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We perform global fits to the moments of semileptonic B-decay distributions and extract jVcbj, the heavy
quark masses, and the nonperturbative parameters of the heavy quark expansion. We include next-to-next-
to-leading-order perturbative corrections and recent determinations of the charm mass and discuss how they
improve the precision of the global fit. In particular, using the mc determination of Chetyrkin et al.
[Phys. Rev. D80, 074010 (2009)], we get mkin

b ¼ 4.541ð23Þ GeV and jVcbj ¼ ð42:42� 0.86Þ × 10−3. We
also discuss the implications of the new fits for the normalization of rare B decays, the zero-recoil sum rule
in B → D�lν, and the inclusive determination of jVubj.
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I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments Vcb and Vub are important ingredients in the analyses
of CP violation in the Standard Model and in the search for
new physics in flavor-violating processes. For instance, the
absolute value of their ratio gives one of the sides of the
unitarity triangle, and the εK constraint on ρ̄ and η̄ is very
sensitive to the precise value of jVcbj; see Ref. [1] for recent
analyses. The determination of Vcb and Vub from inclusive
semileptonic B decays is based on an operator product
expansion (OPE) that allows us to express the widths and
the first moments of the kinematic distributions of B →
Xu;clν as double expansions in αs and ΛQCD=mb. The
leading terms in these double expansions are given by the
free b quark decay, and the first corrections are OðαsÞ and
OðΛ2

QCD=m
2
bÞ [2].

The relevant parameters of the double expansions are the
heavy quark massesmb andmc, the strong coupling αs, and
the B-meson matrix elements of local operators of growing
dimension: μ2π and μ2G atOð1=m2

bÞ, ρ3D and ρ3LS atOð1=m3
bÞ,

etc. The latter can be constrained by various moments
of the lepton energy and hadron mass distributions of
B → Xclν that have been measured with good accuracy at
the B factories, as well as at CLEO, DELPHI, and CDF.
The total semileptonic width can then be employed to
extract jVcbj. The situation is less favorable in the case of
jVubj, in which the total rate is much more difficult to
access experimentally, but the results of the semileptonic
fits are crucial in that case as well; see Ref. [3] for a review.
This strategy has been rather successful and has allowed for
a ∼2% determination of Vcb and for a ∼5% determination
of Vub from inclusive decays [4].
Complementary studies of exclusive decays and non-

perturbative calculations of the relevant form factors have
also progressed considerably, reaching a similar level of

accuracy. Unfortunately, a ∼2σ discrepancy persists
between the most precise determinations of jVcbj: the
inclusive one and the one based on B → D�lν at zero
recoil and a lattice calculation of the form factor [4,5].
However, the zero-recoil form-factor estimate based on
heavy quark sum rules leads to jVcbj in good agreement
with the inclusive result [6]. A stronger discrepancy
between the inclusive and exclusive determinations occurs
in the case of jVubj [4].
The importance of a precise and reliable extraction of

jVcbj and of the inputs for the inclusive jVubj analysis has
motivated us to critically reexamine the procedure used in
the semileptonic fits almost a decade after the first
comprehensive studies [7–9]. There are three relevant
issues in this respect: (i) the theoretical uncertainties and
how they are implemented in the fit, (ii) the inclusion of
additional constraints on the parameters, and (iii) the need
to update the theoretical predictions to next-to-next-to-
leading order (NNLO).
For what concerns the theoretical uncertainties, we have

already observed [10] a marked dependence of the results
on the ansatz for the correlations among theoretical
uncertainties at different values of the cut on the lepton
energy. In this paper, we discuss different options and
compare the results of the fits performed accordingly.
Regarding the inclusion of additional constraints from

other processes, we recall that the semileptonic moments
are sensitive to a linear combination of mc and mb but
cannot resolve the individual masses with good accuracy.
To improve the accuracy of the fit, the moments of the
photon energy in B → Xsγ have generally been employed,
but in the last few years, quite precise determinations of the
heavy quark masses by completely different methods
(eþe− sum rules, lattice QCD, etc.) have become available,
see, e.g., Refs. [11–15]. Radiative moments remain very
interesting, but they are not competitive with the charm
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mass determinations and are, in principle, subject to addi-
tional OðΛQCD=mbÞ effects, which have not yet been
estimated [16]. Here, we will discuss the inclusion of
the most recent heavy quark mass determinations in the
semileptonic fit. As we will see, these precise external
inputs reduce the dependence on the assumptions regarding
the theoretical correlations.
Recent progress has made it necessary to update the

theoretical predictions used in the fits. The NNLO Oðα2sÞ
calculation has been completed [17–19] and implemented
[20] in a code that has been used in preliminary analyses by
the Heavy Flavor Averaging Group [4]. This code extends
and improves on the kinetic scheme calculation of
Ref. [21], used in Refs. [7,9], and forms the basis of the
present work. The NNLO accuracy is a necessary pre-
requisite for using the precise heavy quark mass constraints
we have just mentioned. Concerning the perturbative
corrections to the Wilson coefficients of power-suppressed
operators, the Oðαsμ2π=m2

bÞ were computed in
Refs. [22,23]. However, the Oðαsμ2G=m2

bÞ corrections are
not yet available, and here we will not include any
Oðαs=m2

bÞ corrections. Concerning higher-order power
corrections, the Oð1=m4

bÞ and Oð1=m5
QÞ effects have been

computed [24]. The main problem here is a proliferation of
nonperturbative parameters that cannot all be fitted from
experiment. In Ref. [24], they were estimated in the
ground-state saturation approximation, leading to a final
Oð1=m4;5

Q Þ effect on jVcbj of þ0.4%. This may well be the
order of magnitude of higher-order power corrections, but
further investigations are necessary, also because sizable
effects beyond the ground state saturation approximation
have been found [6]. Here, we include only effects up to
Oð1=m3

bÞ [25].
The paper is organized in the following way. We first

discuss the relevant observables and list all the moment
measurements included in our fits. Then, in Sec. III, we
explain our estimate of theoretical errors and discuss
several options for their correlations. In Sec. IV, we
consider the inclusion of independent constraints on mc
and mb in the fits and study their impact on the results;
then, in Sec. V, we consider a few relevant applications
of the fits. Finally, Sec. VI contains a summary of our
results.

II. OBSERVABLES INCLUDED IN THE FITS

The first few moments of the charged lepton energy
spectrum in inclusive b → clν decays are experimentally
measured with high precision—better than 0.2% in the
case of the first moment. At the B factories, a lower
cut on the lepton energy, El ≥ Ecut, is applied to
suppress the background. Experiments measure the
moments at different values of Ecut, which provides
additional information as the cut dependence is also a
function of the OPE parameters. The relevant quantities are
therefore

hEn
liEl>Ecut

¼
R Emax
Ecut

dElEn
l

dΓ
dElR Emax

Ecut
dEl

dΓ
dEl

; (1)

which are measured for n up to 4, as well as the ratio R�
between the rate with and without a cut,

R�ðEcutÞ ¼
R Emax
Ecut

dEl
dΓ
dElR Emax

0 dEl
dΓ
dEl

: (2)

This quantity is needed to relate the actual measurement of
the rate with a cut to the total rate, from which one
conventionally extracts jVcbj. Since the physical informa-
tion that can be extracted from the first three linear
moments is highly correlated, it is more convenient to
study the central moments, namely, the variance and
asymmetry of the lepton energy distribution. In the
following, we will consider only R� and

l1ðEcutÞ ¼ hEliEl>Ecut
;

l2;3ðEcutÞ ¼ hðEl − hEliÞ2;3iEl>Ecut
:

(3)

Similarly, in the case of the moments of the hadronic
invariant mass distribution, we consider

h1ðEcutÞ ¼ hM2
XiEl>Ecut

;

h2;3ðEcutÞ ¼ hðM2
X − hM2

XiÞ2;3iEl>Ecut
:

(4)

These observables can be expressed as double expansions
in αs and inverse powers of mb, schematically,

Mi ¼ Mð0Þ
i þ αsðμÞ

π
Mð1Þ

i þ
�
αs
π

�
2

Mð2Þ
i þMðπÞ

i
μ2π
m2

b

þMðGÞ
i

μ2G
m2

b

þMðDÞ
i

ρ3D
m3

b

þMðLSÞ
i

ρ3LS
m3

b

þ � � � ; (5)

where all the coefficientsMðjÞ
i depend on mc, mb, Ecut, and

on various renormalization scales. The OPE parameters
μ2π , … are matrix elements of local b-field operators
evaluated in the physical B meson, i.e., without taking
the infinite mass limit. The dots represent missing terms of
Oðαs=m2

bÞ and Oð1=m4
bÞ, which are either unknown or

which we do not include for the reasons explained in the
Introduction. We work in the kinetic scheme [26] and
follow the implementation described in Refs. [20,21]. In
particular, in the hadronic moments, we do not expand in
powers of Λ̄ ¼ MB −mb. While we always express the
bottom mass and the four relevant expectation values that
appear in Eq. (5) in the kinetic scheme, setting the cutoff
μkin at 1 GeV, we will use both the kinetic and the MS
schemes for the charm mass and denote it with mkin

c ðμkinÞ
and m̄cðμ̄Þ, respectively. Unless otherwise specified, we
evaluate αs at μ0 ¼ 4.6 GeV and assume αsðμ0Þ ¼ 0.22.
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A change of �0.005 around this value leads to small
changes in the results of our fits (about 1 MeV in mb),
always much smaller than their final uncertainty.
The experimental data for the moments are fitted to the

theoretical expressions in order to gain information on the
nonperturbative parameters and the heavy quark masses,
which we then employ to extract jVcbj. Table I shows the 43
measurements of the moments that we always include in
the fits, unless otherwise specified. The chromomagnetic
expectation value μ2G is also constrained by the hyperfine
splitting

MB� −MB ¼ 2

3

μ2G
mb

þO

�
αsμ

2
G

mb
;
1

m2
b

�
:

Unfortunately, little is known of the power corrections to
the above relation, and only a loose bound can be set; see
Ref. [6] for a recent discussion. For what concerns ρ3LS, it is
somewhat constrained by the heavy quark sum rules.
Following Refs. [6,21,27], we will therefore use in our
fits the constraints

μ2G ¼ ð0.35� 0.07Þ GeV2;

ρ3LS ¼ ð−0.15� 0.10Þ GeV3:
(6)

It should be stressed that ρ3LS plays a minor role in the fits
because its coefficients are generally suppressed with
respect to the other parameters.
We now perform a first global fit, without any theoretical

uncertainty. The fit is not good, with χ2=degrees of
freedom ∼ 2, corresponding to a very small p value and
driven by a strong tension (∼3.5σ) between the constraints
in Eq. (6) and the measured moments. If we drop the

constraints of Eq. (6), the fit is not too bad. It is then
clear from the outset that theoretical uncertainties
are not so necessary for the OPE expressions to fit the
moments—which would merely test Eq. (5) as a para-
metrization; they are instead needed to preserve the
definition of the parameters as B expectation values of
certain local operators, which in turn can be employed in
the semileptonic widths and in other applications of the
heavy quark expansion.

III. THEORETICAL ERRORS
AND THEIR CORRELATIONS

The OPE description of semileptonic moments is subject
to two sources of theoretical uncertainty: missing higher-
order terms in Eq. (5) and terms that violate quark-hadron
duality, namely, terms that are intrinsically beyond the
OPE. We will attempt an estimate only of the first kind of
uncertainty. The violation of local quark-hadron duality is
expected to be suppressed in semileptonic B decays; it
would manifest itself as an inconsistency of the fit, which as
we will see is certainly not present at the current level of
theoretical and experimental accuracy.
To estimate the effects due to higher-order corrections,

we follow the method outlined in Ref. [21] and update it
with the suggestions given in Ref. [20]: we assume that
perturbative corrections can affect the Wilson coefficients
of μ2π and μ2G at the level of �20%, while perturbative
corrections and higher-power corrections can effectively
change the coefficients of ρ3D and ρ3LS by �30%. Moreover,
we assign an irreducible theoretical uncertainty of 10 MeV
to the heavy quark masses and vary αsðmbÞ by 0.02. The
changes in Mi due to these variations of the fundamental
parameters are added in quadrature and provide a theo-
retical uncertainty1 δMth

i , to be subsequently added in
quadrature with the experimental one, δMexp

i . This method
is consistent with the residual scale dependence observed at
NNLO and appears to be reliable: the NNLO corrections
and the Oð1=m4;5

b Þ (using ground-state saturation as in
Ref. [24]) have been found to be within the range of
expectations based on the method in the original formu-
lation of Ref. [21].
The correlation between theoretical errors assigned to

different observables is much harder to estimate, but it
plays an important role in the semileptonic fits, as will
become clear in a moment. Let us first consider moments
computed at a fixed value of Ecut: as long as one deals with
central higher moments, there is no argument of principle
supporting a correlation between two different moments,
for instance, l1 and h2. We also do not observe any clear
pattern in the known corrections and therefore regard the

TABLE I. Experimental data used in the fits unless otherwise
specified.

Experiment Values of Ecut (GeV) Ref.

R� BABAR 0.6, 1.2, 1.5 [28,29]
l1 BABAR 0.6, 0.8, 1, 1.2, 1.5 [28,29]
l2 BABAR 0.6, 1, 1.5 [28,29]
l3 BABAR 0.8, 1.2 [28,29]
h1 BABAR 0.9, 1.1, 1.3, 1.5 [28]
h2 BABAR 0.8, 1, 1.2, 1.4 [28]
h3 BABAR 0.9, 1.3 [28]
R� Belle 0.6, 1.4 [30]
l1 Belle 1, 1.4 [30]
l2 Belle 0.6, 1.4 [30]
l3 Belle 0.8, 1.2 [30]
h1 Belle 0.7, 1.1, 1.3, 1.5 [31]
h2 Belle 0.7, 0.9, 1.3 [31]
h1;2 CDF 0.7 [32]
h1;2 CLEO 1, 1.5 [33]
l1;2;3 DELPHI 0 [34]
h1;2;3 DELPHI 0 [34]

1This theoretical uncertainty depends, of course, on the exact
point in the parameter space. In practice, we adopt an iterative
procedure recomputing the theory errors on the minimum χ2

point till the process has converged.
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theoretical predictions for different central moments as
completely uncorrelated. When one computes the theory
uncertainty with the method described above, one might
think there are obvious correlations: suppose that both l1

and h2 receive positive contributions from μ2π; by varying μ2π
by �20%, we see a positive correlation between l1 and h2.
But our aim was simply to have a rough estimate of the size
of the theory uncertainty, and we make no claim to know
the exact magnitude and sign of the higher-order correc-
tion. Therefore, the observed correlation is meaningless,
and the safest assumption is to regard the theoretical
predictions for different moments as uncorrelated.
Letusnowconsider thecalculationofacertainmomentMi

for two close values of Ecut, say, 1 and 1.1 GeV. Clearly, the
OPEexpansion forMið1 GeVÞwill bevery similar to theone
forMið1.1 GeVÞ, andwe confidently expect this to be true at
any order in αs and 1=mb. The theoretical uncertainties we
assigntoMið1 GeVÞandMið1.1 GeVÞwill thereforebevery
close to each other and very highly correlated. The degree of
correlation between the theory uncertainty of MiðE1Þ and
MiðE2Þ can intuitively be expected to decrease as jE1 − E2j
grows.Moreover,weknowthathigher-power corrections are
going to modify significantly the spectrum only close to the
endpoint. Indeed, one observes that the Oð1=m4;5

b Þ contri-
butions are equal for all cuts below about 1.2GeV (see Fig. 2
of Ref. [24]), and the same happens for the Oðαsμ2π=m2

bÞ
corrections [22]. Therefore, the dominant sources of current
theoretical uncertainty suggest very high correlations among
the theoretical predictions of the moments for cuts below
roughly 1.2 GeV.
In Refs. [7,9], it was assumed that the theoretical errors of

moments at different values ofEcut are 100%correlated. This
is too strong an assumption, which ends up distorting the fit,
because the dependence ofMi onEcut, itself a function of the
fit parameters, is then free of theoretical uncertainty. As a
result, the uncertainty on the OPE parameters is under-
estimated. On the other hand, as we have just discussed, a
high degree of correlation is to be expected if Ecut is not too
large. Reference [8], which also presents a fit without
theoretical errors, sets the theoretical correlationmatrixequal
to the experimental one. This probably underestimates
correlations and would also imply no correlation between
thetheoreticalpredictionof thesameobservablemeasuredby
twoindependentexperiments,whichisunreasonable.Recent
HFAG fits with the method of Ref. [8] do not present this
problem.
An alternative approach consists in computing the corre-

lationof the theoreticalerrorsofMiðE1ÞandMiðE2Þusingthe
method we have used to estimate the theory uncertainty,
namely, varying the values of the heavy quark expansion
(HQE) parameters. This is, in fact, equivalent to assuming
that the Ecut dependence of the unknown terms of the OPE
follows closely the Ecut dependence of the known terms. It
turns out that, in this way, the correlation is almost always
very high.

Another possibility is to fix the correlation ξ between a
moment Mi computed at Ecut and at Ecut þ 0.1 GeV,
possibly with ξ higher for higher Ecut. Following the
reasoning above, ξ is naturally very close to 1 at low cuts
and drops considerably at high cuts.
In our fits, we will consider the following four options:
(A) 100% correlation between moments at different cuts;
(B) correlations computed from theory predictions, as

discussed above;
(C) constant scale factor 0 < ξ < 1, with ξ ¼ 0.97 for

100 MeV steps;
(D) a scale factor like in option C that depends on the

cut, ξ ¼ ξðEcutÞ, with

ξðEcutÞ ¼ 1 − 1

2
e−

ðE0−EcutÞ
Δ ; (7)

where E0 ≈ 1.75 GeV is the partonic endpoint and Δ
is an adjustable parameter, which we set at
about 0.25 GeV.

As an illustration, the correlation between the theoretical
errors of a generic moment with cuts at 0.6 and 1.2 GeV is 1
in scenario A; it depends on the specific moment, and it is
generally quite close to 1 in scenario B; it is given by ξ6 ¼
ð0.97Þ6 ≃ 0.83 in scenario C; it is given by

Q
k¼5
k¼0 ξð0.65þ

0.1k GeVÞ≃ 0.88 in scenario D. Similarly, the correlation
between a moment measured at 1.3 and 1.5 GeV is
approximately 0.94 in C and 0.76 in D.
In Fig. 1, we show the results of semileptonic fits

performed with the four options for the theoretical corre-
lations. The fits include all the data listed in Table I and the
two constraints of Eq. (6). We add the experimental and
theoretical covariance matrices, which is equivalent to
adding the respective errors in quadrature.
In general, the results depend sensitively on the option

adopted. In the case of the heavy quark masses, which are
strongly correlated, we observe large errors that tend to
increase in going from A to D, although the central values
are quite consistent. The results of the fits for the non-
perturbative parameters depend even stronger on the
option; in particular, this is the case for μ2G, which has a
very low value—incompatible with Eq. (6)—in scenario A
and increases as correlations are relaxed.
Figure 1 also shows that the final uncertainty on some of

the parameters can be much smaller than the “safety” range
we have used in the evaluation of the theory errors.
Consider, for instance, the final error on ρ3D: in scenario
A, it is as low as 0.02, which is approximately 15% of the
central value, much below the 30% we have employed.
Evidently, the fit has found a direction in the parameter
space with much lower uncertainty. On the other hand,
when we relax the degree of correlation, as in options C and
D, the final relative uncertainty on ρ3D is close to 30%. In
the next section, we will study the impact of additional
constraints on the heavy quark masses on these fits.
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FIG. 1 (color online). Two-dimensional projections of the fits performed with different assumptions for the theoretical correlations.
The orange, magenta, blue, and light blue 1-sigma regions correspond to scenarios A, B, C, D (Δ ¼ 0.25 GeV), respectively. The black
contours show the same regions when the mc constraint of Ref. [13] is employed.
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IV. HEAVY QUARK MASS CONSTRAINTS

The inclusion of external precise constraints in the fit
decreases the errors and may neutralize the ambiguity due
to the ansatz for the theoretical correlations. It also allows
us to check the consistency of the results with independent
information. As semileptonic B decays alone determine
precisely a linear combination of the heavy quark masses,
approximately given by mb − 0.8mc, see the first plot in
Fig. 1, a way to maximally exploit their potential consists of
including in the fit one of the recent precise mc determi-
nations. A review of heavy quark mass determinations is
beyond the scope of this paper; see, e.g., Refs. [3,35]. We
simply list some of the most recent ones, for the
charm mass,
(1) m̄cð3 GeVÞ ¼ 0.986ð13Þ GeV [11],
(2) m̄cð3 GeVÞ ¼ 0.986ð6Þ GeV [12],
(3) m̄cð3 GeVÞ ¼ 0.994ð26Þ GeV [13],

and for the bottom mass,
(1) m̄bðm̄bÞ ¼ 4.163ð16Þ GeV [11],
(2) m̄bðm̄bÞ ¼ 4.164ð23Þ GeV [12],
(3) m̄bðm̄bÞ ¼ 4.235ð55Þ GeV [14],
(4) m̄bðm̄bÞ ¼ 4.247ð34Þ GeV [15].

Here, all the masses are expressed in the MS scheme, and a
relatively high scale, 3 GeV, is employed for the charm
mass. In absolute terms, the charm mass is currently better
determined than the bottom mass. This suggests computing
the moments directly in terms of m̄cðμ̄Þ, with
2≲ μ̄ ≲ 3 GeV, instead of using the charm mass in the
kinetic scheme. The range of μ̄ is chosen to avoid large
logarithms in ourOðα2sÞ calculation and to minimize higher
orders related to the definition of mc, which necessarily
involve αsðμ̄Þ. This MS option for mc is available in the
code of Ref. [20] and avoids additional theoretical uncer-
tainty due to the mass scheme conversion. In the case of the
bottom mass, on the contrary, the common choice m̄bðm̄bÞ
is not well suited to the description of semileptonic B
decays. In other words, the calculation of the moments in
terms of m̄bðm̄bÞ would lead to large higher-order correc-
tions. While our predictions are always expressed in terms
of the kinetic mass mkin

b ð1 GeVÞ, the above mb constraints
can be included after converting them to the kinetic
scheme. Since the relation between the kinetic and the
MS masses is known only to Oðα2sÞ, the ensuing uncer-
tainty is not negligible. In Ref. [20], it was estimated to be
about 30 MeV:

mkin
b ð1 GeVÞ − m̄bðm̄bÞ ¼ 0.37� 0.03 GeV: (8)

The effect of the inclusion of charm mass constraints in
the semileptonic fit is illustrated in Fig. 1, in which the
determination of Ref. [13] is employed. As expected,
the uncertainty in the b mass becomes smaller than
30 MeV in all scenarios, a marked improvement, also with
respect to the precision resulting from the use of radiative
moments [4]. On the other hand, there is hardly any

improvement in the final precision of the nonperturba-
tive parameters (see, for instance, the last plot, in the
μ2π − ρ3D plane).
As already noted, the semileptonic moments are highly

sensitive to a linear combination of the heavy quark masses.
The constraints on mb that we obtain using different mc
determinations in the fit are shown in Table II, where we
have only considered option D with Δ ¼ 0.25 GeV. It is
interesting to compare the results in the last column with
the m̄bðm̄bÞ determinations we have listed above. The
bottom mass obtained using mc given by the Karlsruhe
group [11] is perfectly consistent with their own mb result
but also compatible with those of Refs. [12,14]. In general,
lower values of mb are preferred. The results depend little
on the scenario chosen for the theory correlations: if we
choose Δ ¼ 0.2 GeV, mb gets lowered by 1 MeV in the
first two rows and by 2 MeV in the third. Very similar
results are found using alternative scenarios for the
theory correlations. Of course, one can also include in
the fit both mc and mb determinations, but because of the
scheme translation error in mb, the gain in accuracy will be
limited.
When no external constraint is imposed on mc;b, the

semileptonic moments determine best a linear combination
of the heavy quark masses that is very close to their
difference. Using scenario D with Δ ¼ 0.25 GeV, we
obtain

mkin
b ð1 GeVÞ − 0.85m̄cð3 GeVÞ ¼ 3.701� 0.019 GeV

(9)

and similar results with the other scenarios (the error
is as low as 12 MeV in scenario A). The ratio of the
two masses is m̄cð3 GeVÞ=mkin

b ð1 GeVÞ ¼ 0.2172ð25Þ.
In the case the kinetic scheme is also adopted for mc,
the linear combination is slightly different, and Eq. (9)
becomes

mkin
b ð1 GeVÞ − 0.7mkin

c ð1 GeVÞ ¼ 3.784� 0.019 GeV:

(10)

The results of a few fits are reported in Table III–V.
We choose the first one as our default fit. All the fits
include a constraint on mc, from either Ref. [11] or
[13], and two fit both mass constraints from Ref. [11].
In the latter case, we have used Eq. (8) to translate

TABLE II. b mass resulting from different mc determinations.
All masses are expressed in GeV.

m̄cð3 GeVÞ mkin
b ð1 GeVÞ m̄bðm̄bÞ

0.986(13) [11] 4.541(23) 4.171(38)
0.986(6) [12] 4.540(20) 4.170(36)
0.994(26) [13] 4.549(29) 4.179(42)
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m̄bðm̄bÞ ¼ 4.163ð16Þ GeV into mkin
b ¼ 4.533ð32Þ GeV

[the αs dependence of Eq. (8) partly compensates that of
m̄bðm̄bÞ]. The fits are generally good, with
χ2=degrees of freedom ranging from 0.32 for the default
fit to 0.95 for case B and 1.18 for case A. The value of jVcbj
is computed using

jVcbj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVcbj2BRclν

τBΓOPE
B→Xclν

;

s
(11)

with τB ¼ 1.582ð7Þ ps. Its theoretical error is computed
combining in quadrature the parametric uncertainty that
results from the fit and an additional 1.4% theoretical error
to take into account missing higher-order corrections in the
expression for the semileptonic width [20,36]. An approxi-
mate formula for jVcbj using the above τB value and
mcð3 GeVÞ is

jVcbj¼0.042316½1þ0.54ðαs−0.219Þ−0.653ðmkin
b −4.55Þ

þ0.489ðm̄cð3GeVÞ−1Þþ0.016ðμ2π−0.44Þ
þ0.058ðμ2G−0.32Þþ0.12ðρ3D−0.2Þ
−0.013ðρ3LSþ0.15Þ�; (12)

where all dimensionful quantities are expressed in GeV.
A few comments are now in order:
(i) The inclusion of the mc constraint has stabilized the

fits with respect to the ansatz for the theory correla-
tions. The only exception is represented by scenario A,
which mostly deviates in the values of μ2π and μ2G and
in the magnitude of the uncertainties. In any case,
because of the above discussion, this scenario should
be abandoned.

(ii) The low χ2 of the default fit is due to the large
theoretical uncertainties we have assumed. It may be
tempting to interpret it as evidence that the theoretical

TABLE IV. Correlation matrix for the default fit: scenario D,
Δ ¼ 0.25 GeV, mc from Ref. [11].

mkin
b m̄cð3GeVÞ μ2π ρ3D μ2G ρ3LS BRclν jVcbj
1 0.476 −0.101 0.218 0.484−0.158 −0.092 −0.443

1 −0.013 0.009 −0.014 0.004 0.012 −0.014
1 0.613 0.007 0.056 0.126 0.342

1 −0.041−0.126 0.048 0.179
1 −0.013 −0.023 −0.164

1 −0.007 0.009
1 0.461

1

TABLE V. Correlation matrix for the fit with both mc and mb
from Ref. [11], scenario D, Δ ¼ 0.25 GeV.

mkin
b m̄cð3 GeVÞ μ2π ρ3D μ2G ρ3LS BRclν jVcbj
1 0.405 −0.082 0.180 0.412−0.130−0.075−0.389

1 0.003−0.027−0.098 0.030 0.028 0.041
1 0.626 0.025 0.051 0.123 0.338

1 −0.080−0.116 0.055 0.207
1 0.013−0.008−0.120

1 −0.012−0.007
1 0.463

1

TABLE III. Global fits with mc constraints. Scenario D has Δ ¼ 0.25 GeV. All parameters except mc are in the kinetic scheme with
cutoff at 1 GeV. The definition ofmc and the use of anmb constraint are marked in the first column, directly under the reference for their
constraints.

scenario mkin
b mc μ2π ρ3D μ2G ρ3LS BRclν (%) 103jVcbj

D [11] m̄cð3 GeVÞ 4.541 0.987 0.414 0.154 0.340 −0.147 10.65 42.42
0.023 0.013 0.078 0.045 0.066 0.098 0.16 0.86

A [11] m̄cð3 GeVÞ 4.540 0.987 0.454 0.167 0.234 −0.078 10.45 41.85
0.014 0.013 0.035 0.022 0.040 0.085 0.13 0.74

B [11] m̄cð3 GeVÞ 4.542 0.987 0.457 0.184 0.290 −0.135 10.51 42.15
0.017 0.013 0.056 0.035 0.056 0.095 0.14 0.77

C [11] m̄cð3 GeVÞ 4.539 0.987 0.415 0.155 0.336 −0.147 10.65 42.45
0.022 0.013 0.073 0.043 0.066 0.098 0.16 0.86

D [11] m̄cð3 GeVÞ, mb 4.538 0.986 0.415 0.153 0.336 −0.145 10.65 42.46
0.018 0.012 0.078 0.045 0.064 0.098 0.16 0.84

D [13] m̄cð3 GeVÞ 4.549 0.996 0.413 0.154 0.339 −0.146 10.65 42.40
0.029 0.026 0.078 0.045 0.066 0.098 0.16 0.87

D [11] mkin
c 4.548 1.092 0.428 0.158 0.344 −0.146 10.66 42.24

0.023 0.020 0.079 0.045 0.066 0.098 0.16 0.85

D [11] m̄cð2 GeVÞ, mb 4.553 1.088 0.428 0.155 0.328 −0.139 10.67 42.42
0.018 0.013 0.079 0.045 0.064 0.098 0.16 0.83
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errors have been overestimated. However, higher-
order corrections may effectively shift the parameters
of the Oð1=m2

bÞ and Oð1=m3
bÞ contributions. If we

want to maintain the formal definition of these
parameters, and to be able to use them elsewhere,
we therefore have to take into account the potential
shift they may experience because of higher-order
effects.

(iii) The third hadronic moment by Delphi was neglected
in previous analyses in the kinetic scheme. Its main
effect on our default fit is to decrease ρ3D by about 10%
and μ2π by about 3%.

(iv) The fits with a constraint on mc are quite stable with
respect to a change of inputs. In particular, we have
found small differences when experimental data at
high Ecut are excluded and when only hadronic or
leptonic moments are considered. While the results for
the heavy quark masses do not change appreciably, the
results for the OPE parameters change within errors.
We show in Fig. 2 the projection onto the μ2π − ρ3D
plane of the default fit with/without moments at Ecut >
1.2 GeV and with only leptonic and only hadronic
moments.

(v) One may wonder whether the inclusion of moments
measured at different values of Ecut really benefits the
final accuracy. We have run our default fit with only
one Ecut for each moment per experiment and found
slightly larger errors (26 MeVon mb and 0.1 GeV2 on
μ2π) than when we use the full set of data. The benefit is
therefore minor but not negligible. Of course, the
inclusion of moments at different cuts plays a much
more important role in scenarios A and B.

(vi) In the kinetic scheme, the inequalities μ2πðμÞ ≥ μ2GðμÞ,
ρ3DðμÞ ≥ −ρ3LSðμÞ hold at arbitrary values of the cutoff
μ. The central values of the fits always satisfy the
inequalities.

(vii) The value of jVcbj is generally larger than in previous
analyses. This is mostly due to the higher BRclν, as

can be seen in Table III. Indeed, the low value of

BRclν is the most distinctive feature of scenarios A

and B and the most relevant for the jVcbj determi-

nation. It is worth noting that the latest CKM global fit

[1] gives jVcbj ¼ 0.04273ð77Þ, with a marked pref-

erence for a high value of jVcbj.
(viii) The Oðα2sÞ perturbative expansion for the b → clν

width has relatively large coefficients when
m̄cð3 GeVÞ is employed, while the situation improves
in case one uses m̄cð2 GeVÞ or mkin

c ð1 GeVÞ; see the
appendix of Ref. [20]. We have briefly studied
what happens with m̄cð2 GeVÞ: the answer depends
little on the way one computes it from
m̄cð3 GeVÞ ¼ 0.986ð13Þ GeV. Using three-loop
renormalization-group evolution leads to
m̄cð2 GeVÞ ¼ 1.091ð14Þ GeV, and in scenario D,
one gets the results in the last row of Table III, with
jVcbj very close to the other fits. Table III also reports
results for a fit to the charm mass expressed in the
kinetic scheme. In this case, we employ scenario D as in
the default fit and use a constraint on mkin

c ð1 GeVÞ
derived from the m̄cð3 GeVÞ determination of Ref. [11].
Using the translation formula given in Ref. [20], we
obtain mkin

c ð1 GeVÞ ¼ 1.091� 0.020 GeV. The value
of the BRclν and of jVcbj are consistent with the results
of the MS scheme fits.

Because of strong correlations, the measurements listed
in Table I are only a subset of all the measured moments. To
gain a visual appreciation of the quality of the default fit
and to see how well it agrees also with the measurements
that are not included, we show in Figs. 3 and 4 the leptonic
and hadronic moments measurements compared with their
theoretical prediction with theory uncertainty.
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FIG. 2 (color online). 1σ projections on the μ2π − ρ3D plane of the default fit. Left: with (blue) and without (red) moments measured at
Ecut > 1.2 GeV; right: with only hadronic moments (blue) and only leptonic moments (red).
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V. IMPLICATIONS OF THE DEFAULT FIT

A. Semileptonic phase space ratio

It is particularly convenient to normalize the branching
fraction of the rare decays B → Xsγ and B → Xslþl− to
the semileptonic one, BRclν. In this context, the semi-
leptonic phase space ratio

C ¼
����Vub

Vcb

����2 Γ½B̄ → Xceν̄�
Γ½B̄ → Xueν̄�

(13)

is usually factorized [37–40]. C can be calculated using the
OPE and the results of the fit to the semileptonic moments.

In principle, the B → Xulν̄ width is also sensitive to weak
annihilation (WA) contributions, see, e.g., Ref. [40], which
are poorly known but cancel out in the rare decay width. As
far as the normalization of rare decays is concerned, WA
effects can therefore be ignored. Even neglecting WA,
however, the value of C does depend on the scale at which
the WA matrix element is assumed to vanish. In the
following, we follow Ref. [40] and use μWA ¼ mb=2.
In Ref. [40], C was computed in the kinetic scheme,

based on the fits performed by HFAG at that time. The
result was C ¼ 0.546� 0.016ðpertÞ � 0.017ðHQEÞ, where
the first uncertainty refers to higher-order perturbative
contributions and the second is associated with the
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semileptonic fit. A different result, C ¼ 0.582� 0.016,
was reported in Ref. [8] in the 1S scheme; see also the first
paper of Ref. [39] for additional details. The central value
has already been converted to our convention with
μWA ¼ mb=2. The discrepancy between these two
values has now considerably reduced, as we will see in
a moment.
To compute C with our default fit, we need to adapt the

calculation of Ref. [40] to the use of a charm mass in the
MS scheme at μ ¼ 2 or 3 GeV. Here, we give the two
corresponding approximate formulas,

C ¼ gðρÞf0.903 − 0.595δαs þ 0.0405δb

− 0.1137ðm̄cð2 GeVÞ − 1.05 GeVÞ
− 0.0184μ2G − 0.199ρ3D þ 0.004ρ3LSg; (14)

C ¼ gðρÞf0.849 − 0.92δαs þ 0.0596δb

− 0.2237ðm̄cð3 GeVÞ − 1 GeVÞ − 0.0167μ2G

− 0.203ρ3D þ 0.004ρ3LSg; (15)

where gðρÞ¼1−8ρþ8ρ3−ρ4−12ρ2 ln ρ, ρ ¼ ðmc=mbÞ2,
δαs ¼ αsð4.6 GeVÞ − 0.22, and δb ¼ mb − 4.55 GeV. The
approximate formulas reproduce the complete calculation
to better than 0.4% in the range 4.45 < mb < 4.65 GeV,
0.9<m̄cð3GeVÞ<1.1GeV, 0.95<m̄cð2GeVÞ<1.15GeV.
Using our default fit, we obtain

C ¼ 0.574� 0.008; (16)

with an additional ∼3% theoretical error. The result is
identical if we include mb from Ref. [11] in the fit. In
scenario B with both mc;b from Ref. [11], we get
C ¼ 0.572ð8Þ. In comparison with Ref. [40], the para-
metric uncertainty has reduced by a factor of 2, mostly
thanks to the new charm mass constraint, and the central
value has increased by about 1σ. Our result is in good
agreement with that of Ref. [8].
One may worry that the perturbative series of C in terms

of m̄cð3 GeVÞ has relatively large coefficients, as witnessed
by the strong αs dependence in Eq. (15), and that it likely
involves large Oðα3sÞ terms. In this respect, the situation is
somewhat better if one employs the kinetic charm mass or
m̄cð2 GeVÞ; see Eq. (14). Evolving m̄cð3 GeVÞ ¼
0.986ð13Þ GeV [11] down to 2 GeV, and using
m̄cð2GeVÞ¼ 1.091ð14ÞGeV and mkin

b ¼ 4.533ð32Þ GeV
as constraints in a fit to m̄cð2 GeVÞ, we get

C ¼ 0.566� 0.008; (17)

again with additional 3% theoretical uncertainty. This is
compatible with the result in Eq. (16) and might be
preferred as a reference value.

Let us now address the reasons behind the shift of C with
respect to Ref. [40], due only to the different set of inputs.
The fits we present in this paper, mostly because of the mc
constraint, have significantly lower mb and mc than those
used in Ref. [40]. Figure 1 of Ref. [40] shows that by
lowering the heavy quark masses one increases C and that
heavy quark masses new central values lead to C ≈ 0.57. It
should also be stressed that in the absence of the mc
constraint option A for the theoretical correlations leads to
higher mb and mc and to artificially smaller errors than B,
C, and D [10]. Therefore, previous fits in the kinetic scheme
preferred a lower C and underestimated its uncertainty. The
analogous effect on jVcbj was negligible. This is also the
main reason for the discrepancy between the values of C in
Refs. [40] and [8]. There are other differences between
these two analyses (experimental inputs, scheme, etc.), but
this is the most important component.
Of course, the factor C is just one component of the

calculation of rare B decays. What actually enters inclusive
B decays is BRclν=C, and there are additional power-
suppressed corrections that affect the width and depend on
the same parameters that determine C, as well as charm
loops in the perturbative corrections. As precision
increases, it is no longer obvious that the factorization
of C is still advantageous, except as a bookkeeping device.
Nevertheless, the results of our fit, with the complete
correlation matrix, are all one needs for a careful analysis
of the parametric uncertainty in those cases.
Finally, it is worth reminding the reader that, in the case

of B → Xsγ, it is often necessary to extrapolate measure-
ments performed with a cut on the photon energy higher
than about 1.6 GeV to lower photon energies, at which the
local OPE is expected to work better. This extrapolation can
be performed using different techniques [41], but it
crucially depends on precise HQE parameters, namely,
on the results of semileptonic fits.

B. Local contributions to the zero-recoil sum rule

The B → D�lν form factor at zero recoil can be
estimated using heavy quark sum rules [6,42]. The form
factor F ð1Þ is obtained by separating the elastic B → D�
transition contribution from the total inelastic transition at
zero recoil,

I0ðεMÞ ¼ F 2ð1Þ þ IinelðεMÞ; (18)

where IinelðεMÞ is related to the sum of the differential
decay probabilities into the excited states with mass up to
MD� þ εM in the zero-recoil kinematics.
The OPE allows us to calculate the amplitude I0ðεMÞ in

the short-distance expansion, provided jεj is sufficiently
large compared to the ordinary hadronic mass scale. Setting
ε ¼ μkin,

I0ðμkinÞ ¼ ξpertA ðμkinÞ − Δ1=m2 − Δ1=m3 þ � � � ; (19)
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where the ellipses stand for higher-order contributions and
ξpertA represents a perturbative contribution. The latter was

computed in Ref. [6] to Oðα2sÞ:
ffiffiffiffiffiffiffiffi
ξpertA

q
ð0.75 GeVÞ ¼

0.98� 0.01. The leading power contributions to I0 were
calculated in Refs. [42] to order 1=m2

Q and in Ref. [43] to
order 1=m3

Q and read

Δ1=m2 ¼ μ2G
3m2

c
þμ2π−μ2G

4

�
1

m2
c
þ 2

3mcmb
þ 1

m2
b

�
;

Δ1=m3 ¼ρ3D−1
3
ρ3LS

4m3
c

þ 1

12mb

�
1

m2
c
þ 1

mcmb
þ 3

m2
b

�
ðρ3Dþρ3LSÞ:

In the kinetic scheme, the nonperturbative parameters μ2π ,
μ2G, ρ

3
D, and ρ3LS all depend on the hard Wilsonian cutoff

μkin. Since the heavy quark expansion of I0 involves inverse
powers of mc, the cutoff must satisfy μkin ≪ 2mc, and it is
better to have it lower than 1 GeV. We therefore take the
values of the OPE parameters extracted from our default fit
with mc in the kinetic scheme, evolve them down to
μkin ¼ 0.75 GeV, and find

Δ1=m2 ¼ 0.084� 0.017; Δ1=m3 ¼ 0.021� 0.008;

(20)

and for the sum,

Δ1=m2 þ Δ1=m3 ¼ 0.104� 0.023: (21)

If we use scenario B, we get a slightly larger value
0.111� 0.016, closer to the preliminary result 0.118�
0.015 given in Ref. [6] and obtained using that scenario.
The quantity in Eq. (21) is an important ingredient of the
heavy quark sum rule estimate of F ð1Þ; the present update
does not affect significantly the results of Ref. [6].

C. Impact on inclusive jVubj determination

To get a rough estimate of the precision that can be
reached applying the results of our default fit to the
semileptonic B → Xulν analyses, we use the information
given in the kinetic scheme analysis of Ref. [44]. Recent
experimental studies have considered lower cutoffs on the
lepton momentum as low as 1 GeV, which is very close to
the total decay width and for which a local OPE description
is perfectly adequate. Therefore, we take Eq. (45) of
Ref. [44] and compute the parametric uncertainty on the
total B → Xulν width using the results of the default fit.
We obtain a 2.2% error that translates into a 1.1% para-
metric uncertainty on jVubj. A slightly smaller uncertainty,
1.8%, is obtained if one employs a fit that also includes the
constraint on mb from Ref. [11]. Since the uncertainty is
dominated by that of mb, better determinations of this mass
will result in further reduction of the parametric error.

In summary, the parametric uncertainty on the total
B → Xulν width is about 2% and can be reduced in the
future; it will have to be considered together with a ≳1%
theoretical uncertainty. As mentioned above, this should
essentially hold even when a lower cut on the lepton
momentum around 1 GeV is applied. On the other hand, for
higher cuts, the local OPE is no longer sufficient, and the
sensitivity to mb gets stronger; these analyses will benefit
from a better determination of mb even more.

VI. SUMMARY

In this paper, we have reassessed the whole strategy of
global fits to the semileptonicmoments.We have shown that
the results depend sensitively not only on the estimate of the
theoretical uncertainties but also on the assumptions about
their correlation. We have studied the impact of precise
determinations of the heavy quarkmasses from independent
data on the global fits and shown that their use leads to more
precise results, which depend less on the assumptions on the
theoretical correlations. Using a determination of mc with
13 MeV uncertainty, we were able to determine mb within
about20MeV, ingoodagreement andcompetitivewith some
of the most precise mb determinations. In the absence of
external constraints on the heavy quark masses, the semi-
leptonic moments determine their difference with a 20MeV
uncertainty; see Eq. (9). This is a robust NNLO relation that
we find stable against theoretical assumptions.
The value of jVcbj that we obtain is higher than in

previous analyses but compatible with the prediction of a
global CKM fit in the Standard Model [1]; it has a total 2%
accuracy, which is dominated by theoretical errors. We
have also studied the impact of the new fits on the
calculation of the semileptonic phase space ratio C, on
the power corrections to the zero-recoil sum rule, and on the
extraction of jVubj.
Theoretical uncertainties are the major obstacle to an

accurate determination of jVcbj using inclusive semilep-
tonic B decays. Our theoretical errors are essentially
determined by a conservative estimate of the dominant
sources of higher-order corrections. There are therefore
good prospects for improvement, related to the completion
of the calculation of Oðαsμ2G=m2

bÞ and to the inclusion of
the Oð1=m4;5

Q Þ corrections. A more significant reduction
of the error on jVcbj will also require a calculation of
perturbative corrections to the coefficient of the Darwin
operator. In contrast, the experimental situation is much
better at the moment and will further improve at Belle II.
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