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The effects of gluon radiation by charm quarks on the transport coefficients, e.g., drag, longitudinal and
transverse diffusions, and shear viscosity, have been studied within the ambit of perturbative quantum
chromodynamics and kinetic theory. We found that soft gluon radiation by the charm quark has substantial
effects on the transport coefficients. However, the radiative effects on the shape of its equilibrium
distribution function is insignificant. We also observe that the shear viscosity to entropy ratio of the
quark-gluon plasma is closer to the experimentally extracted value when the gluon radiation by the charm
quark is included.
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I. INTRODUCTION

Recently the study of quark-gluon plasma (QGP),
expected to be created in heavy-ion collisions at the
Relativistic Heavy Ion Collider (RHIC) and Large
Hadron Collider (LHC) energies, has intrigued the scientific
community with its multifarious interesting aspects.
Therefore, in order to understand the different properties
of QGP, we need to probe it. Among many, one efficient
probe is the charm quark (CQ) produced in the early hard
collisions of the partons from the colliding nuclei.
Generally, the transport coefficients are sensitive to the
interaction of the probes with the medium. Hence, the
estimation of various transport coefficients of QGP by using
CQs is a field of high contemporary interest. Moreover,
strong coupling of the probes—the CQs here—with the
medium may bring them into equilibrium with the bulk
matter, so that the probes might follow a momentum
distribution similar to that of the constituents of themedium.
In the present work, wewill consider the QGP as the thermal
medium of light quarks, their antiparticles, and gluons, and
we will consider the CQs as a probe. This will enable us to
estimate the drag, diffusion, and shear viscous coefficients
of QGP and to understand the nature of the equilibrium
distribution of the CQs. The reasons behind choosing the
CQ as a probe are twofold: (i) Being created from the early
hard collisions, it can experience the hot/dense medium
from its birth. The CQ distribution function is different from
that of the medium particle, and being heavier than the
constituent particles of QGP, it does not get equilibrated
quickly, and hence it qualifies to act as a Brownian particle.
(ii) The probability of the production of CQs (with massM)
inside a thermal medium of temperature T (T ≪ M, where
M is the mass of the CQ) is small; hence, the probability of
the annihilation of CQs in the QGP is also small. Therefore,
the CQs witness the entire evolution of the bath. The
probability of the creation and annihilation of bottom quarks
is even smaller; therefore, the present work can be extended

to the bottom quarks as well. While propagating through the
QGP, a CQ interacts with the medium particles via two
dominant processes: (i) collisional or elastic interaction and
(ii) inelastic interaction, like gluon bremsstrahlung or gluon
radiation. In earlier works, while calculating the momentum
diffusion coefficients, the gluon radiation by the CQ has
either been ignored [1–4], or calculated for nonrelativistic
CQ [5,6], or estimated by first determining the drag from
radiative energy loss [7–9] and then using the Einstein
relation between drag and diffusion coefficients [10].
In this work, we calculate, using perturbative quantum

chromodynamics (pQCD), the transverse and longitudinal
diffusion coefficients of the CQs undergoing radiative loss
by emitting gluons while traveling through the QGP. We
consider that the emitted gluons, being soft, get absorbed
in the medium, resulting in energy transporting from the
fast-moving CQs to the constituents of the bath. This
transportation of momentum is reflected in the momentum
diffusion coefficients of the CQs in QGP.
The values of the drag and diffusion coefficients can be

used to characterize the distribution function of the probe.
Therefore, these transport coefficients can be utilized to
understand the departure of the CQ distribution from the
thermal distribution of the bath particles. The shape of the
equilibrium distribution function of the CQs has been
studied using a generalized Einstein relation derived in
Ref. [11]. We revisit this relation by including both the
collisional and the radiative transport coefficients of
the CQs.
The present work is organized as follows: In the next

section, we discuss the formalism of the Fokker-Planck
equation (FPE) and the procedure to evaluate transport
coefficients for collisional and radiative processes. In
Sec. III, the equilibrium distribution (fCQeq ) of CQs is
elaborated in the context of the bremsstrahlung process.
The impact of the radiative transport coefficients on the fCQeq
is particularly highlighted. In Sec. IV, the shear viscosity (η)
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to entropy density (s) ratio η=s of QGP is estimated using
CQ transverse diffusion coefficients with particular empha-
sis on the radiative processes. Section V is dedicated to
summary and discussion.

II. FORMALISM AND TRANSPORT
COEFFICIENTS

Heavy quarks propagate as Brownian particles in the
QGP medium. The ensemble of Brownian particles
immersed in the thermal medium can be characterized
by the single-particle distribution function, fðx⃗; p⃗; tÞ. The
time evolution of f is governed by the master equation, a
simplified version of which is the FPE.
The form of the master equation, or the Boltzmann

transport equation (BTE), governing the CQ distribution f
is given by

� ∂
∂tþ

p⃗
E
:
∂
∂x⃗þ F⃗:

∂
∂p⃗

�
fðx⃗; p⃗; tÞ ¼

�∂f
∂t

�
collisions

: (1)

In the absence of external force F⃗, and for a homogeneous
plasma, we can write the BTE as follows:

�∂f
∂t

�
collisions

¼
Z

d3k⃗½wðp⃗þ k⃗; k⃗Þfðp⃗þ k⃗Þ−wðp⃗; k⃗Þfðp⃗Þ�;
(2)

where wðp⃗; k⃗Þ is the rate of collision of the CQ, changing
its momentum from p⃗ to p⃗ − k⃗. Considering only the soft
scattering (small jk⃗j), we reduce the integro-differential
Eq. (2) to the FPE:

∂f
∂t ¼

∂
∂pi

�
Aiðp⃗Þf þ ∂

∂pj
½Bijðp⃗Þf�

�
; (3)

where the kernels are defined as

Ai ¼
Z

d3k⃗wðp⃗; k⃗Þki (4)

and

Bij ¼
1

2

Z
d3k⃗wðp⃗; k⃗Þkikj; (5)

where Ai and Bij are the drag and the diffusion coefficients
of the CQ. Equation (3) is obtained by expanding the
collision term [Eq. (2)] for small values of k⃗ and keeping
terms up to the quadratic order. The two terms in the right-
hand side of Eq. (3) have the same order of magnitude [12]
because the averaging of the first power of ki [through
Eq. (4)] with its sign fluctuation involves greater degree of
cancellation than the averaging of the quadratic term, kikj
[through Eq. (5)]. The higher-order terms, i.e., cubic,
quartic, etc., are smaller compared to the terms kept in

the above expression. With the assumption of small
momentum transfers of the CQs with their thermal collision
partners, the nonlinear BTE reduces to a linear FPE, which
is much simpler to solve. (For the comparison of solutions
of the BTE and FPE for the CQ see Ref. [13].)
Our motivation is to find out the drag and diffusion

coefficients due to elastic and inelastic interactions of the
CQs with the bath particles within the ambit of pQCD.

A. Transport coefficients for collisional processes

First, we concentrate on the two-body elastic processes.
While propagating inside the plasma, the CQ (Q) encoun-
ters the following interactions with the bath particle:
QðpÞþgðqÞ→Qðp0Þþgðq0Þ, QðpÞþqðqÞ→Qðp0Þþqðq0Þ,
and QðpÞ þ q̄ðqÞ → Qðp0Þ þ q̄ðq0Þ, where the quantities
within the brackets denote the momenta of the CQ, quark
(q), antiquark (q̄) and gluon (g). Therefore, Ai and Bij are
written in terms of invariant amplitude squared [1] as

Ai ¼
1

2Ep

Z
d3q

ð2πÞ32Eq

Z
d3q0

ð2πÞ32Eq0

×
Z

d3p0

ð2πÞ32Ep0

1

γ

X
jMj22→2ð2πÞ4δ4ðpþq−p0−q0Þ

× f̂ðqÞð1� f̂ðq0ÞÞðp−p0Þi; (6)

Ai ¼ hhðp − p0Þiii: (7)

Similarly,

Bij ¼
1

2
hhðp0 − pÞiðp0 − pÞjii: (8)

Since Ai and Bij only depend on the three-momentum p⃗
and background temperature T, we can write them as

Ai ¼ piA (9)

and

Bij ¼
�
δij − pipj

p2

�
B⊥ðp; TÞ þ

pipj

p2
B∥ðp; TÞ; (10)

where B⊥ and Bjj are the transverse and longitudinal
diffusion coefficients, respectively. Using Eqs. (7),(8),(9),
and (10), we get

AðpÞ ¼ hh1ii − hhp⃗:p0ii
p2

; (11)

B⊥ðpÞ ¼
1

4

�
hhp02ii − hhðp⃗:p⃗0Þ2ii

p2

�
; (12)
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B∥ðpÞ ¼
1

2

�hhðp⃗:p⃗0Þ2ii
p2

− 2hhp⃗:p⃗0ii þ p2hh1ii
�
: (13)

Using Eqs. (11),(12), and (13) with the matrix elements of
those elastic processes mentioned above, the drag and the
transverse and longitudinal diffusion coefficients can be
estimated.
The expression for the transport coefficient [Xðp⃗; TÞ]

can be schematically written as

XðpÞ ¼
Z

phase space × interaction × transport part:

(14)

In the case of drag (diffusion), the transport part involves
momentum (square of the momentum) transfer of the CQ
with the bath particle. The evaluation of the drag and
diffusion coefficients with collisional processes is elabo-
rated in Refs. [7,8]. Therefore, we refer to these references
for details and do not repeat the discussions here.

B. Transport coefficients for radiative processes

Equation (14) can be used to evaluate the transport
coefficients due to radiative processes by replacing the
two-body phase space and invariant amplitude with
their three-body counterparts and keeping the transport
part the same. The Xðp⃗; TÞ for the radiative processQðpÞþ
partonðqÞ→Qðp0Þþpartonðq0Þþgluonðk5Þ [where “par-
ton” stands for light quarks, antiquarks, and gluons, and
k5 ¼ ðE5; k⊥; kzÞ] can be written as

X¼ 1

2Ep

Z
d3q

ð2πÞ32Eq

Z
d3q0

ð2πÞ32Eq0

Z
d3p0

ð2πÞ32Ep0

×
Z

d3k5
ð2πÞ32E5

1

γ

X
jMj22→3ð2πÞ4δ4ðpþq−p0−q0−k5Þ

× f̂ðEqÞð1� f̂ðEq0 ÞÞð1þ f̂ðE5ÞÞ
×θ1ðτ−τFÞθ2ðEp−E5Þ: (15)

Equation (15) contains two theta functions: (i) θðEp − E5Þ
prohibits the emission of gluons with energy greater than
Ep, the energy of the incoming heavy quark. (ii) θðτ − τFÞ
keeps the kinematics of the process strictly within the
additive kinematic domain [14], wherein scattering centers
are well separated enough that the gluon radiation is
additive in nature.
In order to calculate

P jMj22→3 for the process
QðpÞþpartonðqÞ→ Qðp0Þþpartonðq0Þþgluonðk5Þ, the
necessary Mandelstam variables are defined as follows:

s ¼ ðpþ qÞ2; s0 ¼ ðp0 þ q0Þ2; (16)

t ¼ ðp − p0Þ2; t0 ¼ ðq − q0Þ2; (17)

u ¼ ðp − q0Þ2; u0 ¼ ðq − p0Þ2; (18)

with

sþ tþ uþ s0 þ t0 þ u0 ¼ 4M2: (19)

In the present work, we will consider the case of soft gluon
emission (see Ref. [15] for details), i.e., when k5 → 0,
which implies s0 → s, t0 → t, u0 → u. For the kinematic
region

ffiffiffi
s

p
≫

ffiffiffiffiffi
jtj

p
∼ q⊥ ≫ k⊥ ≫ mD; (20)

the invariant amplitude squared for a 2 → 3 process can be
expressed in terms of a 2 → 2 process multiplied by the
emitted gluon spectrum [16]:

jMj22→3 ¼ jMj22→2 × 12g2s
1

k2⊥

�
1þM2

s
e2y

�−2
; (21)

where M is the mass of the CQ. The last term in Eq. (21)
within brackets is the dead cone factor, and y denotes the
rapidity of the emitted gluon. Equation (21) provides the
square of the invariant amplitude for light quarks forM ¼ 0.
Following Eqs. (15) and (21), we have the radiative X:

Xrad ¼ Xcoll ×
Z

d3k5
ð2πÞ32E5

12g2s
1

k2⊥

×

�
1þM2

s
e2y

�−2
½1þ f̂ðE5Þ�

× θðτ − τFÞθðEp − E5Þ: (22)

After having calculated the radiative transport coefficients,
we find our total or effective transport coefficient as the sum
of the collisional and radiative contributions, i.e.,

Xeff ¼ Xcoll þ Xrad; (23)

where Xcoll and Xrad are the transport coefficients for the
collisional and radiative processes, respectively. In order to
obtain the effective transport coefficient, we have added the
collisional and radiative parts with the view in mind that
though the invariant amplitude of three-body scattering can
be expressed in terms of two-body scattering, the processes
of collision and radiation take place inside the thermal
medium independently.
In Fig. 1, we display the temperature dependence of the

drag of CQs with momentum p ¼ 5 GeV. At low T,
although the drag for radiative loss is comparable to that
for collisional loss, at high temperatures the radiative drag
tends to dominate. The difference between total and colli-
sional transport coefficients broadens with increasing
temperature. Even at temperatures attainable at RHIC, this
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distinction is significant enough to have a pronounced
effect on certain experimental observables like nuclear
modification factor, elliptic flow of CQs, etc. In the
temperature range that may be achieved at LHC collision
conditions, the radiative contributions to the drag may
surpass the elastic contributions. Therefore, radiative proc-
esses will play a more dominant role at LHC than at RHIC.
For a CQ (mass M ¼ 1.3 GeV) with p ¼ 5 GeV and
T ¼ 300 MeV, the drag coefficient attains a value almost
double the value for the collisional case when radiation is
included. At a temperature of 600 MeV, total drag becomes
2.12 times the collisional drag. The variation of drag with p
at T ¼ 525 MeV is depicted in Fig. 2. The dominance of
radiative processes, in spite of dead cone suppression, is
evident from the results for p beyond 5 GeV.
In Figs. 3 and 4, the variations of longitudinal diffusion

coefficients with temperature and momentum, respectively,
are displayed. Similar to drag, the contributions from
radiative processes dominate over the collisional processes
for higher T and p.

For T ¼ 300 MeV, the radiative and collisional losses
have similar contributions to B⊥, but for T beyond
500 MeV, the radiative part exceeds the collisional part
(Fig. 5). It is interesting to note the qualitative change in the
momentum dependence of B⊥ from B∥ at fixed T (Fig. 6).
The variation of B⊥ with p is slower than that of B∥. In this
case, again the domination of the radiative transport
coefficient over its collisional counterpart is evident.
Though the nature of the momentum dependence of the
diffusion coefficients is different from that of drag, it is
always true that, save at very low momentum of the CQ, the
radiative contribution is more than the elastic contribution
at T ¼ 525 MeV. Accordingly, for a relativistic CQ,
inclusion of the radiative effects becomes imperative for
the analysis of experimental data from nuclear collisions at
RHIC and LHC. This statement can be put on a firmer
ground if we quote some quantitative results comparing
radiative and collisional contributions to the transport
coefficients. The drag coefficient of a CQ having a
momentum of 10 GeV is 0.038 fm−1 in case of elastic
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FIG. 1. Temperature dependence of the drag coefficient of CQs
with momentum p ¼ 5 GeV.

0 5 10 15 20
p(Gev)

0

0.05

0.1

0.15

0.2

A
(f

m
−1

)

coll

rad

coll+rad

FIG. 2. Momentum dependence of the drag coefficient of CQs
for a bath temperature of T ¼ 525 MeV.
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FIG. 3. Temperature dependence of the longitudinal diffusion
coefficient of CQs with momentum p ¼ 5 GeV.
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FIG. 4. Momentum dependence of the longitudinal diffusion
coefficient of CQs for a bath temperature of T ¼ 525 MeV.
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loss, whereas the radiative contribution is 0.047 fm−1.
Radiative B⊥ is about 1.33 times its collisional counterpart.
In the case of longitudinal diffusion coefficient, the
radiative contribution is 1.2 times the elastic one.

III. EQUILIBRIUM DISTRIBUTION
OF CHARM QUARKS

Having calculated the diffusion coefficients of CQs
including both collisional as well as radiative effects, we
would like to investigate the fate of the equilibrium
distribution function of a CQ undergoing elastic as well
as radiative processes. A generalized Einstein relation
involving the three transport coefficients, i.e., drag, trans-
verse, and longitudinal diffusion coefficients, is obtained in
Ref. [11] to establish the shape of the distribution of CQs
after it gets equilibrated due to its collisional interaction
with the medium. In Ref. [11], the radiative process was not
taken into account. We would like to explore the role of the

radiative processes in the characterization of the equilib-
rium distribution and to check whether the CQs become a
part of the thermal medium abiding by the same class of
statistics, which is the Boltzmann-Jüttner distribution,
followed by the bath particles.
We discuss the generalized Einstein relation by examin-

ing the Fokker-Planck equation in the absence of any
external force in a homogeneous QGP:

∂f
∂t ¼

∂
∂pi

�
Aif þ ∂

∂pjBijf

�
¼ −∇⃗p:℘⃗: (24)

A relationship among the transport coefficients can be
derived by demanding that ∂f=∂t equal zero; i.e., the
probability current ℘⃗ vanishes when Eq. (24) is satisfied by
the equilibrium distribution function, fCQeq .
Using the following form of fCQeq ,

fCQeq ðp;T; qÞ ¼ N exp½−Φðp;T; qÞ�; (25)

the desired relation can be found out, where N is the
normalization factor and T, q are parameters needed to
specify the shape of the distribution. Using Eqs. (9) and
(10) and the fact that fCQeq depends only on the magnitude of
momentum for the spatially homogeneous case, we arrive
at the general Einstein relation:

Aðp; TÞ ¼ 1

p
dΦ
dp

B∥ðp; TÞ − 1

p
dB∥

dp

− 2

p2
½B∥ðp; TÞ − B⊥ðp; TÞ�: (26)

This relation is valid for any momentum of CQ and can be
reduced to the well-known Einstein relation D ¼ γMT in
the nonrelativistic limit, where A ¼ γ and B⊥ ¼ B∥ ¼ D,
i.e., Bij ¼ Dδij and Φ ¼ p2=ð2 MTÞ.
From Eq. (26), it is clear that if the three transport

coefficients are known, then one can infer the correct
equilibrium distribution function obeyed by CQs and
ascertain whether or not CQs will fall under the
Boltzmann-Jütner class of statistics. It is clear from the
variation of dΦ=dp [calculated from Eq. (26)] with p
(Fig. 7) that dΦ=dp deviates significantly from
d=dpð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
=TÞ, i.e., CQs seem to be away from

the Boltzmann-like distribution. In principle, we should
have ascertained the precise form of Φ from Eq. (26) had
we been able to include nonperturbative effects in A, B⊥,
and B∥. Therefore, to study the equilibrium distribution and
its deviation from the Boltzmann-Jüttner distribution quan-
titatively, we consider the Tsallis distribution [17], for
which Φ is given by

ΦTs ¼
1

1 − q
ln ½1 − ð1 − qÞEðpÞ=TT �; (27)
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FIG. 5. Temperature dependence of the transverse diffusion
coefficient of CQs with momentum p ¼ 5 GeV.
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FIG. 6. Momentum dependence of the transverse diffusion
coefficient of CQs for a bath temperature of T ¼ 525 MeV.
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where TT (temperature-like) and q are parameters. ΦTs
reduces to the Boltzmann distribution in the limit q → 1
and TT → T (where T is the temperature of the heat bath).
The values of TT and q will dictate the form of fCQeq . Putting
Eq. (27) into Eq. (26), we get [11]

TT þ ðq − 1ÞE ¼ dE
dp

1

p A
B∥
þ 1

B∥

dB∥
dp þ 2

p ð1 − B⊥
B∥
Þ
: (28)

Our aim is to calculate the right-hand side of Eq. (28) and
determine the values of TT and q by studying the variation
of TT þ ðq − 1ÞE with E and parametrizing the variation
by a straight line. It is important to note that the quantities
on the right-hand side of Eq. (28) involve the ratios of the
transport coefficients rather than their absolute values. First,
we consider the elastic processes only. The dependence of
TT þ ðq − 1ÞE on E for CQs of mass M ¼ 1.3 GeV
propagating inside a heat bath of temperature T ¼
525 MeV is plotted in Fig. 8, considering A, B⊥, and

B∥ for collisional loss only. We get q ¼ 1.101 and
TT ¼ 184 MeV. ΦTs with these values of TT and q is
far from being that of Boltzmann-Jüttner statistics (shown
by the long-dashed line). Results displayed in Fig. 8 also
indicate that the inclusion of radiative effects on the drag
and diffusion coefficients does not make any noteworthy
change on the shape of the equilibrium distribution of CQs.
In Figs. 8 and 9, the long-dashed horizontal lines represent
the Boltzmann-Jüttner distribution (q ¼ 1 and TT ¼ T)
which is obeyed by the constituent of QGP. The values of
TT and q do not get altered with the inclusion of the
radiative effects. As a matter of fact, this effect is not quite
unexpected. By looking at Eq. (28), we might conclude that
it is not the magnitude of the transport coefficients, but
rather their ratio which decides the shape of the equilibrium
distribution. Therefore, it is not surprising that although the
value of the relaxation time of CQs is dictated by the
magnitude of the drag coefficient (in which the radiative
contribution is substantial), the shape is largely indepen-
dent of the magnitude of the transport coefficients. In turn,
this means that the nature of the underlying interaction of a
CQ with the bath particles, i.e., whether it suffers only
elastic collisions or undergoes bremsstrahlung also, has
very little to do with the ultimate shape of fCQeq . This
conclusion remains unaltered even when we increase
the bath temperature T to 725 MeV. At T ¼ 725 MeV,
the slope of the straight line remains almost unchanged,
i.e., the value of the parameter q comes out to be 1.095,
which is close to the value obtained for T ¼ 525 MeV.
However, the value of the other parameter of the Tsallis
distribution, TT , is found out to be 335 MeV. At this
temperature for the heat bath too, the incorporation of the
radiative drag/diffusion coefficients hardly has any bearing
as far as the shape of fCQeq is concerned. For the probe—the
CQs—to become a part of the system, i.e., to follow
the same statistics as that of the bath particles, both the
parameter q and the ratio TT=T should be 1. Instead, we
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FIG. 7. The variation of dΦ=dp with p for CQs propagating in
a QGP having temperature T ¼ 525 MeV.
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FIG. 8. Plot of rhs of Eq. (28) vs E for collisional as well as total
transport coefficients at T ¼ 525 MeV. The long-dashed line
shows the plot expected for Boltzmann-Jüttner distribution.
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FIG. 9. Plot of rhs of Eq. (28) vs E for collisional as well as total
transport coefficients at T ¼ 725 MeV. The long-dashed line
shows the plot expected for Boltzmann-Jüttner distribution.
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notice that q and T=TT (this ratio is 2.85 at T ¼ 525 MeV
and 2.164 at T ¼ 725 MeV) are never equal to unity.
Therefore, it may be concluded that although the CQ may
equilibrate while propagating through QGP, it may not
share the same distribution with the bath particles, i.e., with
the light quarks and gluons, for a wide range of CQ
energies and bath temperatures.

IV. SHEAR VISCOSITY (η) TO ENTROPY
DENSITY (s) RATIO OF QGP PROBED

BY THE CHARM QUARK

The value of the shear viscosity (η) to entropy density (s)
ratio, η=s, plays a pivotal role in deciding the nature of
QGP, i.e., whether the medium behaves like a weakly
coupled gas or a strongly coupled liquid. In this work we
evaluate η=s by calculating the transport parameter, q̂,
which is a measure of the squared average momentum
exchange between the probe and the bath particles per unit
length [18–20]. The q̂, which has been found to be
∼1 GeV2=fm in Ref. [20], can be related to the transverse
diffusion coefficient of the CQ, which is calculated here.
When a CQ with a certain momentum propagates in QGP, a
transverse momentum exchange with the bath particles
occurs. Hence, the momentum of the energetic CQ is
shared by the low-momentum (on the average) bath
particles, which is expressed through the transverse dif-
fusion coefficients. The transverse diffusion coefficients
cause the minimization of the momentum (or velocity)
gradient in the system. Therefore, it must be related to the
shear viscous coefficients of the system which drive the
system toward a depleted velocity gradient. The transverse
momentum diffusion coefficient B⊥ can be written as

B⊥ ¼ 1

2

�
δij − pipj

p2

�
Bij: (29)

By Eq. (8) and using the notation ðp0 − pÞi ¼ ki,

B⊥ ¼ 1

2

�
δij − pipj

p2

�
1

2
hhkikjii

¼ 1

4

��
k⃗2 − ðp⃗:k⃗Þ2

p⃗2

��
:

If we take p⃗ to be along the z axis,

B⊥ ¼ 1

4
hhk⃗2 − k2zii

¼ 1

4
hhk2⊥ii

¼ 1

4
q̂: (30)

With this definition of q̂, we calculate the η=s of QGP from
the following expression [18]:

η

s
≈ 1.25

T3

q̂
: (31)

Therefore,

4π
η

s
≈ 1.25π

T3

B⊥
: (32)

Equation (32) indicates that the η=s can be estimated from
B⊥. From the analysis of the experimental data [20], it was
found that 4π η

s ¼ 1.4� 0.4, which may be compared with
the AdS/CFT bound 4π η

s ≥ 1 [21]. We display 4π η
s against

T when the CQ undergoes both collisional and radiative
processes.
From the results shown in Fig. 10, it should be noted that

the value of η=s changes substantially with the inclusion of
the radiative effects. The inclusion of the radiative loss in
B⊥ brings the theoretical values closer to the experimental
findings [22]. This highlights the importance of the
radiative loss of the CQ in QGP. It is interesting to note
that the value of q̂ for T ¼ 300 MeV is about 2 GeV2=fm.
This value is close to the one obtained in the Gyulassy-
Levai-Vitev approach to energy loss [23] but lower than
the value extracted from Baier-Dokhshitzer-Mueller-
Peigne-Schiff [24] or Armesto-Salgado-Wiedemann [25]
approaches.

V. SUMMARY AND CONCLUSION

Transport coefficients, i.e., drag and the transverse and
longitudinal diffusion coefficients, of CQs propagating in
QGP have been evaluated using pQCD by including both
the elastic collision of CQs with the constituent particles of
the bath along with soft gluon radiation (which gets
absorbed in the medium subsequently). Radiative drag/
diffusion coefficients are seen to exceed the collisional ones
for high bath temperatures and CQ momenta. A relation

FIG. 10 (color online). The value of η=s for a CQ
with momentum hpTi ¼ 5 GeV propagating in a QGP of
temperature T.
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between the transverse diffusion coefficients (B⊥) and η=s
is established. We obtain a reasonable value of η=s for the
QGP when the contributions from the gluon bremsstrah-
lung of the CQ are added with the collisional contributions.
We also investigate the dependence of the shape of the
equilibrium distribution function of CQ on the three
transport coefficients. We find that the incorporation of
radiation does not alter the shape of the equilibrium
distribution significantly, owing to the fact that the shape
counts on the ratios of the transport coefficients instead of

their absolute values. The present work has been performed
for the CQ. However, its extension for the bottom quark is
straightforward, where the mass of the charm quark has to
be replaced by that of the bottom quark.
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