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We study the semileptonic b → u transition in the decay mode B− → πþπ−l−ν̄l. We define B → ππ
form factors in the helicity basis, and study their properties in various kinematic limits, including form
factor relations in the heavy-mass and large-energy limits, the decomposition into partial waves of the
dipion system, and the resonant contribution of vector and scalar mesons. We show how angular
observables in B− → πþπ−l−ν̄l can be used to measure dipion form factors or to perform null tests of the
Standard Model.
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I. INTRODUCTION

The decay B → ππl−ν̄l is interesting for several rea-
sons. At quark level, it is generated by the semileptonic
b → ulνl transition which, in the Standard Model (SM),
is induced by tree-level W-boson exchange but
proportional to the small element Vub of the Cabibbo-
Kobayashi-Maskawa matrix. For a while the common
paradigm has been to search for new physics (NP) in rare
loop-induced flavor transitions. Meanwhile, in light of the
small tension observed between the determinations of jVubj
from inclusive B → Xul−ν̄l or exclusive semileptonic
B → fπ; ρgl−ν̄l decays [1,2], systematic tests of b → u
transitions in the SM and beyond appear timely. In this
context, the dipion system in the hadronic final state not
only provides an independent decay channel, but, more
importantly, offers the possibility to explore a number of
angular observables that are sensitive to the spin structure
of the underlying short-distance operators responsible for
the decay in the SM or NP. The situation here is similar to
the analysis of rare b → s transitions in B → ðKπÞS;Plþl−
decays, see for example [3–11].
Moreover, the phase space associated with the kinemat-

ics of the four-body decay covers various limiting cases for
which specific theoretical approaches to handle the strong-
interaction effects in quantum chromodynamics (QCD) are
applicable. In particular, this includes expansions in small
light-quark or large heavy-quark masses based on effective-
field theory methods. For instance, the case of two pions
recoiling against each other with a large energy can be used
to assess the reliability of theoretical predictions in the QCD
factorization (QCDF) approach which has been frequently
used for nonleptonic B → ππ decays [12,13]. The decay
B− → πþπ−l−ν̄l also involves the resonant channel

B− → ρ0ð→ πþπ−Þl−ν̄l decay which is one of the afore-
mentioned exclusivemodeswhere the jVubj extraction is not
in perfect agreement with the inclusive determination. The
theoretical exploration of the various corners of (nonreso-
nant) phase space will therefore also help to better under-
stand the proper description of the B → ρlν̄l decay beyond
the approximation of narrow width and flat nonresonant
background.
Our paper is organized as follows. In the following

Sec. II, we provide the basic definitions for B → ππ form
factors that are most convenient for the angular analysis and
for the theoretical description of the decay in certain
kinematic limits. In Sec. III we consider the dipion form
factors for two kinematic limits giving rise to symmetry
relations in heavy-quark effective theory (HQET), and soft-
collinear effective theory (SCET), respectively. Further
form factor properties in specific kinematic situations,
namely the perturbative factorization in the limit of almost
back-to-back energetic pions, on the one hand, and the
description of hadronic resonances in the dipion channel,
on the other hand, are the subject of Sec. IV. The
phenomenology of the angular distributions of the decay
B− → πþπ−l−ν̄l in the SM is worked out in Sec. V. In
Sec. VI we combine knowledge of the form factor limits
with the angular distribution to derive relations between the
angular observables that do not depend on a hadronic
model. We conclude in Sec. VII.

II. B → ππ FORM FACTORS

A. Kinematics

Let us begin with the definition of the kinematics. In the
following, pμ ¼ MBυ

μ will denote the 4-momentum of the
decaying B meson. The projection with its four-velocity υμ

defines the energy of the final-state particles in the B-meson
rest frame (B-RF), p0 ¼ ðυ · pÞ. The momenta of the decay
products will be denoted as kμ1, k

μ
2 for the two pions, and q

μ
1,

qμ2 for the two leptons, with the specific charge assignment
according to
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B−ðpÞ → πþðk1Þπ−ðk2Þν̄ðq1Þl−ðq2Þ:

We define the sum and difference of hadronic and leptonic
momenta as

q ¼ q1 þ q2; k ¼ k1 þ k2;

q̄ ¼ q1 − q2; k̄ ¼ k1 − k2: (2.1)

The hadronic system is then described by three kinematic
Lorentz invariants: the momentum transfer q2, the dipion
invariant mass k2, and the scalar product q · k̄. The latter
defines the polar angle θπ of the πþ in the dipion rest frame

q · k̄ ¼ βπ
2

ffiffiffi
λ

p
cos θπ; (2.2)

where β2π ¼ ðk2 − 4M2
πÞ=k2 ¼ −k̄2=k2, and λ ¼ λðM2

B;
q2; k2Þ is the Källén function

λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ bcþ caÞ: (2.3)

The relative orientation between the leptons and hadrons
in the final state is further characterized by the Lorentz
invariants

k · q̄ ¼ 1

2

ffiffiffi
λ

p
cos θl;

k̄ · q̄ ¼ βπ
2
ððM2

B − k2 − q2Þ cos θl cos θπ

− 2

ffiffiffiffiffiffiffiffiffi
q2k2

q
sin θl sin θπ cosφÞ; (2.4)

where θl is the polar angle of the negatively charged lepton
in the dilepton rest frame, and φ is the azimuthal angle
between the dilepton and dipion decay plane. Here and in
the following lepton masses are set to zero. More details
can be found in the Appendix.
In the following, it will be convenient to construct an

orthogonal basis of momentum vectors,

qμ;

kμð0Þ ¼ kμ − k · q
q2

qμ;

k̄μð∥Þ ¼ k̄μ − 4ðk · qÞðq · k̄Þ
λ

kμ þ 4k2ðq · k̄Þ
λ

qμ;

q̄μð⊥Þ ¼ 2ϵμαβγ
qαkβk̄γffiffiffi

λ
p : (2.5)

Properly normalized, using

k2ð0Þ ¼ − λ

4q2
; k̄2ð∥Þ ¼ q̄2ð⊥Þ ¼ −β2πk2 sin2θπ; (2.6)

the vectors in Eq. (2.5) represent an orthonormal basis of
timelike and spacelike polarization vectors associated with
the leptonic currents, see also Eq. (A4) in the Appendix,

εμðtÞ ¼ 1ffiffiffiffiffi
q2

p qμ; εμð0Þ ¼ − 2
ffiffiffiffiffi
q2

p
ffiffiffi
λ

p kμð0Þ;

εμð�Þ ¼ − 1ffiffiffiffiffiffiffi
2k2

p
βπ sin θπ

ðk̄μð∥Þ∓iq̄μð⊥ÞÞe∓iφ; (2.7)

which will be used to project onto helicity form factors.

B. Vector and axial-vector form factors

In the SM, the B → ππlν decay amplitudes are charac-
terized by the transition form factors for vector and axial-
vector b → u currents between a B meson and two pions.
Using the definitions of the previous subsection, we para-
metrize the hadronic matrix elements in terms of one vector
form factor F⊥,

hπþðk1Þπ−ðk2ÞjūγμbjB−ðpÞi ¼ iF⊥
1ffiffiffiffiffi
k2

p q̄μð⊥Þ; (2.8)

and three axial-vector form factors Ft, F0, F∥,

−hπþðk1Þπ−ðk2Þjūγμγ5bjB−ðpÞi

¼ Ft
qμffiffiffiffiffi
q2

p þ F0

2
ffiffiffiffiffi
q2

p
ffiffiffi
λ

p kμð0Þ þ F∥
1ffiffiffiffiffi
k2

p k̄μð∥Þ: (2.9)

Note here, that the apparent divergence of the hadronic
matrix elements in the limit q2 → 0 is compensated by an
appropriate phase space factor, see Eqs. (5.2) and (5.3).
Here, each form factor depends on the three independent
Lorentz invariants q2, k2, and q · k̄. It is also to be noted
that, in general, the dipion form factors are complex
functions above threshold k2 > 4m2

π. The prefactors in
Eqs. (2.8) and (2.9) are chosen in such a way that the form
factors correspond to particular helicity amplitudes which
can be simply obtained by contraction

Hλ ≡ hπþπ−jūγμð1 − γ5ÞbjB−iε†μðλÞ; (2.10)

with the polarization vectors as defined in Eq. (2.7).
We obtain

Ht ¼ Ft; H0 ¼ F0; H� ¼ ðF∥ �F⊥Þ
βπffiffiffi
2

p sinθπe�iφ:

(2.11)

In terms of the so-defined “helicity form factors,” one
obtains simple expressions for the differential decay
widths in the angular analysis and simple relations between
form factors in HQET or SCET, which have also been
emphasized for other decay modes [5,14–17].

C. Partial waves

The B → ππ helicity amplitudes can be expanded in
terms of associated Legendre polynomials PðmÞ

l ðcos θπÞ,
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with l ¼ ð0; 1; 2;…Þ corresponding to ðS; P;D;…Þ partial
waves. For the helicity amplitudes H0 and Ht one obtains

H0;t ¼
X∞
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
HðlÞ

0;t ðq2; k2ÞPð0Þ
l ðcos θπÞ

¼ HðSÞ
0;t ðq2; k2Þ þ

ffiffiffi
3

p
HðPÞ

0;t ðq2; k2Þ cos θπ þ � � � ;
(2.12)

and for H� one gets

H� ¼
X∞
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
HðlÞ

� ðq2; k2ÞPð�1Þ
l ðcos θπÞe�iφ

¼ ∓
ffiffiffi
3

pffiffiffi
2

p HðPÞ
� ðq2; k2Þ sin θπe�iφ þ � � � ; (2.13)

which contains no S-wave contribution. For the form
factors F0 and Ft this directly translates into the partial-
wave expansion

F0;t ¼
X∞
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
FðlÞ
0;t ðq2; k2ÞPð0Þ

l ðcos θπÞ

¼ FðSÞ
0;t ðq2; k2Þ þ

ffiffiffi
3

p
FðPÞ
0;t ðq2; k2Þ cos θπ þ � � �

(2.14)

so that HðlÞ
0;t ¼ FðlÞ

0;t . For the form factors F∥ and F⊥ we
define

F∥;⊥ ¼ −X∞
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
FðlÞ
∥;⊥ðq2; k2Þ

Pð1Þ
l ðcos θπÞ
sin θπ

¼
ffiffiffi
3

pffiffiffi
2

p FðPÞ
∥;⊥ðq2; k2Þ þ � � � ; (2.15)

such that HðlÞ
� ¼ ∓ βπffiffi

2
p ðFðlÞ

∥ � FðlÞ
⊥ Þ.

III. FORM FACTOR RELATIONS

In certain kinematic limits, the form factors will obey
approximate symmetry relations which would become
exact in the limit of infinitely heavy b-quark mass.
Similar to what is known from B → Kð�Þlþl− decays,
the form factor relations allow relatively robust predictions
for angular observables which are independent of hadronic
matrix elements in these limits. Note that the form factor
relations are valid for each partial wave separately.

A. HQET limit

If the energy transfer to the hadronic final state is small,
i.e. ðυ · kÞ ∼ Λhad ≪ mb, the heavy b quark acts as a
quasistatic source of color, and the techniques of HQET
are applicable. For the kinematic invariants in the ππ
system this implies

q2 ∼m2
b; k2 ∼ Λ2

had; ðq · kÞ ∼ Λhadmb; (3.1)

with Λhad being a typical hadronic scale of order of a few
hundred MeV; see also Fig. 1 for a sketch of the phase
space. In particular, the general set of heavy-to-light form
factors for arbitrary Dirac structures can be related to a
smaller set of Isgur-Wise functions [18,19]. To this end, the
dipion system is represented by the most general Dirac
structure that can be constructed from the two pion
momenta and the heavy-quark velocity. We define the
following parametrization,

Mππðk; k̄; vÞ≡ Ξ1

1ffiffiffiffiffi
q2

p qþ Ξ2

2
ffiffiffiffiffi
q2

p
ffiffiffi
λ

p kð0Þ

þ Ξ3

1ffiffiffiffiffi
k2

p k̄ð∥Þ þ iΞ4

1ffiffiffiffiffi
k2

p q̄ð⊥Þγ5; (3.2)

which introduces four independent Isgur-Wise functions
Ξi ¼ Ξiðv · k; k2; cos θπÞ. For a given decay current, the
form factors can then be obtained in terms of Clebsch-
Gordan coefficients given by the Dirac trace,

hπþðk1Þπ−ðk2ÞjūΓhðbÞv jB−ðpÞi ¼ 1

2
Tr
h
MππΓ

1þ υ

2
ð−γ5Þ

i
;

(3.3)

where Γ is the Dirac matrix of the underlying current. For
left-handed SM currents this yields one-to-one relations
between the four helicity form factors Fi and the Isgur-
Wise functions,

FIG. 1 (color online). Sketch of the q2-k2 phase space with
w ¼ ðυ · kÞ=MB isolines for w ¼ 0.3, 0.5, 0.7 (dashed lines). The
typical regions of applicability for the different theory ap-
proaches, labeled QCDF (w ≥ 0.7, red), SCET (0.6 ≥ w ≥ 0.4,
orange), and HQET (0.3 ≥ w, blue), are highlighted. The ρ
resonances ρð770Þ, ρð1450Þ, ρð1700Þ are overlaid as horizontal
grey bands for illustrative purpose.
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Ft ¼ Ξ1; F0 ¼ Ξ2; F∥ ¼ Ξ3; F⊥ ¼ Ξ4: (3.4)

In the presence of NP, other b → ulν operators may
contribute, and the corresponding form factors for pseu-
doscalar, tensor, or pseudotensor currents would be given
by the same set of Isgur-Wise functions Ξ1–4.
Explicit theoretical expressions for the Isgur-Wise func-

tions Ξ1–4 can be obtained in the limit where the two pions
are soft, υ · ki ∼Mπ , in which case the methods of heavy-
meson chiral perturbation theory [20] are applicable.

B. SCET limit

If the energy transfer to the hadronic final state is large,
ðυ · kÞ ∼mb=2 ≫ Λhad, while the invariant mass is small,
k2 ≪ m2

b, which also implies q2 ≪ m2
b, the hadronic

dynamics can be treated in SCET [21,22]. The phase space
region associated with this limit is sketched in Fig. 1.
Similar to the HQET case, this yields new form factor
symmetry relations which have already been established for
single light pseudoscalars or vector mesons in the final
state [23,24] (analogous relations for baryonic decays can
be found in [15,25]). These can be conveniently derived
by introducing lightlike vectors nμ� in the k-q plane,
according to

nμ� ¼
�
1∓ 1

η

�
vμ � 1

jq⃗j q
μ; (3.5)

in terms of the rapidity η and the three-momentum jq⃗j of the
lepton pair in the B-meson rest frame:

η ¼
ffiffiffi
λ

p

M2
B − k2 þ q2

; jq⃗j ¼
ffiffiffi
λ

p

2MB
: (3.6)

These vectors satisfy the relations

n2� ¼ 0; nþ · n− ¼ 2; nμþ þ nμ− ¼ 2vμ; (3.7)

and can be used to construct Dirac projectors

P� ¼ n�n∓
4

: (3.8)

In the large-energy limit, only the Pþ projection of the
energetic u quark in the b → ulν transition contributes.
The trace in Eq. (3.3) then simplifies further, because the
terms with q and kð0Þ [(k̄ð∥Þ and q̄ð⊥Þ] in Mππ yield the
same contribution,

hπþðk1Þπ−ðk2ÞjūΓhðbÞv jB−ðpÞi

¼ Tr

��
qffiffiffiffiffi
q2

p ξL þ k̄ð∥Þffiffiffiffiffi
k2

p ξT

�
PþΓ

1þ υ

2
ð−γ5Þ

�
; (3.9)

which implies the large-recoil form factor relations

Ft ¼ F0 ¼ Ξ1 ¼ Ξ2 ≡ ξL;

F∥ ¼ F⊥ ¼ Ξ3 ¼ Ξ4 ≡ ξT:
(3.10)

]Theoretical approaches to predict the form factors ξL
and ξT in the SCET limit depend on the distribution of the
large energy/momentum among the two pions:
(i) If both pions are energetic and move collinear with a

small invariant mass k2 ∼ Λ2
had, the two-pion state

could be described by generalized distribution ampli-
tudes, i.e. two-pion light cone distribution amplitudes
(2πLCDAs) [26–29]. The 2πLCDAs contain the time-
like pion form factors and the contributing hadronic
resonances (notably ρ → ππ) as a limiting case.

(ii) If only one pion is energetic and the other soft, a
combination of SCET/QCDF and chiral perturbation
theory should apply, similar to [30] where this
combination was studied in the context of
B̄ → K̄πlþl− decays.

IV. FORM FACTOR PROPERTIES

In this section we briefly comment on further generic
properties of the dipion form factors that are characteristic
in certain regions of the jππi phase space.

A. QCD factorization for large dipion masses

Let us consider the kinematic regime where—in the
B-meson rest frame—the two pions in the hadronic final
state move almost back to back, each with large energy,
such that their invariant mass is large, k2 ∼Oðm2

bÞ; see
Fig. 1 for an illustration.1 In this case, we face a similar
situation as in nonleptonic B → ππ decays, and thus expect
that the QCD factorization approach from [12,13] should
also be applicable.
Note that in nonleptonic decays, the short-distance quark

transitions are dominantly described by four-quark oper-
ators that can directly induce the leading partonic Fock
states required for B → ππ transitions in the “naive”
factorization approach. For nonleptonic decays, the radi-
ative effects from additional gluons with virtualities of
Oðm2

bÞ (hard) or OðΛhadmbÞ (hard collinear) thus provide
corrections to naive factorization.
In B → ππlν the situation is different, as the first

nonvanishing contribution already requires the exchange
of a hard gluon in order to produce the additional qq̄ pair in
the final state, see Fig. 2. This situation corresponds to the
perturbative limit of the 2πLCDAs discussed in [31] which
can then be expressed in terms of the conventional
pion LCDAs.

1It is to be noted that the QCDF approach for two back-to-back
pions also makes use of SCET techniques for the resummation of
large logarithms in higher-order perturbation theory. In the same
way, radiative corrections to form factor symmetry relations in
SCET can be calculated within the QCDF approach.

SVEN FALLER PHYSICAL REVIEW D 89, 014015 (2014)

014015-4



We thus expect the QCD factorization formula for the
dipion form factors in the considered kinematic limit (and
for mb ≫ Λhad) to take an analogous form as for non-
leptonic B → ππ decays. Here at leading term all dipion
form factors would be expressed in terms of a universal
B → π form factor, the first inverse moment of the pion
LCDA, and simple kinematic factors. The measurement of
the dipion form factors would thus provide an independent
test of the QCD factorization approach, respectively an
independent determination of the relevant hadronic input
parameters. Radiative corrections from hard and hard-
collinear gluon exchange could be calculated perturba-
tively, see Fig. 2. More details will be provided in [32].

B. Resonance contributions

Formally, a resonance contribution to B → ππ form
factors can be obtained using hadronic dispersion relations
in the variable k2,

hππjJμV−AjB̄i ¼
1

π

Z
∞

4M2
π

ds
ImhππjJμV−AjB̄i
s − k2 − iε

þ subtractions;

(4.1)

with the current JμV−A ¼ ūγμð1 − γ5Þb. Insertion of all
possible intermediate states yields a unitarity relation

2 ImhππjJμV−AjB̄i ¼
X
H

Z
dτHhππjHihHjJμV−AjB̄i; (4.2)

with integration over the phase space τH and summation
over the helicity states of the intermediate hadronic stateH.
We single out in this relation H ¼ R, with a resonant one-
particle intermediate state R, so that the right-hand side
contains the strong coupling hππjRi of R with two pions
multiplied by the form factors for B → R transitions.
At this point we must carefully identify the resonances

that emerge in the k2 spectrum, according to the isospin
quantum numbers of the dipion. In the decay B− →
πþπ−l−ν̄l the dipion system is a superposition of the
isoscalar IG ¼ 0þ and isovector ðIG; I3Þ ¼ ð1þ; 0Þ states.
In the analogous decay B̄0 → πþπ0l−ν̄l and B− →
π0π0l−ν̄l, however, the pions are purely in the isovector
ðIG; I3Þ ¼ ð1þ;þ1Þ and isoscalar state, respectively.
Altogether, the three hadronic matrix elements for

B → ππ are expressed in terms of two independent isospin
amplitudes. From this we obtain in the isospin symmetry
limit the relation

hπþπ−jJμV−AjB−i þ 1ffiffiffi
2

p hπþπ0jJμV−AjB̄0i

¼ hπ0π0jJμV−AjB−i: (4.3)

We consider only resonant contributions due to the iso-
vector vector mesons ρðnÞ, as well as the isoscalar scalar
mesons f0ðnÞ, where n denotes the quantum number of
radial excitation. We sketch the region of phase space
where the ρðnÞ dominate in Fig. 1. Since we consider only
dipion states up to angular momentum 1, we discard
resonances with spin larger than 1. Hereafter, we will
proceed with the more general case of B− → πþπ−l−ν̄l.
The B0 decay can be recovered by omitting the f0
contributions and adding a relevant isospin factor.
Continuing with Eq. (4.2), we obtain for the contribution

of the ρ intermediate states

ImhππjJμV−AjB̄i
¼ −πgρππδðM2

ρ − sÞ
X

a¼0;þ;−
½k̄ · ηðaÞ�

× hρðk; ηðaÞÞjJμV−AjB̄ðpÞi; (4.4)

with η being the polarization vector for the vector state
associated with the four-momentum k. In the B-RF

ηð�ÞμjB-RF ¼ εð∓ÞμjB-RF;
ηð0ÞμjB-RF ¼ ðjq⃗j; 0; 0;MB − q0Þ=MV; (4.5)

see the Appendix for details. For the f0 state we obtain

ImhππjJμV−AjB̄i¼πgf0ππδðM2
f0
−sÞMf0hf0ðkÞjJμV−AjB̄ðpÞi:

(4.6)

For both ρ and f0, the above formulas still employ the
narrow-width approximation. The strong couplings are
fixed via

FIG. 2. Sketch of QCD factorization in B → ππlν decays at large dipion masses: (a),(b) Leading contributions from hard gluon
exchange; (c) sample diagram for hard-collinear spectator scattering corrections.
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hππjf0i ¼ gf0ππMf0 ; hππjρðaÞi ¼ −ðk̄ · ηðaÞÞgρππ;
(4.7)

for the f0, and for the ρ helicity states a ¼ �, 0. Note that
gρππ ¼ gρ0πþπ− ¼ −gρþπþπ0 due to isospin.
We use the helicity decomposition of B → R, R ¼ S, V

form factors as in [14], adjusted to our notation and phase
convention. By SðkÞ and Vðk; ηÞwe shall denote a hadronic
scalar and vector state with momentum k and polarization
vector η, respectively. We define for the vector resonances

κ

ffiffiffiffiffi
q2

p
ffiffiffiffiffi
λV

p hVðk; ηð�ÞÞjūγμbjB̄ðpÞi ¼ �FB→V⊥ ðq2Þεμð�Þ;
(4.8)

as well as

−κ
ffiffiffiffiffi
q2

p
ffiffiffiffiffi
λV

p hVðk; ηð0ÞÞjūγμγ5bjB̄ðpÞi

¼ FB→V
t ðq2ÞεμðtÞ − FB→V

0 ðq2Þεμð0Þ; (4.9)

−κ
ffiffiffiffiffi
q2

p
ffiffiffiffiffi
λV

p hVðk; ηð�ÞÞjūγμγ5bjB̄ðpÞi ¼ FB→V
∥ ðq2Þεμð�Þ;

(4.10)

and for the scalar resonances

−
ffiffiffiffiffi
q2

p
ffiffiffiffiffi
λS

p hSðkÞjūγμγ5bjB̄ðpÞi ¼ FB→S
t ðq2ÞεμðtÞ

− FB→S
0 ðq2Þεμð0Þ; (4.11)

where we abbreviate λR ≡ λðM2
B;M

2
R; q

2Þ and use an
isospin factor κ¼ ffiffiffi

2
p

for B− → ρ0 transitions, and κ ¼ 1
for B̄0 → ρþ transitions.
We express the resonant pole contributions to the

B → ππ form factors in terms of the B → V and B → S
form factors. In this way we obtain for all final-state
polarizations the P-wave contributions

ffiffiffi
3

pffiffiffi
2

p ResFðPÞ
∥;⊥ðq2; k2Þjk2¼PV

¼ gVππ
κ

ffiffiffiffiffi
λV

p
MVffiffiffiffiffi
q2

p FB→V
∥;⊥ ðq2Þ;

(4.12)

ffiffiffi
3

p
ResFðPÞ

0;t ðq2; k2Þjk2¼PV
¼ gVππβπ

κ

ffiffiffiffiffi
λV

p
MVffiffiffiffiffi
q2

p FB→V
0;t ðq2Þ:

(4.13)

For the S-wave contributions we find

ResFðSÞ
0;t ðq2; k2Þjk2¼PS

¼ gSππ

ffiffiffiffiffi
λS

p
MSffiffiffiffiffi
q2

p FB→S
0;t ðq2Þ: (4.14)

The total decay width ΓR was added to the pole
PR ¼ M2

R − iMRΓR, thus yielding standard Breit-Wigner
factors

BWRðk2Þ ¼
1

½M2
R − k2 − iMRΓR�

; (4.15)

which govern the resonance behavior in the variable k2

close to k2 ¼ M2
R, R ¼ ρðnÞ; f0ðnÞ. Note that the widths

can be interpreted as contribution of multihadron states to
the imaginary part of hππjB̄i in k2. For more details we
refer to [33] where the origin of the ρwidth in the pion form
factor was discussed in detail.

V. DECAY RATE AND ANGULAR ANALYSIS

In terms of the vector and axial-vector form factors, the
amplitude for B → ππlν in the SM can be expressed as

iM ¼ i
GFVubffiffiffi

2
p

�
F0ε

μð0Þ þ F∥ þ F⊥ffiffiffi
2

p βπ sin θπeþiφεμðþÞ

þ F∥ − F⊥ffiffiffi
2

p βπ sin θπe−iφεμð−Þ
�
½ūlγμð1 − γ5Þvν�;

(5.1)

where the helicity form factor for timelike polarization Ft
does not contribute in the limit of massless leptons. In the
following, we find it convenient to express our result in
terms of normalized partial-wave amplitudes defined
from the corresponding partial-wave expansion of the form
factors,

AðkÞ
n ¼ NFðkÞ

n ðwith n ¼ 0; ∥;⊥Þ; (5.2)

where the normalization factor absorbs kinematic and
coupling parameters,

N ¼ GFjVubj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2βlβπ

ffiffiffi
λ

pq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 · 210π5M3

B

p ; (5.3)

and we restrict our analysis to k ¼ S, P waves in the
following.
The fivefold differential decay width for B̄ → πþπ0l−ν̄

then takes a similar form as for the rare flavor-changing
neutral current decay B̄ → K̄πlþl−, which has received a
lot of attention recently [6–10]. Choosing q2, k2, cos θπ ,
cos θl, and φ as the five independent kinematic variables,
we obtain
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8π

3

d5Γ
dq2dk2d cos θπd cos θldφ

≡ J ≡X
n

Jnfn; (5.4)

where Jðq2; k2; cos θπ; cos θl;φÞ is decomposed into the
angular functions fn ≡ fnðcos θπ; cos θl;φÞ and angular
observables Jn ≡ Jnðq2; k2Þ. This notation has been

introduced in [3] for B → K�ð→ KπÞlþl− decays, origi-
nally restricted to pure P-wave contributions and not taking
into account scalar or pseudoscalar operators (which
could be relevant in certain NP models). The general case,
including a general basis of b → u operators and interfer-
ence effects between S- and P-wave contributions, can be
worked out following [4,10] and reads

J ¼ ðJ1s sin2 θπ þ J1c cos2 θπ þ J1sc cos θπÞ þ ðJ2s sin2 θπ þ J2c cos2 θπ þ J2sc cos θπÞ cos 2θl
þ J3 sin2 θπ sin2 θl cos 2φþ ðJ4 sin 2θπ þ J4i sin θπÞ sin 2θl cos φ

þ ðJ5 sin 2θπ þ J5i sin θπÞ sin θl cos φþ ðJ6s sin2 θπ þ J6c cos2 θπÞ cos θl
þ ðJ7 sin 2θπ þ J7i sin θπÞ sin θl sinφþ ðJ8 sin 2θπ þ J8i sin θπÞ sin 2θl sin φ

þ J9 sin2 θπ sin2 θl sin 2φ: (5.5)

Comparing with Eq. (5.4) in the SM, we obtain

4

3
J1s ¼

3

4
β2πðjAðPÞ

⊥ j2 þ jAðPÞ
∥ j2Þ þ 1

3
jAðSÞ

0 j2;
4

3
J1c ¼ jAðPÞ

0 j2 þ 1

3
jAðSÞ

0 j2 ¼ − 4

3
J2c;

4

3
J1sc ¼

2ffiffiffi
3

p RefAðPÞ
0 AðSÞ�

0 g ¼ − 4

3
J2sc;

4

3
J2s ¼

1

4
β2πðjAðPÞ

⊥ j2 þ jAðPÞ
∥ j2Þ − 1

3
jAðSÞ

0 j2;
4

3
J3 ¼

1

2
β2πðjAðPÞ

⊥ j2 − jAðPÞ
∥ j2Þ; (5.6)

and

4

3
J4 ¼

1ffiffiffi
2

p βπRefAðPÞ
0 AðPÞ�

∥ g;

4

3
J4i ¼

ffiffiffi
2

pffiffiffi
3

p βπ RefAðSÞ
0 AðPÞ�

∥ g;
4

3
J5 ¼

ffiffiffi
2

p
βπ RefAðPÞ

0 AðPÞ�
⊥ g;

4

3
J5i ¼

2
ffiffiffi
2

pffiffiffi
3

p βπ RefAðSÞ
0 AðPÞ�

⊥ g;
4

3
J6s ¼ 2β2π RefAðPÞ

∥ AðPÞ�
⊥ g;

4

3
J6c ¼ 0; (5.7)

and

4

3
J7 ¼

ffiffiffi
2

p
βπ ImfAðPÞ

0 AðPÞ�
∥ g;

4

3
J7i ¼

2
ffiffiffi
2

pffiffiffi
3

p βπ ImfAðSÞ
0 AðPÞ�

∥ g;
4

3
J8 ¼

1ffiffiffi
2

p βπ ImfAðPÞ
0 AðPÞ�

⊥ g;

4

3
J8i ¼

ffiffiffi
2

pffiffiffi
3

p βπ ImfAðSÞ
0 AðPÞ�

⊥ g;
4

3
J9 ¼ β2π ImfAðPÞ

⊥ AðPÞ�
∥ g: (5.8)

Our result for the functions Ji takes an analogous form as
found for B̄ → ðK̄πÞS;Plþl− decays in e.g. [7,9]. Note that
the relative strong phases of the dipion form factors can be
sizeable, and we thus keep all the angular observables that
involve an imaginary part in Eq. (5.8).

VI. MODEL-INDEPENDENT RESULTS

The large number of observables Jn in the angular
distribution allows us to infer certain information from
experimental data, search for physics beyond the SM, and
test various theoretical approaches to QCD.

A. Null tests in and of the SM

The V-A nature of the weak interaction in b → u
transitions can be probed in B → ππl−ν̄l decays through
two independent, experimental sets of null tests.
The first set is given by the theory prediction that

J6c ¼ 0; (6.1)

J1c þ J2c ¼ 0; J1sc þ J2sc ¼ 0; (6.2)
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J1sc − J5J5i þ 4J8J8i
J1s þ J2s þ 2J3

¼ 0; (6.3)

J6s − 8J4J5 þ 8J7J8
4J1c − J1s þ 3J2s

¼ 0; (6.4)

J9 − 2J5J7 − 8J4J8
4J1c − J1s þ 3J2s

¼ 0; (6.5)

ð−4J2c−ðJ1s−3J2sÞÞðJ1sþJ2s−2J3Þ−ð16J24þ4J27Þ¼0;

(6.6)

ð−4J2c−ðJ1s−3J2sÞÞðJ1sþJ2sþ2J3Þ−ð4J25þ16J28Þ¼0;

(6.7)

ðJ1s − 3J2sÞðJ1s þ J2s − 2J3Þ − ð4J24i þ J27iÞ ¼ 0; (6.8)

ðJ1s − 3J2sÞðJ1s þ J2s þ 2J3Þ − ðJ25i þ 4J28iÞ ¼ 0; (6.9)

4J9ðJ5iJ4iþ J8iJ7iÞþ J6sð4J8iJ4i− J7iJ5iÞ ¼ 0; (6.10)

in the absence of D-wave or higher partial-wave contri-
butions.2 Any deviation from Eq. (6.1) would indicate NP
effects of both scalar and tensor nature, compare [10] in the
context of B̄ → K̄πlþl−. Breaking of Eq. (6.2) can be
achieved by less exotic models which introduce V þ A
interactions. The relations Eqs. (6.6)–(6.10) hold in the
absence of contributions from either scalar or tensor
operators. The above relations are similar to those obtained
for the decay B̄ → K̄�ð→ K̄πÞlþl− in [34].
The second set of test only holds in the SCET limit.

In that limit

J3 ¼ OðΛhad=mbÞ; J9 ¼ OðΛhad=mbÞ; (6.11)

as well as

J1s þ J2s − J6s ¼ OðΛhad=mbÞ; (6.12)

J7
2J4

− 2J8
J5

¼ OðΛhad=mbÞ; (6.13)

J7i
2J4i

− 2J8i
J5i

¼ OðΛhad=mbÞ; (6.14)

since the form factors fulfill FðkÞ
⊥ ¼ FðkÞ

∥ þOðΛhad=mbÞ
for all partial waves k. Breaking of the relations
(6.11)–(6.14) in the SCET limit can only be achieved
through either (a) subleading corrections to the form
factor relation or (b) NP effects in b → u transitions,
such as V þ A transitions.

B. Accessing form factor ratios and phase differences

We write each form factor FðlÞ
i in polar form,

FðlÞ
i ¼ rðlÞi eiφ

ðlÞ
i ; (6.15)

using the moduli rðlÞi and phases φðlÞ
i . Given the explicit

V − A nature of b → u transitions in the SM, we can
access five phase differences through ratios of angular
observables,

−2J9
J6s

¼ tanðφðPÞ
∥ − φðPÞ

⊥ Þ; J7
2J4

¼ tanðφðPÞ
0 − φðPÞ

∥ Þ;
J7i
2J4i

¼ tanðφðSÞ
0 − φðPÞ

∥ Þ; 2J8
J5

¼ tanðφðPÞ
0 − φðPÞ

⊥ Þ;
2J8i
J5i

¼ tanðφðSÞ
0 − φðPÞ

⊥ Þ; (6.16)

where we employ ten independent angular observables.
Moreover, we can access four ratios of moduli rðlÞi =rðkÞj

J2sc
J2c

¼ 2
ffiffiffi
3

p
rðSÞ0 =rðPÞ0

3þ ðrðSÞ0 =rðPÞ0 Þ2
cosðφðPÞ

0 − φðSÞ
0 Þ; (6.17)

and

J1s þ J2s þ 2J3
J1s þ J2s − 2J3

¼
 
rðPÞ⊥
rðPÞ∥

!
2

;

3β2πðJ1s − 3J2sÞ
2ðJ1s þ J2s − 2J3Þ

¼
 
rðSÞ0

rðPÞ∥

!
2

;

3β2πðJ1s − 3J2sÞ
2ðJ1s þ J2s þ 2J3Þ

¼
 
rðSÞ0

rðPÞ⊥

!
2

(6.18)

using four further independent observables. Overall this
amounts to nine constraints on the form factors that arise
from 14 angular observables. Together with J6c (vanishing

2We expect sizable contributions when the dipion mass
approaches the mass of the f2 meson or its radial excitations.
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in the SM), J1c;1sc (not independent from J2c;2sc in the SM),
and the differential decay width,

dΓ
dq2

¼ J1c − 1

3
J2c þ 2J1s − 2

3
J2s

∝ jVubj2½3ðrðPÞ⊥ Þ2 þ 3ðrðPÞ∥ Þ2 þ 3ðrðPÞ0 Þ2 þ ðrðSÞ0 Þ2�;
(6.19)

we arrive at 18 angular observables. Thus, the determi-
nation of form factor ratios, form factor phases, and the
product of form factor moduli and jVubj as described in
Eqs. (6.16)–(6.19) extracts the maximum amount of
information from the angular distribution.

VII. CONCLUSION

In this paper we have considered the semileptonic decay
B → ππlν̄l in SM and analyzed the complete set of
angular observables describing the four-body final state.
Detailed quantitative predictions for these observables
require genuinely nonperturbative information, which is
encoded in hadronic B → ππ form factors. In turn, as we
have explored, a full-fledged angular analysis of the decay
will allow one to extract form factor ratios and relative
strong phases from experimental data. We have also shown
that in the soft or collinear limit, the number of
independent form factors is reduced due to heavy-quark
symmetries in HQET or SCET, respectively.
The tension in the determination of jVubj has lead to

speculations about possible nonstandard contributions in
b → u transitions. As we have discussed in this paper,
the chiral structure of weak interactions can be used to
identify null tests of the SM in B → ππlν̄l decay
observables; i.e. any violation of the V − A structure in
b → u transitions will show up in modifications of
Eqs. (6.1) and (6.2).
Our observations can also be useful for interpolation

between different corners of phase space, where the
resonance structure of the ππ system is described by
phenomenological models, or theoretical calculations
based on QCD factorization, heavy-hadron chiral pertur-
bation theory, or QCD sum rules are applicable. Detailed
analyses of these kinds go beyond the scope of the present
paper and are left for future work.
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APPENDIX: DETAILS ON THE KINEMATICS

This appendix shall elaborate on the definitions of
kinematic variables in the course of our calculations,
starting with general remarks.
First, we choose the z axis along the flight direction of

the dipion system, and consequently the dilepton system
moves along the negative z axis. We also put the dilepton
system into the x-z plane.
Second, we make use of a set of virtual polarization

vectors εðnÞμ, n ¼ t, �, 0 that fulfill the completeness
relations

εðnÞ · q ¼ 0; n ¼ �; 0;

εðnÞ · ε†ðn0Þ ¼ gnn0 ; εðnÞμε†ðn0Þνgnn0 ¼ gμν; (A1)

where gnn0 ¼ diagðþ1;−1;−1;−1Þ for n, n0 ¼ t, þ, −, 0.
In the following we will discuss the explicit expressions

for the various momenta and polarization vectors in the
three frames that are relevant to the decay analysis.

1. The dilepton rest frame

We describe the dilepton system through its invariant
mass q2 as well as the lepton helicity angle θl, i.e., the
angle between the l− direction of flight and the z axis in the
dilepton rest frame. We choose the x-z plane as the decay
plane of the dilepton system. Thus, we write in the lν rest
frame (lν-RF)

qμ1;2jlν-RF ¼
ffiffiffiffiffi
q2

p
2

ð1;∓ sin θl; 0;∓ cos θlÞ; (A2)

and correspondingly

qμjlν-RF ¼
ffiffiffiffiffi
q2

q
ð1; 0; 0; 0Þ;

q̄μjlν-RF ¼ −
ffiffiffiffiffi
q2

q
ð0; sin θl; 0; cos θlÞ:

(A3)

The polarization vectors εμðnÞ take the explicit form

εμðtÞjlν-RF ¼ ð1; 0; 0; 0Þ;
εμð�Þjlν-RF ¼ ð0; 1;∓i; 0Þ=

ffiffiffi
2

p
;

εμð0Þjlν-RF ¼ ð0; 0; 0;−1Þ: (A4)

Comments are due on the choice of the polarization vectors,
especially the signs of εzð0Þ as well as εyð�Þ. These have
been adopted to obtain longitudinal and right-handed/
left-handed polarization of the lν system, which moves
along the negative z axis.

2. The B-meson rest frame

In the rest frame of the B̄ meson (B-RF) we write
explicitly
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pμjB-RF ¼ ðMB; 0; 0; 0Þ; qμjB-RF ¼ ðq0; 0; 0;−jq⃗jÞ;
kμjB-RF ¼ ðMB − q0; 0; 0;þjq⃗jÞ: (A5)

Since we chose to describe the decay through the invariants
q2 and k2, we use

q0jB-RF ¼
M2

B − k2 þ q2

2MB
; jq⃗jjB-RF ¼

ffiffiffi
λ

p

2MB
: (A6)

Application of a Lorentz boost along the z axis from the
lν-RF to the B-RF leaves εð�Þ invariant, while εðtÞ and
εð0Þ are transformed:

εμðtÞjB-RF ¼ ðq0; 0; 0;−jq⃗jÞ=
ffiffiffiffiffi
q2

q
;

εμð0ÞjB-RF ¼ ðjq⃗j; 0; 0;−q0Þ=
ffiffiffiffiffi
q2

q
:

(A7)

3. The dipion rest frame

We describe the dipion system through its invariant mass
k2 as well as the pion helicity angle θπ , i.e., the angle
between the πþ direction of flight and the z axis in the
dipion rest frame (ππ-RF). In addition, there is an azimuthal
angle φ between the dipion and the dilepton decay planes.
The planes’ normal vectors are defined in the B-RF as e⃗π ¼
ðk⃗1 × k⃗2Þ=jk⃗1 × k⃗2j and e⃗l ¼ ðq⃗2 × q⃗1Þ=jq⃗2 × q⃗1j, respec-
tively. Since the angle φ depends only on the x and y
components of k1, k2, q1, and q2— which are invariant
under z-axis boosts between the B̄ rest frame, the dipion
rest frame, and the dilepton rest frame—we find that φ is
the same in all considered frames of reference laid out in
this section. We fix the x axis by requiring ðq2Þx > 0, which
implies e⃗l ¼ e⃗y. From φ ¼ 0 then follows e⃗π ¼ e⃗y and
further ðk⃗1Þx < 0 as well as ðk⃗1Þy ¼ 0. The spatial compo-
nents of k1 therefore point in the negative x direction for
φ ¼ 0. Furthermore, we use sin φ≡ ðe⃗l × e⃗πÞ · e⃗z as in
[3], from which we infer that φ is the azimuthal angle of the
momentum k2. The πþπ− decay plane is therefore rotated
with regard to the dilepton (x-z) plane by the angle −φ
around the z axis. From this, one obtains in the dipion rest
frame

kμ1jππ-RF ¼

0
BBBBB@

Eπ

−jk⃗RFj sin θπ cos φ

−jk⃗RFj sin θπ sin φ

þjk⃗RFj cos θπ

1
CCCCCA; (A8)

kμ2jππ-RF ¼

0
BBBBB@

Eπ

þjk⃗RFj sin θπ cos φ

þjk⃗RFj sin θπ sin φ

−jk⃗RFj cos θπ

1
CCCCCA; (A9)

and consequently

kμjππ-RF ¼

0
BBBBB@

ffiffiffiffiffi
k2

p

0

0

0

1
CCCCCA; (A10)

k̄μjππ-RF ¼

0
BBBBB@

0

−2jk⃗RFj sin θπ cos φ

−2jk⃗RFj sin θπ sin φ

2jk⃗RFj cos θπ

1
CCCCCA; (A11)

with

jk⃗RFj≡ βπ
2

ffiffiffiffiffi
k2

p
; Eπ ≡

ffiffiffiffiffi
k2

p

2
; (A12)

where β2π ¼ ðk2 − 4M2
πÞ=k2.

4. Frame-independent quantities

For convenience we present here the scalar products and
Levi-Cività contractions that were used in our calculations,
expressed in terms of the five kinematic variables q2, k2 and
the three angles θπ, θl, and φ. The scalar products read

εðtÞ · q̄ ¼ 0; (A13)

εðtÞ · kð0Þ ¼ εðtÞ · k̄ð∥Þ ¼ 0; (A14)

εð�Þ · q̄ ¼ þ
ffiffiffiffiffi
q2

p
ffiffiffi
2

p sin θl; (A15)

ε†ð�Þ · k̄ð∥Þ ¼
βπ

ffiffiffiffiffi
k2

p
ffiffiffi
2

p sin θπ expð�iφÞ; (A16)

εð0Þ · q̄ ¼ −
ffiffiffiffiffi
q2

q
cos θl; (A17)

εð0Þ · kð0Þ ¼
ffiffiffi
λ

p

2
ffiffiffiffiffi
q2

p ; (A18)
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εð0Þ · k̄ð∥Þ ¼ 0: (A19)

For the contractions with the Levi-Cività we obtain

εðε†ðtÞ; q; k; k̄Þ ¼ εðε†ð0Þ; q; k; k̄Þ ¼ 0; (A20)

εðε†ð�Þ; q; k; k̄Þ ¼ ∓iβπ

ffiffiffi
λ

p ffiffiffiffiffi
k2

p

2
ffiffiffi
2

p sin θπ expð�iφÞ;
(A21)

εðq; k; k̄; μÞ2 ¼ − β2π
4
k2λ sin2 θπ; (A22)

where we abbreviate

εða; b; c; dÞ≡ aμbνcρdσεμνρσ; (A23)

and use ε0123 ¼ −ε0123 ¼ þ1.
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