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We study the effect of scalar leptoquarks on some rare decays of Bs mesons involving the quark level
transitionb → s lþl−. In particularwe consider thedecaysBs → μþμ−, B̄0

d → Xsμ
þμ− andBs → ϕμþμ−. The

leptoquark parameter space is constrained using the recently measured branching ratio of the
Bs → μþμ− process at LHCb and CMS experiments. Using such parameters we obtain the branching ratio,
forward-backward asymmetry and the CP asymmetry parameters in the angular distribution of Bs → ϕ μþμ−
process.
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I. INTRODUCTION

The standard model (SM) of electroweak interaction is
very successful in explaining the observed data so far and is
further supported by the recent discovery of a Higgs-like
boson in the mass range of 126 GeV. But still there are many
reasons to believe that it is not the ultimate theory of nature,
rather some low-energy limit of some more fundamental
theory whose true nature is not yet well understood. It is
therefore an ideal time to test the predictions of the standard
modelmore carefully and try to identify the nature of physics
beyond it. If there would be new physics (NP) at the TeV
scale associated with the hierarchy problem, it is natural to
expect that it would first show up in the flavor sector and in
this context the rare decays of B mesons induced by flavor
changing neutral current (FCNC) transitions play a very
crucial role. The FCNC transitions are one-loop suppressed
in the SM and thus provide an excellent testing ground to
look for possible existence of new physics.
In this paper we would like to investigate some rare decay

modes of Bs meson using the scalar leptoquark (LQ) model.
The study ofBs meson has attracted a lot of attention in recent
times as largenumber ofBsmesonsareproduced in theLHCb
experiment and thiswould open up the possibility to study the
rare decays of Bs meson with high statistical precision. The
most important and sought after rare decay mode is theBs →
μþμ− process mediated by the FCNC transition b → s, has
been recently observed by the LHCb [1] and CMS [2]
Collaborations. This mode is very interesting as it is theo-
retically very clean and highly suppressed in the standard
model and hencewell suited for constraining the new physics
parameter space. Another important rare decay channel
mediated by the quark level transition b → sμþμ− is the
inclusive decay process B̄0

d → Xsμ
þμ−. The integrated

branching ratio for this process has been measured by both
Belle [3] andBABAR [4] Collaborations. It is expected that in
the low-q2 region (1 GeV2 ≤ q2 ≤ 6 GeV2) as well as in the
high q2 region (q2 ≥ 14.4 GeV2) the theoretical predictions
are dominated by perturbative contributions and hence a
theoretical precision of order 10% is in principle possible [5].

Wewill use the measured branching ratios of these processes
to constrain the leptoquark parameters and subsequently
apply these parameters to study the semileptonic rare decay
mode Bs → ϕμþμ−.
Leptoquarks are color-triplet bosons that can couple to a

quark and a lepton at the same time and can occur in various
extensions of the SM [6]. Scalar leptoquarks are expected
to exist at the TeV scale in extended technicolor models [7]
as well as in models of quark and lepton compositeness [8].
The general classifications of leptoquark models are dis-
cussed in [9] and the phenomenology of scalar leptoquarks
has been studied extensively in the literature [10–12]. Here,
we will consider the model where leptoquarks can couple
only to a pair of quarks and leptons and thus may be inert
with respect to proton decay. In such cases, proton decay
bounds would not apply and leptoquarks may produce
signatures in other low-energy phenomena [11].
The paper is organized as follows. In Sec. II we briefly

discuss the effective Hamiltonian describing the process
b → slþl−. The new contributions arising due to the
exchange of scalar leptoquark are presented in Sec. III. We
present the rare decaymodesBs → μþμ− and B̄0

d → Xsμ
þμ−

in Secs. IVand V, respectively, and obtain the constraints on
leptoquark parameters. The decay mode Bs → ϕμþμ− is
discussed in Sec. VI, and Sec. VII contains the conclusion.

II. EFFECTIVE HAMILTONIAN FOR b → slþl−
PROCESS IN THE STANDARD MODEL

Within the standard model the effective Hamiltonian
describing the quark level transition is given as [13]

Heff ¼−4GFffiffiffi
2

p VtbV�
ts

�X6
i¼1

CiðμÞOi

þC7

e
16π2

ðs̄σμνðmsPLþmbPRÞbÞFμν

þCeff
9

α

4π
ðs̄γμPLbÞl̄γμlþC10

α

4π
ðs̄γμPLbÞl̄γμγ5l

�
; (1)
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where GF is the Fermi constant and Vqq0 are the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements, α is the fine
structure constant, PL;R ¼ ð1∓γ5Þ=2 and Ci’s are the
Wilson coefficients. The values of the Wilson coefficients
are calculated at the next-to-next-leading order by matching
the full theory to the effective theory at the electroweak
scale and subsequently solving the renormalization group
equation to run them down to the b-quark mass scale, i.e.,
μb ¼ 4.8 GeV [14].
The coefficient Ceff

9 contains a perturbative part and a
resonance part which comes from the long distance effects
due to the conversion of the real cc̄ into the lepton pair lþl−.
Thus, Ceff

9 can be written as

Ceff
9 ¼ C9 þ YðsÞ þ Cres

9 ; (2)

where s ¼ q2 and the function YðsÞ denotes the perturba-
tive part coming from one-loop matrix elements of the four
quark operators and is given in Ref. [13]. The long distance
resonance effect is given as [15]

Cres
9 ¼ 3π

α2
ð3C1 þ C2 þ 3C3 þ C4 þ 3C5 þ C6Þ

×
X

Vi¼J=ψ ;ψ 0
κ
mVi

ΓðVi → lþl−Þ
m2

Vi
− s − imVi

ΓVi

; (3)

where the phenomenological parameter κ is taken as
1.7 and 2.4 for the two lowest two c̄c resonances J=ψ
and ψ 0 [14].

III. NEW PHYSICS CONTRIBUTIONS DUE TO
SCALAR LEPTOQUARK EXCHANGE

In the leptoquark model the effective Hamiltonian
describing the process b → slþl− will be modified due
to the additional contributions arising from the exchange of
leptoquarks. Here, we will consider the minimal renorma-
lizable scalar leptoquark models [11], where the standard
model is augmented only by one additional scalar repre-
sentation of SUð3Þ × SUð2Þ ×Uð1Þ and which do not
allow proton decay at the tree level. It has been shown
in [11] that there are only two models which can satisfy this
requirement. In these models the leptoquarks have the
representation as X ¼ ð3; 2; 7=6Þ and X ¼ ð3; 2; 1=6Þ
under the SUð3Þ × SUð2Þ ×Uð1Þ gauge group. Our aim
here is to consider these scalar leptoquarks which poten-
tially contribute to the b → sμþμ− transitions and constrain
the underlying couplings from experimental data on
Bs → μþμ− and B̄0

d → Xsμ
þμ−. Although the decay modes

B̄0
d → K̄0μþμ− and B̄0

d → K�0μþμ− are also mediated by
the same quark level transition b → sμþμ−, we do not
consider the measured branching ratios of such processes to
constrain the NP parameter space as these measurements
involve additional uncertainties due to the form factors.
However, we will comment on the recent observation of

several anomalies on angular observables in the rare decay
B → K�0μþμ− by the LHCb Collaboration [16].
Now we consider all possible renormalizable interactions

of such leptoquarks with SM matter fields consistent with
the SM gauge symmetry in the following subsections.

A. Model I: X ¼ ð3; 2; 7=6Þ
In this model the interaction Lagrangian for the coupling

of scalar leptoquark X ¼ ð3; 2; 7=6Þ to the fermion bilin-
ears is given as [11]

L ¼ −λiju ūiRXTϵLj
L − λije ēiRX

†Qj
L þ H:c:; (4)

where i, j are the generation indices, QL and LL are the
left-handed quark and lepton doublets, uR and eR are the
right-handed up-type quark and charged lepton singlets and
ϵ ¼ iσ2 is a 2 × 2 matrix. More explicitly these multiplets
can be represented as

X¼
�
Vα

Yα

�
; LL¼

�
νL

eL

�
; and ϵ¼

�
0 1

−1 0

�
: (5)

After expanding the SU(2) indices the interaction
Lagrangian becomes

L ¼ −λiju ūiαRðVαe
j
L − Yαν

j
LÞ

− λije ēiRðV†
Lu

j
αL þ Y†

αd
j
αLÞ þ H:c: (6)

Thus, from Eq. (6), one can obtain the contribution to the
interaction Hamiltonian for the b → sμþμ− process after
Fierz rearrangement as

HLQ ¼ λ23μ λ22�μ

8M2
Y

½s̄γμð1 − γ5Þb�½μ̄γμð1þ γ5Þμ�

≡ λ23μ λ22�μ

4M2
Y

ðO9 þO10Þ; (7)

which can be written analogous to the SM effective
Hamiltonian (1) as

HLQ ¼ −GFαffiffiffi
2

p
π
VtbV�

tsðCNP
9 O9 þ CNP

10 O10Þ (8)

with the new Wilson coefficients

CNP
9 ¼ CNP

10 ¼ − π

2
ffiffiffi
2

p
GFαVtbV�

ts

λ23μ λ22�μ

M2
Y

: (9)

B. Model II: X ¼ ð3; 2; 1=6Þ
Analogous to the previous subsection the interaction

Lagrangian for the coupling of X ¼ ð3; 2; 1=6Þ leptoquark
to the fermion bilinear can be given as
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L ¼ −λijd d̄iRXTϵLj
L þ H:c:; (10)

where the notations used are the same as the previous case.
Expanding the SU(2) indices one can obtain the interaction
Lagrangian as

L ¼ −λijd d̄αRðVαe
j
L − Yαν

j
LÞ þ H:c: (11)

After performing the Fierz transformation the interaction
Hamiltonian describing the process b → sμþμ− is given as

HLQ ¼ λ22s λ32�b

4M2
V

½s̄γμPRb�½μ̄γμð1 − γ5Þμ�

¼ λ22s λ32�b

4M2
V

ðO0NP
9 −O0NP

10 Þ; (12)

where O0
9 and O0

10 are the four-fermion current-current
operators obtained from O9;10 by making the replacement
PL↔PR. Thus, the exchange of the leptoquark X ¼
ð3; 2; 1=6Þ gives new operators with the corresponding
Wilson coefficients as

C0NP
9 ¼ −C0NP

10 ¼ π

2
ffiffiffi
2

p
GFαVtbV�

ts

λ22s λ32�b

M2
V

: (13)

After obtaining the new physics contributions to the
process b → sμþμ−, we will proceed the constrain the
new physics parameter space using the recent measurement
of Bs → μþμ−.

IV. Bs → μþμ− DECAY PROCESS

The rare decay process Bs → μþμ−, mediated by the
FCNC transition b → s, is strongly helicity suppressed in
the standard model. Furthermore, it is very clean and the
only nonperturbative quantity involved is the decay con-
stant of Bs meson which can be reliably calculated by the
well known nonperturbative methods such as QCD sum
rules, lattice gauge theory, etc. Therefore, it is believed to
be one of the most powerful tools to look for new physics
beyond the standard model. This process has been very well
studied in the literature and in recent times also it has
attracted a lot of attention [17–22]. Therefore, here we will
quote the important results.
The most general effective Hamiltonian describing this

process

Heff ¼
GFαffiffiffi
2

p
π
VtbV�

ts½Ceff
10O10 þ C0

10O
0
10�; (14)

where Ceff
10 ¼ CSM

10 þ CNP
10 and C0

10 ¼ C0NP
10 . The branching

ratio for this process is given as

BRðBs → μþμ−Þ ¼ G2
F

16π3
τBs

α2f2Bs
mBs

m2
μjVtbV�

tsj2

× jCeff
10 − C0

10j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

μ

m2
Bs

s
: (15)

Now using α ¼ 1=128, jVtbV�
tsj ¼ 0.0405� 0.0008,

fBs
¼ 227� 8 MeV [19], CSM

10 ¼ −4.134 [18], and the
particle masses and lifetime of Bs meson from [23] we
obtain the SM branching ratio for this process as

BRðBs → μþμ−Þ ¼ ð3.29� 0.19Þ × 10−9; (16)

which is consistent with the latest SM prediction BrðBs →
μþμ−Þ ¼ ð3.23� 0.23Þ × 10−9 [19]. The branching ratio
for this mode has recently been measured by both LHCb [1]
and CMS [2] Collaborations. Analyzing the data corre-
sponding to an integrated luminosity of 1 fb−1 at

ffiffiffi
7

p
TeV

and 2 fb−1 at
ffiffiffi
8

p
TeV the LHCb Collaboration obtained

the time-integrated branching ratio as

BRðBs → μþμ−Þ ¼ ð2.9þ1.1−1.0Þ × 10−9: (17)

The CMS Collaboration [2] also obtained analogous result

BRðBs → μþμ−Þ ¼ ð3.0þ1.0−0.9Þ × 10−9; (18)

where they have used the data samples corresponding to
integrated luminosities of 5 and 20 fb−1 at

ffiffiffi
s

p ¼ 7 and
8 TeV, respectively. The weighted average of these two
measurements yields

BRðBs → μþμ−Þ ¼ ð2.95� 0.71Þ × 10−9; (19)

which is consistent with the latest SM prediction (16), but
certainly it does not rule out the possibility of new physics
in this mode. While new physics can still affect this decay
mode, certainly its contribution is not the dominant one.
However, as discussed in Ref. [17], in the experiment the

time-integrated untagged decay rate is measured, whereas
in the above theoretical calculation the effect of meson
oscillation is not taken into account. Therefore, while
comparing the SM prediction for Bs → μþμ− decay rate
with the experimental result one should take into account
the sizable width difference ΔΓs between Bs mass eigen-
states, i.e.,

ys ≡ ΓðsÞ
L − ΓðsÞ

H

ΓðsÞ
L þ ΓðsÞ

H

¼ ΔΓs

2Γs
¼ 0.087� 0.014; (20)

where Γs ¼ τ−1Bs
denotes the average Bs decay width.

Hence, the experimental result is related to the theoretical
prediction as

EFFECT OF SCALAR LEPTOQUARKS ON THE RARE … PHYSICAL REVIEW D 89, 014020 (2014)

014020-3



BRthðBs → μþμ−Þ ¼
�

1 − y2s
1þAΔΓys

�
BRðBs → μþμ−Þexp;

(21)

where the observable AΔΓ equals þ1 in the SM. Thus,
using the experimental value of ys we obtain the branching
ratio in the standard model

BRðBs → μþμ−ÞthjSM ¼ ð3.60� 0.21Þ × 10−9: (22)

We will now consider the effect of scalar leptoquarks in
this mode. One can write the transition amplitude for this
process from Eq. (14) as

AðB0
s → μþμ−Þ ¼ hμþμ−jHeff jB0

si

¼ − GFffiffiffi
2

p
π
VtbV�

tsαfBs
mBs

mμCSM
10 P; (23)

where

P≡ C10 − C0
10

CSM
10

¼ 1þ CNP
10 − C0NP

10

CSM
10

¼ 1þ reiϕ
NP
; (24)

with

reiϕ
NP ¼ ðCNP

10 − C0NP
10 Þ=CSM

10 ; (25)

denotes the new physics contribution and ϕNP is the relative
phase between SM and the NP couplings. In general
P≡ jPjeϕP carries the CP violating phase ϕP. The phases
ϕP and ϕNP are related to each other by the relation

tanϕP ¼ r sinϕNP

1þ rϕNP : (26)

As discussed in Sec. III, the exchange of the leptoquark
Xð3; 2; 7=6Þ gives new contribution to C10 and Xð3; 2; 1=6Þ
gives additional contributionC0

10, and the branching ratio in
both cases will be

BRðBs→μþμ−Þth¼
�
1þAΔΓ

1−y2s

�
BRSMð1þr2−2rcosϕNPÞ:

(27)

In the leptoquark model the observable AΔΓ becomes [17]

AΔΓ ¼ cos 2ϕP: (28)

In order to find the constrain on the combination of LQ
couplings we require that each individual leptoquark
contribution to the branching ratio does not exceed the
experimental result. Now using the SM value from (16), we
show in Fig. 1 the allowed region in r − ϕNP plane which is
compatible with the 2σ range of the experimental data.
From the figure one can see that for 0 ≤ r ≤ 0.1 the entire
range for ϕNP is allowed, i.e.,

0 ≤ r ≤ 0.1; for 0 ≤ ϕNP ≤ 2π: (29)

V. ANALYSIS OF B̄0
d → Xsμþμ− MODE

Now we would like to constrain the NP couplings from
the measured branching ratio of the inclusive decay
B̄0
d → Xsμ

þμ−. The integrated branching ratio for this
process has been measured by both Belle [3] and
BABAR [4] Collaborations and the average values of these
measurements in the two regions are [5]

BRðB0
d → Xsμ

þμ−Þ ¼ ð1.60� 0.50Þ × 10−6 low q2

¼ ð0.44� 0.12Þ × 10−6 high q2;

(30)

where the low-q2 and high-q2 regions correspond to
1 GeV2 ≤ q2 ≤ 6 GeV2 and q2 ≥ 14.4 GeV2, respectively.
The decay mode has been very well studied in the literature
and here we are presenting only the main results. The
differential branching ratio for this process in the standard
model is given as [24]

dBR
ds1

����
SM

¼ B0

8

3
ð1 − s1Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4t2

s1

s
×

�
ð2s1 þ 1Þ

�
2t2

s1
þ 1

�
jCeff

9 j2 þ
�
2ð1 − 4s1Þt2

s1
þ ð2s1 þ 1Þ

�
jC10j2

þ 4

�
2

s1
þ 1

��
2t2

s1
þ 1

�
jC7j2 þ 12

�
2t2

s1
þ 1

�
ReðC7Ceff�

9 Þ
�
; (31)
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FIG. 1 (color online). The allowed region in the r − ϕNP

parameters space obtained from the BRðBs → μþμ−Þ.
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where t ¼ mμ=m
pole
b and s1 ¼ q2=ðmpole

b Þ2. The normali-
zation constant B0 is related to BRðB̄ → Xceν̄eÞ through

B0 ¼
3α2BRðB̄ → Xceν̄eÞ
32π2fðm̂cÞκðm̂cÞ

jVtbV�
tsj2

jVcbj2
; (32)

where m̂c ¼ mpole
c =mpole

b . fðm̂cÞ is the lowest order phase
space factor for the B̄ → Xceν̄ process, i.e.,

fðm̂cÞ ¼ 1 − 8m̂2
c þ 8m̂6

c − m̂8
c − 24m̂4

c ln m̂c; (33)

and the function κðm̂cÞ is the power correction to
BRðB̄ → Xceν̄Þ, which includes both the OðαsÞ QCD
corrections and the leading order ð1=m2

bÞ power corrections

κðm̂cÞ ¼ 1 − 2αsðmbÞ
3π

gðm̂cÞ þ
hðm̂cÞ
2m2

b

: (34)

Here the two functions are given as

gðm̂cÞ ¼
�
π2 − 31

4

�
ð1 − m̂cÞ2 þ

3

2
;

hðm̂cÞ ¼ λ1 þ
λ2

fðm̂cÞ
½−9þ 24m̂2

c − 72m̂4
c þ 72m̂6

c − 15m̂8
c

− 72m̂8
c − 72m̂4

c ln m̂c�; (35)

where λ1 and λ2 are the kinetic energy and magnetic
moment operators, respectively.
In the leptoquark model there will be additional con-

tribution arising due to the exchange of leptoquarks which
will introduce the new couplings CNP

9 , CNP
10 , C

0NP
9 and C0NP

10

as discussed in Sec. III. Including these NP contributions
and neglecting the subleading terms which are suppressed
by mμ=mb and ms=mb, the branching ratio can be given as

�
dBR
ds1

�
Total

¼
�
dBR
ds1

�
SM

þ B0

�
16

3
ð1 − s1Þ2ð1þ 2s1Þ½ReðCeff

9 CNP�
9 þ ReðC10CNP�

10 �

þ 8

3
ð1 − s1Þ2ð1þ 2s1Þ½jCNP

9 j2 þ jCNP
10 j2 þ jC0NP

9 j2 þ jC0NP
10 j2� þ 32ð1 − s1Þ2ReðC7CNP�

10 Þ
�
: (36)

For numerical evaluation we use the input parameters as
m̂c ¼ 0.29� 0.02 [25], BRðB̄ → Xceν̄Þ ¼ ð10.1� 0.4Þ%
[23], jVtbV�

tsj=jVcbj ¼ 0.967� 0.009 [26] and the param-
eters λ1 and λ2 as λ1 ¼ −ð0.1� 0.05Þ GeV2 and λ2 ¼
0.12 GeV2 [27]. With these parameters the branching ratio
in the SM is found to be

BRðB̄→Xsμ
þμ−Þ¼ð1.92Þ�0.08Þ×10−6 low q2

¼ð0.38�0.01Þ×10−6 high q2: (37)

These predicted branching ratios are in agreement with the
corresponding experimental values within their 1σ range.

To constrain the new physics couplings coming from
the exchange of scalar leptoquarks Xð3; 2; 7=6Þ and
Xð3; 2; 1=6Þ, we assume only one type of leptoquark will
contribute at a time. As discussed in Sec. III, in the presence
of the leptoquark Xð3; 2; 7=6Þ only the NP couplings CNP

9

and CNP
10 will arise whereas for Xð3; 2; 1=6Þ the couplings

C0NP
9 and C0NP

10 will contribute. Furthermore, as shown in
Eqs. (9) and (13) the magnitudes of these couplings in each
case will be same. With the additional assumption that these
two couplings will have the same phase ϕNP and neglecting
the small phase difference between Ceff

9 and CNP
10 we obtain

the constraint equations for these NP couplings from
Eqs. (30), (36) and (37) as

CNP
10 ½ð0.58þ 0.128C10 þ 0.596C7Þ cosϕNP þ 0.02 sinϕNP� þ 0.13jCNP

10 j2 ¼ −0.32� 0.51 ðfor low q2Þ;
CNP
10 ½ð0.11þ 0.03C10 þ 0.07C7Þ cosϕNP þ 0.009 sinϕNP� þ 0.03jCNP

10 j2 ¼ 0.06� 0.12 ðfor high q2Þ: (38)

The corresponding 1σ allowed region in the jCNP
10 j–ϕNP plane is shown in Fig. 2 where green (gray) region corresponds to

the constraint coming from high-q2 bound and the magenta (black) region coming from the low-q2 limit. From the figure
one can see that the bounds coming from the high-q2 measurement is rather weak. From the low-q2 constraint one can infer
that for the value −1 ≤ CNP

10 ≤ 1 the entire range of ϕNP is allowed. These bounds can be translated to the bounds on r and
ϕNP as done for Bs → μþμ− process as

0 ≤ r ≤ 0.24; for 0 ≤ ϕNP ≤ 2π: (39)

Thus, from Eqs. (29) and (39) one can see that the bounds on NP couplings coming from BRðB̄0
d → Xsμ

þμ−Þ are slightly
weak in comparison to BRðBs → μþμ−Þ.
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Next we will consider the contributions coming from the
Xð3; 2; 1=6Þ exchange. In this case the new couplings C0NP

9

and C0NP
10 will come into picture. Proceeding in a similar

fashion as done for Xð3; 2; 7=6Þ leptoquark case, we obtain
the constraint equations for these parameters as

0.064½jC0NP
9 j2þjC0NP

10 j2�¼ ð−0.32�0.51Þ ðlowq2Þ;
0.014½jC0NP

9 j2þC0NP
10 j2�¼ ð0.06�0.12Þ ðhighq2Þ: (40)

The corresponding allowed region in C0NP
9 –C0NP

10 plane is
shown in Fig. 3, where the green (gray) region corresponds
to the bounds coming from high-q2 limit and magenta
(black) region corresponds to the low-q2 bound. Thus, from
the low-q2 bounds one can obtain the limits on C0NP

9 and
C0NP
10 as −1.5 ≤ jC0NP

9 j, jC0NP
10 j ≤ 1.5. Again translating the

above bounds into the bound on r one can obtain

0 ≤ r ≤ 0.36; (41)

which is again much weaker than the bounds coming from
Bs → μþμ− measurements. However, in our analysis we
will use relatively mild constraint, consistent with both
BRðBs → μþμ−Þ and BRðB̄0

d → Xsμ
þμ−Þmeasurements as

0 ≤ r ≤ 0.35; with 60° ≤ ϕNP ≤ 270°: (42)

This limit on r can be translated to give us the bound on
leptoquark coupling using Eqs. (9), (13) and (25) as

���� λ23μ λ22�μ

M2
Y

���� ¼
���� λ22s λ32�b

M2
V

���� ≤ 4.8 × 10−9 GeV−2: (43)

If we use the values of the couplings as jλd;ej ≈ 0.1,
allowing the perturbation theory to be valid, we get the
lower bound on the scalar leptoquark mass as

MX ≥ 1.4 TeV: (44)

It should be noted that the recent measurement by LHCb
Collaboration [16] shows several significant deviations on
angular observables in the rare decay B → K�0μþμ− from
their corresponding SM expectations. In particular an
anomalously low value of S4 at high q2 at 2.8σ level
and an opposite sign of S5 at low-q2 region at 2.4σ level.
Although it is conceivable that these anomalies are due to
statistical fluctuations or underestimated theory uncertain-
ties [28], the possible indication of new physics could not
be ruled out. It has been shown in Ref. [29] that a consistent
explanation of most of the anomalies associated with b → s
rare decays can be obtained by NP contributing simulta-
neously to the semileptonic operator O9 and its chirally
flipped counterpart O0

9 with CNP
9 ≃−ð1.0� 0.3Þ and

C0NP
9 ≃ 1.0� 0.5. However, in the leptoquark model since

CNP
9 and CNP

10 contribute simultaneously it may not be
possible to explain these anomalies.
After obtaining the allowed range for the leptoquark

coupling we will now proceed to study the semileptonic
decay process Bs → ϕμþμ−.

VI. Bs → ϕ lþl− PROCESS

Here we will consider the decay mode Bs → ϕμþμ−. At
the quark level, this decay mode proceeds through the
FCNC transition b → slþl−, which occurs only through
loops in the SM, and therefore, it constitutes a quite suitable
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FIG. 2 (color online). The allowed region in the CNP
10 − ϕNP

parameter space obtained from the BRðB̄d → Xsμ
þμ−Þ, where the

green/gray (magenta/black) region corresponds to high-q2 (low-
q2) limits.
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FIG. 3 (color online). The allowed region in the C0NP
9 − C0NP

10

parameter space obtained from the BRðB̄d → Xsμ
þμ−Þ, where

the green/gray (magenta/black) region corresponds to high-q2

(low-q2) limits.
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tool of looking for new physics. Moreover, the dileptons
present in this process allow us to formulate many
observables which can serve as a testing ground to decipher
the presence of new physics [30].
Recently the branching ratio of this decay mode has been

measured by the LHCb Collaboration [31] using the data
corresponding to an integrated luminosity of 1.0 fb−1
collected at

ffiffiffi
s

p ¼ 7 TeVas

BRðB0
s → ϕμþμ−Þ ¼ ð7.07þ0.64−0.59 � 0.17� 0.71Þ × 10−7:

(45)

They have also performed the angular analysis and deter-
mine the angular observables FL, S3, A6 and A9, which are

consistent with the standard model expectations. This
process has been very well studied in the literature, both
in the SM and in various extensions of it [32]. The
branching ratio predicted in the standard model is in the
range ð14.5–19.2Þ × 10−7 which is significantly higher
than the present experimental value (45). This deviation
may be considered as a smoking gun signal of new physics
in this mode or more generally in the processes involving
b → s transitions.
Using the effective Hamiltonian presented in Eq. (1) one

can obtain the transition amplitude for this process. The
matrix elements of the various hadronic currents between
the initial Bs meson and the final vector meson ϕ can be
parameterized in terms of various form factors as [33]

hϕðk; εÞjðV − AÞμjBsðPÞi ¼ ϵμναβε
�νPαkβ

2Vðq2Þ
mB þmϕ

− iε�μðmB þmϕÞA1ðq2Þ þ iðPþ kÞμðε�qÞ
A2ðq2Þ

mB þmϕ

þ iqμðε�qÞ
2mϕ

q2
½A3ðq2Þ − A0ðq2Þ�;

hϕðk; εÞjs̄σμνqνð1þ γ5ÞbjBsðPÞi ¼ iϵμναβε�νPαkβ2T1ðq2Þ þ ½ε�μðm2
B −m2

ϕÞ − ðε�qÞðPþ kÞμ�T2ðq2Þ

þ ðε�qÞ
�
qμ − q2

m2
B −m2

ϕ

ðPþ kÞμ
�
T3ðq2Þ; (46)

where V and A denote the vector and axial vector currents, A0, A1, A2, A3, V, T1, T2 and T3 are the relevant form factors and
q is the momentum transfer.
Thus, with Eqs. (1) and (46) the transition amplitude for Bs → ϕlþl− is given as

MðBs → ϕlþl−Þ ¼ GFα

2
ffiffiffi
2

p
π
VtbV�

tsfl̄γμl½−2Aϵμναβε�νkαqβ − iBε�μ þ iCðPþ kÞμðε� · qÞ þ iDðε� · qÞqμ�

þ l̄γμγ5l½−2Eϵμναβε�νkαqβ − iFε�μ þ iGðε� · qÞðPþ kÞμ þ iHðε� · qÞqμ�g; (47)

where the parameters A;B;…H are given as [34]

A ¼ 2ðCeff SM
9 þ CNP

9 þ C0NP
9 Þ Vðq2Þ

mB þmϕ
þ 4

mb

q2
C7T1ðq2Þ;

B ¼ ðmB þmϕÞ
�
2ðCeff SM

9 þ CNP
9 − C0NP

9 ÞA1ðq2Þ þ 4
mb

q2
ðmB −mϕÞC7T2ðq2Þ

�
;

C ¼ 2ðCeff SM
9 þ CNP

9 − C0NP
9 Þ A2ðq2Þ

mB þmϕ
þ 4

mb

q2
C7

�
T2ðq2Þ þ

q2

m2
B −m2

ϕ

T3ðq2Þ
�
;

D ¼ 4ðCeff SM
9 þ CNP

9 − C0NP
9 Þmϕ

q2
ðA3ðq2Þ − A0ðq2ÞÞ − 4C7

mb

q2
T3ðq2Þ;

E ¼ ðCSM
10 þ CNP

10 þ C0NP
10 Þ 2Vðq2Þ

mB þmϕ
;

F ¼ 2ðCSM
10 þ CNP

10 − C0NP
10 ÞðmB þmϕÞA1ðq2Þ;

G ¼ ðCSM
10 þ CNP

10 − C0NP
10 Þ 2A2ðq2Þ

mB þmϕ
;

H ¼ 4ðCSM
10 þ CNP

10 − C0NP
10 Þmϕ

q2
ðA3ðq2Þ − A0ðq2ÞÞ: (48)
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The differential decay rate is given as

dΓ
ds

¼ G2
Fα

2

214π5
jVtbV�

tsj2mBτBλ
1=2ð1; rϕ; ŝÞvlΔ; (49)

where ŝ ¼ q2=m2
B, rϕ ¼ m2

ϕ=m
2
B, vl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l =s
q

, λ≡ λð1; rϕ; ŝÞ is the triangle function and

Δ¼ 1

3rϕ
½8λm4

Bŝðð3−v2l ÞjAj2þð12rϕŝþλÞð3−v2l ÞjBj2þλ2m4
Bð3−v2l ÞjCj2þ16v2l m

4
BrϕŝλjEj2þð24rϕŝv2l þλð3−v2ÞÞjFj2

þm4
Bλð6ŝð1þrϕÞð1−v2Þ−3ŝ2ð1−v2l Þþλð3−v2ÞÞjGj2þ3λm4

Bŝ
2ð1−v2l ÞjHj2þ2Re½FG��m2

Bλðrϕð3−v2Þ
þv2l ð1þ2ŝÞ−3Þ−6Re½FH��m2

Bŝð1−v2l Þλþ6Re½GH��m4
Bŝλð1−rϕÞð1−v2Þþ2Re½BC��m2

Bλð3−v2Þðrϕþ ŝ−1Þ�:
(50)

Another observable is the lepton forward-backward asymmetry (AFB), which is also a very powerful tool for looking into
new physics signature. In particular the position of the zero value of AFB is very sensitive to the presence of new physics.
The normalized forward-backward asymmetry is defined as

AFBðsÞ ¼
R
1
0

d2Γ
dŝd cos θ d cos θ −

R
0−1 d2Γ

dŝd cos θ d cos θR
1
0

d2Γ
dŝd cos θ d cos θ þ

R
0−1 d2Γ

dŝd cos θ d cos θ
; (51)

where θ is the angle between the directions of lþ and Bs in the rest frame of the lepton pair. The forward-backward
asymmetry can also be written in the form [34]

AFBðq2Þ ¼ − 1

Δ
8m2

B

ffiffiffi
λ

p
vl ŝ Re½A�F þ B�E�: (52)

As seen from [31], the actual decay being observed is not Bs → ϕμþμ− but Bs → ϕð→ KþK−Þμþμ−. Thus, the angular
analysis of the four-body final state offers a large number of observables in the differential decay distribution [35]. The
angular distribution of the decay process B̄0

s → ϕð→ KþK−Þμþμ− can be defined by the decay angles θK , θl and Φ, where
θK (θl) denotes the angle of K− (μ−) with respect to the direction of flight of the B̄s meson in the KþK−ðμþμ−Þ center-of-
mass frame andΦ denotes relative angle of the μþμ− and the KþK− decay planes in the B̄s meson center-of-mass frame and
is given as [14]

d4Γ
dq2d cos θld cos θKdΦ

¼ 9

32π
Is1sin

2θK þ Ic1cos
2θK þ ðIs2sin2θK þ Ic2cos

2θKÞ cos 2θl þ I3sin2θKsin2θl cos 2Φ

þ I4 sin 2θK sin 2θl cosΦþ I5 sin 2θK sin θl cosΦþ ðIs6sin2θK þ Ic6cos
2θKÞ cos θl

þ I7 sin 2θK sin θl sinΦþ I8 sin 2θK sin 2θl sinϕþ I9sin2θKsin2θl sin 2Φ: (53)

The corresponding expression for CP conjugate process B0
s → ϕð→ KþK−Þμþμ− (d4Γ̄) can be obtained from (53) by the

replacement of Ii ’s by Īi’s where these observables are related to each other through

IðaÞ1;2;3;4;7 → ĪðaÞ1;2;3;4;7; IðaÞ5;6;8;9 → −ĪðaÞ5;6;8;9; (54)

with all weak phases conjugated. The angular coefficients IðaÞi are usually expressed in terms of the transversity amplitudes
which are given as [14]
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A⊥L;R ¼ N
ffiffiffiffiffiffiffi
2λ1

p �
ððCeff

9 þ CNP
9 þ C0NP

9 Þ∓ðC10 þ CNP
10 þ C0NP

10 ÞÞ Vðq2Þ
mB þmϕ

þ 2mbsC7T1ðq2Þ
�
;

A∥L;R ¼ −N ffiffiffi
2

p
ðm2

B −m2
ϕÞ
�
ððCeff

9 þ CNP
9 − C0NP

9 Þ∓ðC10 þ CNP
10 − C0NP

10 ÞÞ A1ðq2Þ
mB −mϕ

þ 2mb

s
C7T2ðq2Þ

�
;

A0L;R ¼ − N
2mϕ

ffiffiffi
s

p
�
ðCeff

9 þ CNP
9 − C0NP

9 Þ∓ðC10 þ CNP
10 − C0NP

10 ÞÞ
�
ðm2

B −m2
ϕ − sÞðmB þmϕÞA1ðq2Þ − λ1

A2ðq2Þ
mB þmϕ

�

þ 2mBC7

�
ðm2

B þ 3m2
ϕ − sÞT2ðq2Þ − λ1

m2
B −m2

ϕ

��
; (55)

At ¼ N
λ1
s
½2ðC10 þ CNP

10 − C0NP
10 Þ�A0ðq2Þ; (56)

where

N ¼ VtbV�
ts

�
G2

Fα
2

3 · 210π5m3
B

sv
ffiffiffiffiffi
λ1

p �
1=2

; (57)

with λ1 ¼ ðm2
B þm2

ϕ þ sÞ2 − 4m2
Bm

2
ϕ. With these trans-

versity amplitudes the angular coefficients are given as

Is1 ¼
2þ v2l

4
½jAL⊥j2 þ jAL

∥ j2 þ ðL → RÞ�

þ 4m2
μ

s
ReðAL⊥AR�⊥ þ AL

∥A
R�
∥ Þ;

Ic1 ¼ jAL
0 j2 þ jAR

0 j2 þ
4m2

μ

s
ðjAtj2 þ 2ReðAL

0A
R�
0 ÞÞ;

Is2 ¼
v2l
4
ðjAL⊥j2 þ jAL

∥ j2 þ ðL → RÞÞ;
Ic2 ¼ −v2l ðjAL

0 j2 þ ðL → RÞÞ;

I3 ¼
v2l
2
ðReðAL

0A
L�
∥ þ ðL → RÞÞ;

I4 ¼
v2l
2
ðReðAL

0A
L�
∥ − ðL → RÞÞ;

I5 ¼
ffiffiffi
2

p
vlðReðAL

∥A
L�⊥ − ðL → RÞÞ;

Is6 ¼ 2vðReðAL
∥A

L�⊥ − ðL → RÞÞ;
I7 ¼

ffiffiffi
2

p
vlðImðAL

0A
L�
∥ − ðL → RÞÞ;

I8 ¼
v2lffiffiffi
2

p ðImðAL
0A

L�⊥ Þ þ ðL → RÞÞ;

I9 ¼ v2l ðImðAL�
∥ AL⊥Þ þ ðL → RÞÞ: (58)

From these angular coefficients one can construct twelve
CP averaged angular coefficients SðaÞi and twelve CP
asymmetries AðaÞ

i as

SðaÞi ¼ ðIðaÞi þ ĪðaÞi Þ
. dðΓþ Γ̄Þ

dq2
;

AðaÞ
i ¼ ðIðaÞi − ĪðaÞi Þ

. dðΓþ Γ̄Þ
dq2

: (59)

All the physical observables can be expressed in terms of Si
and Ai. For example the CP asymmetry in the dilepton
mass distribution can be expressed as

ACP ¼ dðΓ − Γ̄Þ
dq2

. dðΓþ Γ̄Þ
dq2

¼ 3

4
ð2As

1 þ Ac
1Þ − 1

4
ð2As

2 þ Ac
2Þ: (60)

The q2 averages of these observables are defined as
follows:

hSðaÞi i ¼
Z

6GeV2

1GeV2

dq2ðIðaÞi þ ĪðaÞi Þ
.Z

6GeV2

1GeV2

dq2
dðΓþ Γ̄Þ

dq2
;

hAðaÞ
i i ¼

Z
6GeV2

1GeV2

dq2ðIðaÞi − ĪðaÞi Þ
.Z

6GeV2

1GeV2

dq2
dðΓþ Γ̄Þ

dq2
:

(61)

After getting familiar with the different observables asso-
ciated with Bs → ϕμþμ− decay process we now proceed
for numerical estimation. For this purpose we use the form
factors calculated in the light-cone sum rule approach [33],
where the q2 dependence of various form factors are given
by simple fits as

fðq2Þ ¼ r2
1 − q2=m2

fit

ðfor A1; T2Þ;

fðq2Þ ¼ r1
1 − q2=m2

R
þ r2
1 − q2=m2

fit

ðfor V; A0; T1Þ;

fðq2Þ ¼ r1
1 − q2=m2

fit

þ r2
ð1 − q2=m2

fitÞ2
ðfor A2; ~T3Þ: (62)

The values of the parameters r1, r2, mR and mfit are taken
from [33]. The form factors A3 and T3 are given as

A3ðq2Þ ¼
mB þmV

2mϕ
A1ðq2Þ −mB −mϕ

2mϕ
A2ðq2Þ;

T3ðq2Þ ¼
m2

B −m2
ϕ

q2
ð ~T3ðq2Þ − T2ðq2ÞÞ: (63)
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The particle masses and the lifetime of Bs meson are taken
from [23]. The quark masses (in GeV) used are mb ¼ 4.8,
mc ¼ 1.5, the fine structure coupling constant α ¼ 1=128
and the CKM matrix elements as VtbV�

ts ¼ 0.0405. Using
these values we show in Fig. 4 the variation of differential
decay rate (left panel) and the forward-backward asym-
metry (right panel) in the standard model with respect to the
dimuon invariant mass.
In the leptoquark model, this process will receive addi-

tional contribution arising from the leptoquark exchange.
Hence, in the leptoquark model the Wilson coefficients
C9;10 will receive additional contributions CNP

9;10 as well as
new Wilson C0

9;10 associated with the chirally flipped
operators O0

9;10 will also be present as already discussed
in Sec. III. The bounds on these new coefficients can be
obtained from the constraint on r (42) extracted from the
experimental results on BRðBs → μþμ−Þ and
BRðB̄0

d → Xsμ
þμ−Þ. For the leptoquarks X ¼ ð3; 2; 7=6Þ

and X ¼ ð3; 2; 1=6Þ, we obtain the value of r ≤ 0.35 for ϕ
in the range (60–270)°. This constraint can be translated
with Eqs. (9), (13) and (42) which gives the value of the
new Wilson coefficients as

jCLQ
9 j ¼ jCLQ

10 j ≤ jrCSM
10 j ½for X ¼ ð3; 2; 7=6Þ�;

jC0LQ
9 j ¼ jC0LQ

10 j ≤ jrCSM
10 j ½for X ¼ ð3; 2; 1=6Þ�: (64)

Using these values we show the variation of differential
decay rate and forward-backward asymmetry for X ¼
ð3; 2; 7=6Þ in Fig. 5 and for X ¼ ð3; 2; 1=6Þ in Fig. 6.
From these figures it can be seen that the branching ratio
could have significant deviation from its SM value both in
the upward as well as downward direction. However, the
zero position of the forward-backward asymmetry does not
have any significant deviation.
We now proceed to calculate the total decay rate for

Bs → ϕμþμ−. It should be noted that the long distance
contributions arise from the real c̄c resonances with the
dominant contributions coming from the low-lying reso-
nances J=ψ and ψ 0ð2SÞ. In order to minimize the hadronic
uncertainties it is necessary to eliminate the backgrounds
coming from the resonance regions. The resonant decays
Bs → J=ψϕ and B0

s → ψ 0ð2SÞϕ with ψ=ψ 0ð2SÞ → μþμ−
are rejected by applying the vetos on the dimuon
mass regions around the charmonium resonances, i.e.,
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FIG. 4 (color online). Variation of the differential branching ratio (in units of 10−7) (left panel) and the forward-backward asymmetry
with respect to the momentum transfer s (right panel) for the Bs → ϕμþμ− process.
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FIG. 5 (color online). The same as Fig. 4, where the red (black) curves represent the SM values and the gray regions represent the
results due to X ¼ ð3; 2; 7=6Þ leptoquark contributions.
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FIG. 7 (color online). Variation of the CP violating observables with dimuon invariant mass q2.
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ð2946 < mðμþμ−Þ < 3176Þ MeV=c2 and ð3592 <
mðμþμ−Þ < 3766Þ MeV=c2 [31]. Using these veto win-
dows we obtain the branching ratio for the Bs → ϕμþμ−
decay mode as

BRðBs → ϕμþμ−Þ ¼ 13.2 × 10−7 ðin SMÞ
¼ ð5.8 − 24.4Þ × 10−7

½in LQmodel I ðX ¼ 3; 2; 7=6Þ�
¼ ð8.1 − 22.0Þ × 10−7

½in LQmodel II ðX ¼ 3; 2; 1=6Þ�:
(65)

Thus, one can see that the observed branching ratio (45) can
be accommodated in the scalar leptoquark model.
Our next objective is to study the effect of leptoquark in

the CP asymmetry parameters AðaÞ
i . The q2 variation of

these observables in the low-q2 regime is shown in Fig. 7.
Here we have varied new weak phase between 60° and 90°
degree and fixed the r value at 0.35. The time-integrated
value in the low-q2 region is shown in Table I. Some of
these asymmetries are measured by the LHCb
Collaboration, which are almost in agreement with the
standard model predictions but with large error bars. Future

measurement with large data samples could possibly
minimize these errors and help to infer the presence of
new physics, if there is any from these observables.

VII. CONCLUSION

In this paper we have studied the effect of the scalar
leptoquarks in the rare decays of Bs meson. The large
production of Bs mesons at the LHC experiment opens up
the possibility to study the rare decays of Bs meson with
high statistical precision. We have considered the simple
renormalizable leptoquark models which do not allow
proton decay at the tree level. Using the recent results
on BRðBs → μþμ−Þ and the value of BRðB̄0

d → Xsμ
þμ−Þ,

the leptoquark parameter space has been constrained. Using
such parameters we obtained the bounds on the product of
leptoquark couplings. We then estimated the branching
ratio and the forward-backward asymmetry for the rare
decay process Bs → ϕμþμ−. The SM prediction for
BRðBs → ϕμþμ−Þ is found to be higher than the corre-
sponding experimental observed value. We found that the
branching ratio has deviated significantly from the corre-
sponding SM value and the observed branching ratio can be
accommodated in this model. However, the zero position of
the forward-backward rate asymmetry does not have
significant deviation in the leptoquark model but there is
a slight shifting towards right. We have also shown
the variation of different CP asymmetry parameters AðaÞ

i
in the low-q2 region. The time-integrated values of some of
the asymmetry parameters are found to be significantly
large, the observation of which in the LHCb experiment
would provide the possible existence of leptoquarks.
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