12ðr12Þjψn0ρn0λ
i ¼ hψnρnλ jΦ12ðρ0Þjψn0ρn0λ

i

¼ 16

9π
α5ρα

5
λðn5=4ρ1 n5=4λ1 n5=4ρ2 n5=4λ2 Þ

Z
Φ12ðρ0Þ

X
mρ1mλ1

h11mρ1mλ1j00iρ0�mρ1
λ0�mλ1

×
X

mρ2mλ2

h11mρ2mλ2j00iρ0mρ2
λ0mλ2

; e−ðnρ1þnρ2Þα2ρρ02−ðnλ1þnλ2Þα2λλ2d3ρ0d3λ0: (4.28)

We use the derived relationships between the primed and
unprimed coordinates ρ and λ Eq. (4.25) and one final
coordinate change to eliminate λ0 · ρ0 cross terms in the
Gaussian. The explicit details can be found in Appendix E
of [39]. The end result is that hψnρnλ jΦ12ðr12Þjψn0ρn0λ

i
involves a single radial integral which can be numerically
evaluated easily. Similarly the matrix element
hψnρnλ jΦ13ðr13Þjψn0ρn0λ

i can be evaluated. Again, details
are listed in Appendix E of [39]. The potential is now in
terms of just one variable, so regardless of what potential is
used, the numerical calculations will be fairly straightfor-
ward. Thus, the coordinate system has been defined and

transformed in such a way as to make a good deal of the
problem analytic while keeping what is not analytic still
easy to evaluate numerically. With the matrix elements
defined for a general potential and for analytic kinetic
terms, we now need to explicitly define our poten-
tial model.

V. THREE-BODY SPIN-DEPENDENT
POTENTIALS

Conceptually speaking, the approach one would take to
go from a two-body system with the formalism we have
described to a three-body one is straightforward. The
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problem is now treated as three two-body problems, with
the overall form of the potentials given in Eq. (4.3). The
three-body potential is of similar form and essentially just
triples the number of terms, with pairwise interactions for
all three quarks. For the relatively simple vector ðAÞ, scalar
ðSÞ, and Darwin ðΦDÞ terms this is almost trivial, as there
are no direct spin-dependent operators; however, the
spin-spin, tensor, and spin-orbit terms require extensive
reworking, which are outlined in the following sections
with details in Appendix F of [39].

A. State couplings and operator methods

We will now describe how we set up our three-body
states when using the spin-dependent potential operators. In
order to simplify our numerical calculations, it is helpful to
note that the potential terms are products of a term
involving the coupled angular momentum operators and
coordinate dependent terms that have trivial operator
dependence, save for the Clebsch-Gordon coefficients
and spherical harmonics not norming to 1 in the cases
where we have orbital dependence in the operator. Even in
this case though, the results of the preceding section still
can be applied directly with the added component. This
allows us to use the operator angular momentum on a
specified state and just get a number back that depends on
the angular components of the state itself and not any radial
components, so that the numerical integral itself does not
involve any angular momentum operators. Thus, our
potential terms separated into operator and nonoperator

pieces are given in Table IV and the explicit forms of the Φ
terms are given in Appendix A of [39] and the results of all
these operators on the possible baryon configurations are
given in Appendix F of [39]. The above operators do not
affect the radial part of the wave function and so the
problem is broken into a radial integral part (as done in the
previous section) and an operator component for each
interaction term.
For the baryons we have considered, there are a total of

eleven different wave functions, which represent all pos-
sible spin-flavor couplings for the various particles. The
form of these is given in Table II where it has been split into
three components: spin, flavor, and space (represented by χ,
φ, ψ , respectively), explicitly defined in Appendix F of
[39]. As there are six interactions to consider and three
couplings per interaction (we are using two-body operators,

TABLE II. Total spin-flavor-space wave functions.

N J L S Total State (FSS) Ψ

8 1
2

0 1
2

1ffiffi
2

p ðφ0χ0 þ φ00χ00Þψ0 Ψ1

10 3
2

0 3
2

φsχsψ0 Ψ2

8 1
2
, 3
2

1 1
2

1
2
½ðφ0χ00 þ φ00χ0Þψ 0 þ ðφ0χ0 − φ00χ00Þψ 00� Ψ3ðJ ¼ 1

2
Þ, Ψ4ðJ ¼ 3

2
Þ

8 1
2
, 3
2
, 5
2

1 3
2

1ffiffi
2

p ½φ0χsψ 0 þ φ00χsψ 00� Ψ5ðJ ¼ 1
2
Þ, Ψ6ðJ ¼ 3

2
Þ, Ψ7ðJ ¼ 5

2
Þ

10 1
2
, 3
2

1 1
2

1ffiffi
2

p ½φsχ0ψ 0 þ φsχ00ψ 00� Ψ8ðJ ¼ 1
2
Þ, Ψ9ðJ ¼ 3

2
Þ

1 1
2
, 3
2

1 1
2

1ffiffi
2

p ½φaχ00ψ 0 − φaχ0ψ 00� Ψ10ðJ ¼ 1
2
Þ, Ψ11ðJ ¼ 3

2
Þ

TABLE III. Baryons and their corresponding spin-flavor wave functions.

Ψ1 → p; n;Λ;Σþ;Σ0;Σ−;Ξ0;Ξ−; Nð1440Þ;Λð1600Þ;Σð1660Þ;Ξð1690Þ;Σþ
c ð2455Þ;Σþ

b ;Σ
þ
b ;Λ

þ
c ;Λþ

c ð2595Þ;Λ0
b

Ψ2 → Δþþ;Δþ;Δ0;Δ−;Σþð1385Þ;Σ0ð1388Þ;Σ−ð1390Þ;Ξ0ð1530Þ;Ξ−ð1535Þ;Ω−;Δð1600Þ;Σð1690Þ
Ψ3 → Nð1535Þ;Λð1670Þ;Σð1750Þ;Σð1880Þ
Ψ4 → Nð1520Þ;Λð1690Þ;Σð1670Þ;Ξð1820Þ
Ψ5 → Nð1650Þ;Λð1800Þ;Σð1750Þ
Ψ6 → Nð1700Þ;Σð1940Þ
Ψ7 → Nð1675Þ;Λð1830Þ;Σð1775Þ;Ξð1950Þ
Ψ8 → Δð1620Þ
Ψ9 → Δð1700Þ
Ψ10 → Λð1405Þ
Ψ11 → Λð1520Þ

TABLE IV. Potential terms, operators and nonoperator
components.

Potential Term
Angular Momenta

Operator components
Nonoperator
component

Spin-Spin σi · σj ΦSSðrijÞ
Spin-Orbit Lij · ðσiþσjÞ ΦSOðrijÞ
Spin-Orbit Difference Lij · ðσi−σjÞ ΦSODðrijÞ
Tensor 3σi · r̂ijσj · r̂ij−σi·σj ΦTðrijÞ
Spin-Orbit Cross iLij · σi × σj ΦSOXðrijÞ
Spin-Orbit Tensor σi · r̂ijσj · r̂ijLij · ðσiþσjÞ ΦSOTðrijÞ

JOSHUA F. WHITNEY AND HORACE W. CRATER PHYSICAL REVIEW D 89, 014023 (2014)

014023-14



so there is a 1–2, 1–3, and 2–3 term for each operator),
there are a total of 198 possible interactions to consider.
Fortunately, many of these are similar or trivial and so the
number that must actually be worked out explicitly drops
considerably, but there still are quite a large number that are
nontrivial. The eleven wave functions are given in Table II.
Explicit forms of these terms are given in Appendix F of
[39]. The quark flavor combination of the φ terms is
different for each baryon, but since the operators we use do
not affect the flavor, it does not matter what they are for the
purposes of calculating the effects of each operator.
There are two methods we use to determine the effect of

each of these operators on the angular momentum states.
One is a simple ladder operator approach and the other
involves use of the Wigner 6j and 9j recoupling coeffi-
cients, the details of which are given in Appendix F of [39].
Both methods are always valid, but not necessarily always
useful due to how the operator form affects each individual
wave function for the ladder operators. It is worth noting
that having two methods be viable also allows for a good
check. The ladder operator method works out simply for all
operators (except the spin-orbit cross term due to the matrix
elements being independent of total M). For the states Ψ1,
Ψ2, Ψ4, Ψ7, Ψ9, and Ψ11; we can set M ¼ J and force
Ms ¼ S. This means that any operator that changes totalMs
will be orthogonal to the original wave function and thus
we can eliminate any term that does change totalMs. All of
the methods for determining these states are relegated to
Appendix F of [39], this includes the ladder operators, 6j
and 9j details. Due to having matrix elements for the two-
body problem already defined by [7], the difficult part of
this problem is recoupling the state into one which can use
these matrix elements. To summarize this section, we have
written the three-body potentials in terms of two relative
coordinates and shown how they can be transformed for
each interacting pair. This allows a description of the
methods used to adapt the ([1–3]) two-body potential
operators of Crater et al. derived for the meson spectrum
to the three-body problem.

VI. NUMERICAL RESULTS AND COMMENTS

The expectation value of the Hamiltonian in Eq. (3.21)
cannot be evaluated analytically, so it falls to numerical
studies to acquire an explicit number. We use a Monte
Carlo approach combined with a simple gradient method to
obtain a best-fit χ2 for the spectrum as a whole, as
compared to current experimental data. It is important to
note that a normal χ2 routine would include in each
individual baryon’s contribution to the by the inverse
square of the experimental error. But this would give
particles such as the proton a much higher weight than
desired in the overall fit. Therefore, we instead divided each
by the greater of their respective experimental errors or
1 MeV, thus preventing very well-known particles from
dominating our imperfect fit. The following sections

describe the numerical methods used and give the results
after using said methods.

A. Methods and parameter values

The numerical best fits were done using a Monte Carlo
approach followed by a gradient method to obtain a least
square fit for the spectrum as a whole. We originally
attempted to use a more simplified gradient approach but it
quickly became apparent that the functions are far too
sensitive to changes and thus would get “stuck” in a local
minimum much too easily without some other approach.
So, we adopted a Monte Carlo routine that would trigger
whenever the gradient approach found a new best fit in
order to ensure we were reaching the best results for our
theory. The integrations were done numerically using
Gaussian quadrature and the parameters αρ and αλ were
minimized by the Nelder-Mead simplex method, though it
is worth noting that the α parameters do not generally vary
much from the analytic result if one were to use a harmonic
oscillator model. Also note that as the size of our matrix
increases, the actual value of these parameters do not affect
the fit as much, becoming irrelevant at an infinitely large
matrix. As one might expect, benefits from increasing the
size of the matrix are subject to diminishing returns and
thus our results are given for a point of reasonable
convergence (in other words, once increasing the size of
the matrix no longer significantly affected results).
Our model has a total of 8 parameters, with u, d, s, c, and

b in the Table V corresponding to the masses of the up,
down, strange, charm, and bottom quarks, respectively, and
Λ, K, and B are coupling constants in our model. These are
the same 8 parameters as in [2]. It is worth noting that our
model has significantly fewer parameters than most mod-
els, with only 8 total and 5 of those being universal to any
model (the quark masses themselves)15. The model of
course, is still expected to be accurate regardless of the
number of parameters, but it is worth noting in this work. In
addition, there are only two parametric functions that define
our potential model, the vector and scalar potentials AðrÞ
and SðrÞ given by Eq. (2.32).

B. Results and comparison to experiment

The complete results of our model are given in
Tables V–VIII. As the purpose of this work is to test if
the model used in the two-body case works well for the
three-body, we are only using those baryons which have a
three or four star rating by the Particle Data Group,
meaning that they are fairly well known.
The lowest lying baryons are generally slightly high

energy-wise for the first 8 and this is most likely to allow
the following 10 to be fit relatively accurately (see
Table VI). This is not a surprising result of our model

15Reference [13], for example, has 14 parameters listed.
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due to the fact that since we are using no purely 3-body
potentials, the only difference between these sets of
baryons is the spin-spin interaction. The fitting routine
used the average value for the experimental masses given in
Table VII since these have a wide range, and this value is
also used in calculating the difference between our model
and experimental data. In this table the first 6 listed baryons
are radial excitations of ones in the previous table.
The higher order baryons fall within an acceptable range

on the whole, though there are a few outliers. Of important
note is that our model does fit very well the often
troublesome Λð1405Þ particle. The other Λ particles how-
ever are, as before, missing some sort of interaction that
will aid in differentiating among them [the Λð1520Þ
Λð1670Þ, Λð1690Þ and Λð1800Þ all fit to around the same
value].
In addition, we fit the well-known charmed and

bottom baryons, given in Table VIII. The orbital and spin
angular momenta are the same as the noncharmed/bottom
baryons that correspond to each charmed or bottom

baryon here. These agree relatively well with experimental
data.

C. Conclusion and future work

The model has shown that with the use of three-body
equation of Sazdjian, it is possible to use the purely two-
body approach based on Dirac’s constraint dynamics for
spin-one-half particle bound states for a good fit of the
baryon spectrum. As for future work, one may try to see the
effects of higher order eigenvalue equations for the three-
body system, as referred to in Appendix B of [39] and as
discussed in more detail in [12]. It may be also be possible
as in [13] to introduce three-body forces in addition to the
two-body ones and to use a fully three-body approach for a
coordinate system and JLS couplings. Total JLS couplings
for a three-body system are usually done in a mathemati-
cally rigorous fashion by coupling two particles together
and then coupling their Clebsch-Gordon coupled two-body
system to a third particle for a complete three-body system.
A fully three-body approach ([53]) to angular momentum
couplings may at the very least yield a more elegant
formalism and perhaps better overall results. A system
derived purely for a three-body problem and including
three-body JLS couplings may include additional inter-
actions not seen in a two-body model. We believe this may
solve the issue of the same family of particles (i.e. Σ, Λ, N)
lacking in enough differentiation as one goes from one J to
another, since the angular momentum dependent inter-
actions are the only things that accounts for the difference
in mass among different sets of baryons with the same
quark configuration. In contrast to many other models
([54]) which tend to fit the lower mass baryons very well

TABLE V. Parameter values.

This work Reference 2

u 157.2 (MeV) u 55.7(MeV)
d 158.3 (MeV) d 55.3 (MeV)
s 337.5 (MeV) s 249.9 (MeV)
Λ 285.8 (MeV) Λ 421.8 (MeV)
c 2050.3 (MeV) c 1.476 (GeV)
b 5302.5 (MeV) b 4.844 (GeV)
K 18.1 K 4.198
B 100.6 B 0.05081

TABLE VI. Low lying baryon states.

Baryon J L S
Theoretical Mass

(MeV)
Experimental
Mass (MeV)

Exp-Theory
(MeV)

p 1=2 0 1=2 947 938 −9
n 1=2 0 1=2 948 939 −9
Σþ 1=2 0 1=2 1250 1189 −61
Σ0 1=2 0 1=2 1261 1192 −68
Σ− 1=2 0 1=2 1271 1197 −73
Ξ0 1=2 0 1=2 1373 1314 −58
Ξ− 1=2 0 1=2 1378 1321 −57
Λ0 1=2 0 1=2 1082 1125 43
Δþþ 3=2 0 3=2 1249 1232 −17
Δþ 3=2 0 3=2 1250 1232 −18
Δ0 3=2 0 3=2 1251 1232 −19
Δ− 3=2 0 3=2 1252 1232 −20
Σþð1390Þ 3=2 0 3=2 1384 1383 −1
Σ0ð1390Þ 3=2 0 3=2 1385 1384 −1
Σ−ð1390Þ 3=2 0 3=2 1387 1387 0
Ξ0ð1530Þ 3=2 0 3=2 1501 1531 30
Ξ−ð1530Þ 3=2 0 3=2 1507 1535 28
Ω− 3=2 0 3=2 1609 1672 63
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and the higher order much more poorly, our work tends to
maintain the same quality of fit regardless of baryon mass.
This lends credence to the theory as a whole being
fundamentally sound, but merely incomplete. This missing
piece is likely a higher order implementation of Sazdjian’s
three-body scheme and/or the fully three-body interactions
that were not considered in this work; three-body

interactions referring to those in which an interaction
between two of the particles can influence the third (as
done in [13]), rather than being entirely based on two-body
interactions. As can be seen from the fit data, there are
many lower than experiment and many higher as well,
though this is spread out among all the baryons with the
low-lying baryons being larger than experiment while the

TABLE VII. Orbital and radially excited baryons states.

Baryon J L S
Theoretical Mass

(MeV)
Experimental Mass

(MeV)
Exp-Theory

(MeV)

Nð1440Þ 1=2 0 1=2 1557 1420–1470 −117
Λð1600Þ 1=2 0 1=2 1677 1560–1700 −77
Σð1660Þ 1=2 0 1=2 1672 1630–1690 12
Ξð1690Þ 1=2 0 1=2 1784 1680–1700 −94
Δð1600Þ 3=2 0 3=2 1521 1550–1700 78
Σð1670Þ 3=2 1 1=2 1679 1665–1685 −4
Nð1535Þ 1=2 1 1=2 1549 1525–1545 −14
Λð1670Þ 1=2 1 1=2 1671 1660–1680 −1
Σð1750Þ 1=2 1 3=2 1644 1730–1800 121
Σð1775Þ 5=2 1 3=2 1661 1770–1780 114
Nð1520Þ 3=2 1 1=2 1551 1515–1525 −31
Λð1690Þ 3=2 1 1=2 1670 1685–1695 20
Ξð1820Þ 3=2 1 1=2 1777 1818–1828 43
Nð1650Þ 1=2 1 3=2 1566 1645–1670 84
Λð1800Þ 1=2 1 3=2 1658 1720–1850 142
Σð1880Þ 1=2 0 1=2 1709 1800–1960 171
Nð1700Þ 3=2 1 3=2 1568 1650–1750 132
Nð1675Þ 5=2 1 3=2 1615 1670–1680 59
Λð1830Þ 5=2 1 3=2 1641 1810–1830 189
Ξð1950Þ 5=2 1 3=2 1757 1935–1965 192
Δð1620Þ 1=2 1 1=2 1542 1600–1660 78
Δð1700Þ 3=2 1 1=2 1546 1670–1750 154
Λð1405Þ 1=2 1 1=2 1410 1402–1410 −4
Λð1520Þ 3=2 1 1=2 1680 1518–1521 −160

TABLE VIII. Charmed and bottom baryons.

Baryon J L S
Theoretical Mass

(MeV)
Experimental Mass

(MeV)
Exp-Theory

(MeV)

Σþþ
c ð2455Þ 1=2 0 1=2 2385 2454 68

Σþþ
c ð2520Þ 3=2 0 3=2 2551 2520 −31

Λþ
c ð2286Þ 1=2 0 1=2 2382 2286 −96

Λþ
c ð2595Þ 1=2 1 1=2 2415 2595 180

Ξþ
c ð2467Þ 1=2 0 1=2 2561 2467 −94

Ξ0
cð2470Þ 1=2 0 1=2 2562 2470 −92

Ξþ
c ð2645Þ 3=2 0 3=2 2598 2645 46

Ξþ
c ð2790Þ 1=2 1 3=2 2661 2790 129

Ξþ
c ð2815Þ 3=2 1 3=2 2707 2815 108

Ω0
cð2695Þ 1=2 0 1=2 2732 2695 −37

Ω0
cð2770Þ 3=2 0 3=2 2745 2770 25

Σþ
b ð5829Þ 3=2 0 3=2 5800 5829 29

Σ−
b ð5836Þ 3=2 0 3=2 5851 5836 −15

Ξ0
bð5790Þ 1=2 0 1=2 5854 5790 −64

Ω−
b ð6071Þ 1=2 0 1=2 6032 6071 39
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higher order and charmed/bottom baryons are lower. This
prevents one from improving the fits to the low-lying
baryons by simply lowering the u, d, s masses since
simultaneously this would worsen in the fits on the already
low charmed/bottom baryons (both sets of baryons have
similar experimental errors).
On the whole though, the fit is nearly as accurate as

others, most notably the work of Capstick and Isgur ([13]),
which is generally regarded as one of the more valuable
references for theoretical baryon spectroscopy. The only
marked difference of the results of our model versus other
models is that the quality of the fit remains relatively
constant regardless of which baryons we are considering
(ground state, higher order, heavy, etc.). However, as was
discussed, this may actually reinforce that the fundamental
approach is sound and it can be upgraded to a more
accurate model by considering additional interactions and a
more refined treatment of Sazdjian’s approach to the
3-body problem of bound systems.
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APPENDIX: GAUSSIAN WAVE FUNCTIONS AND
INFINITE INTERVAL DISCRETIZATION

This section describes how our wave functions
come about for our basis. The potentials in Eq. (3.21)
have both short distance and long distance effects, so we
need a basis wave function that can accurately account
for that. We define a wave function in terms of some
parameter α that determines the effect of the Gaussian
wave function for short and long distance interactions. We
then split the wave function into those two parts (short and
long) and discretize it to a certain N value, from which we
get our basis. The wave function is originally defined in an
infinite vector space, so we must truncate it in order to work
with it.
Boris Kupershmidt, a mathematician, [55] has suggested

a Laplace transform/Gaussian basis

ψðxÞ ¼
Z

∞

0

dαqðαÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffi
α3

π3

rs
exp

�
− αx2

2a2

�
(A1)

where ψ is essentially the Fourier transform of some
function qðαÞ. In order to work with this function, we
split the integral into two pieces, one with boundaries from
zero to one and the other with boundaries from one to
infinity, so that

ψðxÞ ¼
Z

1

0

dαqðαÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffi
α3

π3

rs
exp

�
− αx2

2a2

�

þ
Z

∞

1

dαqðαÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffi
α3

π3

rs
exp

�
−αx2

2a2

�
: (A2)

By replacing α with 1=β in the first half of the equation (so
that the integral from 0 to 1 now becomes 1 to infinity) we get

ψðxÞ ¼
Z

∞

1

dβqð1=βÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffiffiffiffiffi
1

β3π3

rs
exp

�
− x2

2βa2

�

þ
Z

∞

1

dαqðαÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffi
α3

π3

rs
exp

�
− αx2

2a2

�
; (A3)

and from there, replacing integrals with sums over
arbitrarily large N, this discretizes to

ψðxÞ ¼
XN
n¼1

cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffiffiffiffiffiffi
1

n3π3

rs
exp

�
− x2

2na2

�

þ
XN
n¼1

dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffi
n3

π3

rs
exp

�
− nx2

2a2

�

¼ e1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffi
1

π3

rs
exp

�
− x2

2a2

�

þ
XN
n¼2

cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffiffiffiffiffiffi
1

n3π3

rs
exp

�
− x2

2na2

�

þ
XN
n¼2

dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffi
n3

π3

rs
exp

�
− nx2

2a2

�
: (A4)

So, for N ¼ 1 we have

ψðxÞ ¼ e1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffi
1

π3

rs
exp

�
− x2

2a2

�
: (A5)

For N ¼ 2 we have

ψðxÞ ¼ e1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffi
1

π3

rs
exp

�
− x2

2a2

�

þ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffiffiffi
1

8π3

rs
exp

�
− x2

4a2

�

þ d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffi
8

π3

rs
exp

�
−x2

a2

�
: (A6)
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Note that the original wave function fromN ¼ 1 remains as
the first term. This is true for all N.
For N ≥ 3

ψðxÞ ¼ e1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffi
1

π3

rs
exp

�
− x2

2a2

�

þ
XN
n¼2

cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffiffiffiffiffiffi
1

n3π3

rs
exp

�
− x2

2na2

�

þ
XN
n¼2

dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffi
n3

π3

rs
exp

�
−nx2

2a2

�
(A7)

or more symmetrically

ψðxÞ ¼
X2N−1

n¼1

en

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

ffiffiffiffiffi
f3n
π3

rs
exp

�
− fnx2

2a2

�
;

fn ¼
1

n
; 1 ≤ n ≤ N;

fn ¼ nþ 1 − N; N þ 1 ≤ n ≤ 2N − 1. (A8)

As we can see from the N ¼ 2 case, the order of the
matrix increases as 2N − 1. Each matrix element of the
Hamiltonian matrix is constructed from the expectation
value of the Hamiltonian with two of these wave functions.
For example, for the N ¼ 2 case, our general wave function
jψnðfnÞi is

n ¼ 1 → jψ1ð1Þi;

n ¼ 2 →





ψ2

�
1

2

��
;

n ¼ 3 → jψ3ð2Þi; (A9)

and thus we have the 3 × 3 matrix

 hψ1jHjψ1i hψ1jHjψ2i hψ1jHjψ3i
hψ2jHjψ1i hψ2jHjψ2i hψ2jHjψ3i
hψ3jHjψ1i hψ3jHjψ2i hψ3jHjψ3i

!
: (A10)

As can be inferred from the values of fn for n > 1, this
basis allows the wave function to account for both the long-
rage and short-range interactions of the Hamiltonian.
Smaller fn values—such as for n ¼ 2 in the above
example—allow for long-range interactions while larger
fn values (like the n ¼ 3 wave function) account for the
short-range interactions.
In a similar manner, we can now also write our B matrix

from Eq. (4.10) as

ψðxÞ ¼
X2N−1

n¼1

enψnðxÞ;

Bnm ¼
Z

d3xψ�
nðxÞψmðxÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a6

ffiffiffiffiffiffiffiffiffiffiffi
f3nf3m
π6

rs Z
d3x exp

�
− ðfn þ fmÞx2

2a2

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f3=2n f3=2m

q ffiffiffi
8

p

ðfn þ fmÞ3=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8f3=2n f3=2m

ðfn þ fmÞ3

s
: (A11)

Thus we get an analytical form for the B matrix that
remains the same regardless of coordinate transformations.
Note also that this becomes one in the case of fn ¼ fm ¼ 1,
which is expected. This completes our review of the two-
body formalism. Since we are attempting to reach a
convergence point with as few Gaussians as possible, we
do not necessarily include as many wave functions as is
possible. So for N ¼ 2, we only begin with two wave
functions for each coordinate (giving a 4 × 4 matrix) and
then go to three wave functions (going to 9 × 9). Similarly,
N ¼ 3 can have up to 5 wave functions per coordinate, but
we only add one at a time in order to more quickly converge
the energy eigenvalues.
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