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The problem of vacuum instability and creation of pairs by external fields SUð2Þ is studied. The effective
mass operator has complex eigenvalues implying decay and pair creation. We consider a constant external
chromoelectric field and find a region in the parameter space where the vaccum becomes unstable and
decays in pairs. Although the calculation is done in SUð2Þ color group it is also valid for SUð3Þ.
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I. INTRODUCTION

The prediction of pair creation by a constant background
electric field is an important nonperturbative result in
quantum electrodynamics (QED). It shows that the vacuum
of the quantum field theory (QED) acquires a nontrivial and
nonperturbative unstable character in such backgrounds
[1–5] and, consequently, decays through pair creation. This
instability manifests in the effective action of the theory
having an imaginary part. Although the magnitude of this
effect is very small for field strengths that can be produced
in the laboratory presently, it is expected that in the coming
years very strong electric fields may be produced in the
laboratory. This would allow for a direct verification of
Schwinger’s prediction.
Vacuum instability and pair creation in an external field

is also an interesting topic in itself to study in non-Abelian
theories such as quantum chromodynamics (QCD).
However, there are some important differences between
an Abelian and a non-Abelian gauge theory. For example,
the field strength tensor (in a matrix form) in a non-Abelian
theory is defined as

Fμν ¼ ∂μAν − ∂νAμ þ ig½Aμ; Aν�; (1)

where Aμ denotes the vector potential and g the coupling
constant so that it is not merely the curl of the vector
potential. Under a non-Abelian gauge transformation

Aμ → UðxÞAμU−1ðxÞ − 1

ig
ð∂μUðxÞÞU−1ðxÞ; (2)

the field strength tensor is not invariant, rather it transforms
covariantly as

Fμν → UðxÞFμνU−1ðxÞ: (3)

Since the field strength tensor is not gauge invariant (unlike
in QED), it is not an observable and an external chromo-
electric or chromomagnetic field is not ameaningful concept.
It is also well known that in non-Abelian gauge theories

there exists field tensors that are realized in terms of different
gauge field configurations that are not gauge equivalent.
Also, Wilson loops calculated using these non equivalent
gauge fields, produce different results [6]. Nonetheless it is
an interesting question to study since, as in any collective
phenomenon, such instabilitiesmay arise in the quark-gluon
phase [7]. Within the context of effective actions, we note
that the effective action of the theory is a gauge invariant
quantity since the fermion determinant detðiD −mÞ, which
leads to the effective action, is gauge invariant.
In this sense one can study the problem of a (color)

charged particle moving in the presence of an external
chromoelectric or a chromomagnetic field. Furthermore, as
in the case of QED, one can assume the external fields to be
constant [8]. It was shown many years ago by Brown and
Weisberger [9,10] that a constant chromoelectric field (or
chromomagnetic) can be obtained from two different
classes of gauge potentials, namely, a) A ∝ x or, b) A is
constant. Basically, the two classes correspond respectively
to either the commutator or the curl in (1) vanishing. The
first class of potentials is familiar from the study of Abelian
theories where a constant field can be associated with a
potential of the form (symmetric gauge) Aμ ¼ − 1

2
Fμνxν.

The second class genuinely arises in a non-Abelian theory.
The first class of potentials where the potential is linear
in the coordinates has been used by many authors [11–15].
In particular Savvidy [16] has used this choice of the
potential in discussing the vacuum instability in quantum
chromodynamics and Nielsen and Olesen in [17] have
employed an analogous gauge to study the instability of
SUð2Þ Yang-Mills theory coupled to Higgs.
In this paper we analyze the problem of vacuum

instability for the case of constant gauge field strengths
belonging to the non-Abelian SUð2Þ group in 2þ 1

dimensions [18–21]. This same kind of potential has been
used in exploring temperature and density effects in the
frame of a discussion of phase transitions [22,23]. In
particular, we calculate the probability density for pair
creation by external chromoelectric fields. Our analysis is
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valid for the case of a chromoelectric field. In the case of an

external chromomagnetic field the effective action does not

develop poles and the effect will be only to produce a

condensed state hψ̄ψi. So, in this case we will not expect to
observe any instability in the vacuum [21]. We have chosen

to analyze the 2þ 1 dimensional problem because it has

already been shown that there is no instability for the 3þ 1

dimensional case [9]. Also, 2þ 1 dimensional discussion

can be of relevance if we are considering quark-gluon

plasma at very high temperature, T → ∞, when one of the

dimensions is expected to compactify [24].

II. PROBABILITY DENSITY FOR PAIR EMISSION

As we have already mentioned, a constant non-Abelian
field strength can be described by gauge potentials that are
either linearly proportional to xμ or by constant non-
commuting gauge potentials. Many people have already
used the first class of gauge potentials in studying the
instability phenomena. In our calculation, however, we
choose the second class of constant potentials since it
provides an alternative and physical way of looking at the
problem of vacuum decay. Let Aμ ¼ Aa

μτ
a, a ¼ 1, 2, 3

denote the SUð2Þ gauge potentials where a denotes the
color index and τa ¼ λa=2 are the SUð2Þ color generators
(in the fundamental representation). We consider a constant
chromoelectric field along the x direction (spatial) pointing
along the 3 direction in the color space, namely,

E1 ¼ F01 ¼ ig½A0; A1� ¼ E3
1τ3: (4)

A simple choice of constant gauge potentials that yields
such a chromoelectric field is given by A0 ¼ − ffiffiffiffiffi

ϵ1
p

τ1, A1 ¼ffiffiffiffiffi
ϵ2

p
τ2 where ϵ1, ϵ2 are (dimensional) constants, leading to

F01 ¼ E1 ¼ E3
1τ3 ¼ g

ffiffiffiffiffiffiffiffiffi
ϵ1ϵ2

p
τ3 ¼ ϵτ3: (5)

We note here that in 2þ 1 dimensions both g and A have
the dimensions of the square root of a mass. Also, in 2þ 1
dimensions there are two possible mass terms for the
Lagrangian [25]. However one of these terms violates
parity and time reversal while the other one violates chiral
symmetry. In this article we work whithin a parity con-
serving model in 2þ 1 dimensions [26], where we work in
a reducible representation of the gamma matrices [27].
We can now study the motion of a four component Dirac

fermion (belonging to a reducible representation) in such a
background described by the equation

ðiD −mÞψ ¼ ði∂ − gA −mÞψ ¼ ði∂ −MÞψ ¼ 0. (6)

Here A ¼ γμAμ, the three gamma matrices are defined in
terms of the Pauli matrices (in spinor space) as

γ0 ¼
�
σ3 0

0 −σ3

�
; γ1 ¼

�
iσ1 0

0 −iσ1
�
;

γ2 ¼
�
iσ2 0

0 −iσ2

�
; (7)

and we have identified the effective mass matrix for this
constant gauge potential background as M ¼ mþ gA. For
later use, we note here that in this reducible spinor
representation, it is possible to define two matrices that
anticommute with the three gamma matrices in (7), namely,

γ3 ¼ i

�
0 1

1 0

�
; γ5 ¼ iγ0γ1γ2γ3 ¼ i

�
0 1

−1 0

�
; (8)

with γ†5 ¼ γ5, γ25 ¼ 1. Note that the fermions belong to the
fundamental representation of the color SUð2Þ group and,
therefore, carry both the color index i ¼ 1, 2 as well as the
spinor index α ¼ 1, 2, 3, 4. Therefore, the mass matrixM is
a 8 × 8 matrix in the product space and is not Hermitian,
M ≠ M†, since the Dirac matrices γμ are not Hermitian. As
a result, the eigenvalues of the mass matrix become
complex. The eight eigenvalues are easily determined as
two complex conjugate pairs

m1 ¼ m5 ¼ m − g
2

ffiffiffiffiffi
ϵ1

p − i
2
g
ffiffiffiffiffi
ϵ2

p ¼ m�
2 ¼ m�

6;

m3 ¼ m7 ¼ mþ g
2

ffiffiffiffiffi
ϵ1

p − i
2
g
ffiffiffiffiffi
ϵ2

p ¼ m�
4 ¼ m�

8: (9)

It is worth noting that the chromoelectric field ϵ is
proportional to the real and imaginary parts of the mass
eigenvalues, which means that if we had real eigenvalues
for the mass matrix, then we would not have a chromo-
electric field and, hence, we would not have a decay
probability. Since the mass matrix is not self-adjoint,
neither is the Hamiltonian of the system, and this is crucial
in order to have a nonvanishing decay probability. The
decay probability is related to the imaginary part of the
effective action and, when fermions are integrated, at one
loop level the effective action has the form

Γeff ¼ Tr ln ðiD −mÞ: (10)

We can use the fact that γ25 ¼ 1 and γ5 anticommutes with
the three gamma matrices (together with the cyclicity of
trace) to obtain

Γeff ¼ Tr ln ðiD −mÞ ¼ Tr ln ðiDþmÞ

¼ 1

2
Tr ln ð−D2 −m2Þ: (11)

Since covariant derivatives Dμ do not commute, we have

D2 ¼ DμDμ þ g
2
σμνFμν; (12)
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where we have identified

σμν ¼ i
2
½γμ; γν�; (13)

and the field strength Fμν is defined in (1).
Using these results as well as a proper time representation for the logarithm in (11), the calculation of the pair decay

probability by unit of volume and time can be done as follows: if wðxÞ is the creation pair probability then

wðxÞ ¼ Re traα

�Z
∞

0

ds
s
hx;M∣e−ism2

×
�
exp

n
is
h
ðp − gAÞ2 − g

2
σμνFμν

io
− e−isp2

�
∣x;Mi

�
: (14)

where the trace runs over color and spinor indices and jx;Mi are eigenstates of the mass operator M̂. A sum over the mass
eigenvalues is implicit.
The last term on the right-hand side corresponds to the subtraction of the A ¼ 0 part of the propagator which is equivalent

to remove the zero mode.
In order to compute the trace in the previous equation one should expand the exponential in a Taylor series. The first

exponential has the form

eis½ðp−gAÞ2−g
2
σμνFμν� ¼ eα0þα1λ1þα2λ2þα3λ3 ; (15)

where λi are the Pauli matrices in color space and αi are complex matrices in Lorentz space that commute with each other.
Recalling that the square of any Pauli matrix is the identity and that the trace of any Pauli matrix vanishes, it is easy to
compute the trace on the Taylor series. As a result we are left with another Taylor series

trαaeα0þα1λ1þα2λ2þα3λ3 ¼ 8

�
1þ α0 þ

1

2
ðα20 þ α21 þ α22 þ α23Þþ

1

3!
ðα30 þ 3α0α

2
1 þ 3α0α

2
2 þ 3α0α

2
3Þ þ � � �

�
: (16)

This new Taylor series can be reconstructed and it can be checked that, finally

trαaeα0þα1λ1þα2λ2þα3λ3 ¼ 8eα0 cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 þ α22 þ α23

q
: (17)

Taking the definitions of αi from (15) we have

trαafeis½ðpþgAÞ2−g
2
σμνFμν�g ¼ 8eis½p2þg2A2� × cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−s2g2ϵ1p2

0 − s2g2ϵ2p2
1 þ

�
sgϵ
2

�
2

s
: (18)

This result can be confirmed using a calculation software such as Mathematica. Going back to the probability density, we
have

ωðxÞ ¼ 8Re
Z

∞

0

ds
s
hx;M∣eisðp2−m2þg2A2Þ × cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−s2g2ϵ1p2

0 − s2g2ϵ2p2
1 þ

�
sgϵ
2

�
2

s
− eisðp2−m2Þ∣x;Mi: (19)

Defining ~m2 ≡m2 − g2A2 and taking the real part

ωðxÞ ¼ 8

Z
∞

0

ds
s
hx;M∣ cos ðsðp2 − ~m2ÞÞ × cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−s2g2ϵ1p2

0 − s2g2ϵ2p2
1 þ

�
sgϵ
2

�
2

s
− cos ðsðp2 −m2ÞÞ∣x;Mi: (20)

We can insert completeness relations between p’s and compute the momentum integrals to write, for the second term of
ωðxÞ
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8

Z
∞

0

ds
s
hx;M∣cos ðsðp2−m2ÞÞ∣x;Mi

¼ 1

ð2πÞ3=2
Z

∞

0

ds

s5=2
½eism2 þe−ism2þieism

2 − ie−ism2 �: (21)

The calculation of the integrals appearing in (21) can be
performed observing that they can be regularized by
considering the following identity:

lim
α→0

�Z
∞

0

dssγ−1e−α
s−βs
�
¼ 21−γ

βγ
; (22)

where β now is�im2 and γ ¼ −3=2. With this, the integral
in (21) will vanish and the probability density becomes

ωðxÞ¼8

Z
∞

0

ds
s

Z
d3p
ð2πÞ3 cos ðsðp

2− ~m2ÞÞ

×cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−s2g2ϵ1p2

0−s2g2ϵ2p2
1þ
�
sgϵ
2

�
2

s
: (23)

The integral in (23) cannot be computed exactly. Rather
we will look for an upper bound for the probability density.
Such an upper bound can be obtained by making the
replacement

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−s2G2

1p
2
0 − s2G2p2

1 þ
�
sgϵ
2

�
2

s
→ cosh

�
sgϵ
2

�
:

(24)

The momentum integrals can then be computed and the
regularization shown in (22) can be performed. We define

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
gϵ
2

�
2

þ ð ~m2Þ2
s

(25)

θ ¼ arctan

�
~m2

gϵ=2

�
; (26)

and obtain for the upper bound of the probability density

ω <
R3=2

4ð2πÞ3=2 fð1þ iÞ½e32iðθ∓πÞ þ e−3
2
iθ�

þ ð1 − iÞ½e32ið−θ�πÞ þ e
3
2
iθ�g; (27)

where the upper sign in (∓π, �π) is for ~m2 ≥ 0 and the
lower sign is for ~m2 < 0. It easily verified that for ~m2 ≥ 0
the previous expression vanishes. So, in order to have a non
vanishing probability density ~m2 < 0, i.e.

m2 < g2A2 ¼ g2

4
ðϵ1 − ϵ2Þ: (28)

With this, the upper bound for our probability density is

ω <

�
R
2π

�
3=2
�
cos

3

2
θ þ sin

3

2
θ

�
: (29)

A similar process can be carried out and a lower bound for
the probability density can be found through the replacement

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−s2G2

1p
2
0 − s2G2p2

1 þ
�
sgϵ
2

�
2

s

→ cos ðsG1p0 þ sGp1Þ: (30)

The computation of the lower bound can then be performed
and it turns out to be null, so we have

0 < ω <

�
R
2π

�
3=2
�
cos

3

2
θ þ sin

3

2
θ

�
: (31)

It is important to note that in making the replacements in (24)
and (30) we have asumed that the probability density is
positive definite. This restricts the region where our bounds
are valid and the possible values of θ. Taking this into
account, as well as the condition in (28) we can find the
region of allowed values for θ

−ð8nþ1Þπ
6

<θ<−ð8n−3Þπ
6

for n¼1;2;3;… (32)

or

− π

6
< θ < 0. (33)

With this, we can plot the allowed region whithin which the
probability density has a finite, nonvanishing value. This is
shown in Fig. 1.

FIG. 1 (color online). Probability density for pair emission in
units of m3. The blue surface represents the upper bound. The
black region is where the exact value of the probability can be.
Dimensionless variables μ ¼ g

ffiffiffi
ϵ1

p
m and ρ ¼ g

ffiffiffi
ϵ2

p
m have been defined.
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III. COLOR SUð3Þ
This same problem can be solved within the color SUð3Þ group. The corresponding potential is the same as in SUð2Þwith

Aa
μ ≠ 0 only for a ¼ 1, 2. Notice that this gauge fixing condition implies that actually this is not a full SUð3Þ calculation,

which would imply the appearance of the eight generators. Our calculation corresponds only to the projection of SUð3Þ into
SUð2Þ. The computation of the trace in (18) is now different

trαafeis½ðpþgAÞ2−g
2
σμνFμν�g ¼ 4eis½p2þg2A2�

 
1þ 2 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−s2g2ϵ1p2

0 − s2g2ϵ2p2
1 þ

�
sgϵ
2

�
2

s !
: (34)

If we compare this with (18) we can see that a new term
has been added to our result coming from the first term on
the right-hand side. However, because of the same argument
following (21) this term will have a vanishing contribution to
the probability density. Taking this into account we can say
that the probability density in the SUð3Þ color group yields
the same result we have already shown.

IV. 3þ 1 DIMENSIONS

So far we have restricted our analysis to the 2þ 1
dimensional case. In this section we will briefly discuss the
3þ 1 dimensional case. In such a case we have an
additional phase space integral and then Eq. (21) is changed
like

8

Z
∞

0

ds
s
hx;M∣ cos ðsðp2 −m2ÞÞ∣x;Mi

¼ −i
ð2πÞ2

Z
∞

0

ds
s3

½eism2 − e−ism2 �: (35)

The extra dimension has increased the exponent of s from
5=2 to 3, meaning that the regularization shown in (22)
should now be performed taking γ ¼ −2. This is key since
now, Eq. (27) will look like

ω <
R2

2ð2πÞ2 fe
2iðθ∓πÞ − e2iθg; (36)

which vanishes. This result coincides with that of Ref. [9].
It is worth noting that the reason for this null decay
probability lies in the fact that we have enlarged our phase
space. It is the extra dimension in s that makes the integrals
vanish.

V. SCALAR FIELDS

Computations of vacuum instability are usually easier to
carry out when one is dealing with scalar fields. Given that
we could not obtain an exact expression for the probability
density for pair emission when working with fermionic
fields, one might ask wether or not this is possible when
working with colorful bosonic fields. In such a case, the
probability density for pair emission is

wðxÞ ¼ Re tra

�Z
∞

0

ds
s
hx;M∣e−ism2

× ðexp fis½ðp − gAÞ2�g − e−isp2Þ∣x;Mi
�
; (37)

where the trace now runs only over color indices. The trace
can be computed in the same manner as before by taking
α3 ¼ 0 in Eq. (17)

trafeis½ðpþgAÞ2�g ¼ 2eis½p2þg2A2�

× cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−s2g2ϵ1p2

0 − s2g2ϵ2p2
1

q
:

(38)

Then, after inserting copleteness relations between p’s we
get

ωðxÞ ¼ 8

Z
∞

0

ds
s

Z
d3p
ð2πÞ3 cos ðsðp2 − ~m2ÞÞ

× cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2G2

1p
2
0 þ s2G2p2

1

q
: (39)

Once again, this integral cannot be computed exactly. As in
the previous sections we will then find an upper and lower
bound for it. We can find an upper bound for the probability
through the replacement

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2G2

1p
2
0 þ s2G2p2

1

q
→ 1; (40)

and so we can write

ωðxÞ < 8

Z
∞

0

ds
s

Z
d3p
ð2πÞ3 cos ðsðp2 − ~m2ÞÞ: (41)

By the same argument following Eq. (21), it is easy to show
that this last integral vanishes. This means then that the
probability density itself vanishes and hence, there is no
vacuum instability. In this sense, even though the compu-
tation is not much easier when dealing with scalar fields,
we are able to conclude that there is no vacuum instability.
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The same analysis here presented can be carried out in
3þ 1 dimensions. It is trivial to show that, in the same way
the probability vanished when dealing with fermions in 3þ
1 dimensions, it will also vanish when dealing with scalars.

VI. CONCLUSIONS

We analyzed the problem of pair emission from the
vacuum in the presence of a chromoelectric field in 2þ 1
dimensions. The probability density cannot be computed
exactly, but we find an upper and lower bound for it. We
also find that there is an allowed region in the parameter
space, where the probability will not vanish, shown in
Fig. 1. We show that the probability density, however,
vanishes in 3þ 1 dimensions. We also find that for scalar

fields, the probability density vanishes both in 2þ 1 and
3þ 1 dimensions.
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