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The amplitude of double Higgs boson production by the gluon fusion, gg → hh, is known to be small
due to cancellation between the graphs with the boson trilinear coupling and those with the coupling to the
top quark. For this reason a study of this process was suggested as a sensitive probe of the Higgs sector
nonlinearity. We calculate in a closed analytical form this amplitude at the threshold of the two bosons,
where the cancellation is the strongest, and discuss the origin of the small value of the amplitude. We also
note that the cancellation in the double boson production is in fact a part of a more general phenomenon of
suppression of similar threshold amplitudes for multiple scalar boson production, which, although not
directly relevant to the actual top quark and the Higgs boson, can be useful in other studies.
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With the observation [1,2] of what is most likely the long
anticipated Higgs boson of the standard model, a further
study of the Higgs sector becomes a matter of practical
feasibility. In particular the nonlinear terms in this sector,
describing the interaction between the bosons, are most
fundamentally related to the underlying framework of the
standard model. Thus a test of the self-interaction in the
Higgs sector would certainly justify overcoming the exper-
imental difficulties that such study inevitably entails. The
specific process in which the Higgs trilinear coupling can
be measured at a hadron collider is the double boson
production by gluon fusion [3–9]: gg → hh. At the lowest
loop level this process is contributed by two types of graphs
shown in Fig. 1, the box diagram and the triangle diagram
with the trilinear coupling between the bosons. It has been
noticed some time ago [3,5] that with the standard
couplings the contributions of these two types of graphs
exactly cancel in the limit where the mass m of the top
quark is much larger than any kinematical invariant in the
process, which also implies that m ≫ μ with μ being the
mass of the h boson. With the actual masses,m ≈ 173 GeV
and μ ≈ 126 GeV the cancellation is not complete, but still
the cross section calculated [6,7] with the gluon distribution
functions at the LHC energies is greatly suppressed in
comparison with what would be given by only one type of
graph in Fig. 1. This suppression of the double Higgs boson
production by gluon fusion implies an enhanced relative
importance of higher loop corrections [7] and of any
nonstandard couplings [6,7], thus providing an advanta-
geous opportunity for studying the latter effects.
Furthermore, a study of the process gg → hh may

include not only the measurement of the total cross section,
but also of the distribution in the invariant s for this process,
in particular near the threshold at s ¼ 4μ2, where the effect
of the cancellation of the standard contributions is the

strongest. It thus appears interesting to analyze in more
detail the threshold limit of the amplitude for the double
boson production. It should be noted that a full calculation
of both the triangle and the box graphs is available [3,5] at
an arbitrary kinematics in terms of the Passarino-Veltman
integrals [10]. Also the radiative QCD corrections to the
amplitude are known [11], so that neither a practical
calculation of the process gg → hh at the partonic level,
nor a prediction [6,7] for the cross section at a hadron
collider using the gluon distribution functions presents a
theoretical problem. However we believe that another look
at the process can be interesting, since the reasons for the
suppression of its amplitude still remain somewhat obscure.
In this paper we calculate the threshold amplitude in a
closed analytical form for arbitrary ratio μ=m and argue that
the “residual” cancellation between the box and triangle
graphs at the actual values of m and μ results from a
combination of the exact cancellation in the limit μ=m → 0,
the analytical properties of the amplitude, and the zero of
the major absorptive part of the amplitude at m ¼ μ=2 (in
addition to the trivial zeros atm ¼ 0 andm ¼ μ), which can
be traced to the property of “nullification” [12] i.e. of
exact vanishing of the on-shell sum of the tree level
threshold amplitudes for tt̄ → nh at the special mass ratio

FIG. 1. Tho types of diagrams contributing to the amplitude of
the process gg → hh: the triangle and the box.
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m=μ ¼ N=2 with integer N and n ≥ N. The cancellation in
the one loop amplitude makes the process sensitive to
higher loop corrections. In particular the top quark loop
correction to the boson trilinear coupling [7] produces a
singular contribution to the amplitude in the limit μ ≪ m.
The amplitude’s numerical value almost equals that of the
one loop term. In the concluding part we also illustrate that
the cancellation between different graphs for the double
Higgs boson production is in fact a part of more general
phenomenon of a similar cancellation in the threshold
amplitudes for multiple scalar boson production. Although
phenomenologically this behavior is not very significant for
the actual top quark and the Higgs boson, it can prove to be
relevant in other studies.
The amplitude for the process gg → hh at the threshold is

described by one form factor F2 and can be written in terms
of the momenta k1, k2 and the polarization (and color)
amplitudes ϵa1 , ϵ

b
2 of the gluons as

Aðgg → hhÞ ¼ − αs
4π

ðkμ1ϵaν1 − kν1ϵ
aμ
1 Þðk2μϵa2ν − k2νϵa2μÞF2;

(1)

where αs is the QCD coupling constant. In the limit μ=m →
0 the field h can be replaced by a constant and the form
factor F2 can be found [5,13,14] by considering the top
quark loop for the vacuum polarization with the mass m
rescaled in the constant background: m → mð1þ h=vÞ,
where v ¼ ðGF

ffiffiffi
2

p Þ−1=2 ≈ 246 GeV is the Higgs field
vacuum expectation value. Proceeding in this way one finds

F2 ¼
2

3
hhhj log

�
1þ h

v

�
j0i ¼ 2

3
hhhj h

v
− 1

2

h2

v2
j0i: (2)

Clearly, the term that is quadratic in h in the latter
expansion corresponds to the contribution of the box
graph, while the term that is linear in h describes the
contribution of the triangle diagram with the subsequent
“self-proliferation” of the scalar bosons. With the standard
model couplings one readily finds for the two bosons
produced at the threshold

hhhj h
v
j0i ¼ 1

2
hhhjh

2

v2
j0i ¼ 1

v2
; (3)

and verifies the exact cancellation in Eq. (2) between the
box and the triangle.
For finite masses μ and m the form factor can be written

in terms of a dimensionless function f of the ratio z ¼
μ2=m2 as F2 ¼ fðzÞ=v2. The contribution f△ of the
triangle graph to the function fðzÞ can be readily found
by a simple adaptation of the analytical expression [14] for
the amplitude for the coupling of the Higgs boson to two
photons (or gluons):

fΔ ¼ z−1½1þ ð1 − z−1Þarcsin2ð ffiffiffi
z

p Þ�; (4)

where the branch of the function arcsin x is defined in such
a way that on the upper side of the cut at positive real x > 1
it reads as

arcsin xjx>1 ¼
π

2
þ i
2
log

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x−2

p

1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x−2

p : (5)

The contribution f□ of the box type graphs to the
function fðzÞ can be found using its analytical and
asymptotic properties. Indeed, the function fðzÞ vanishes
in the limit corresponding to zero top quark mass, jzj → ∞,
and also at z → 0 due to the low energy theorem discussed
above. This function is real at real z in the interval −4 <
z < 1 and has a right cut at positive z starting from z ¼ 1
and a left cut at z < −4. This implies that the function fðzÞ
can be fully restored from its imaginary part on the cuts.
The imaginary part can be found from unitarity (or,
equivalently, using the Cutkosky’s cutting rules). The
corresponding cuts for both the triangle and the box graphs
are shown in Fig. 2. The triangle graph has only one cut
which results, together with the cuts of the box diagram of
the type in Fig. 2(b), in the discontinuity of the function
fðzÞ starting at z ¼ 1. The cuts of the type shown in
Fig. 2(c) contribute to the discontinuity at positive z starting
at z ¼ 4, while the cuts of the type in Fig. 2(d) give rise to
the discontinuity in fðzÞ at negative z such that z < −4. It
should be noted that for the purpose of calculation of the
box graphs the parameter μ2 refers to the momentum
transferred by a scalar source in the vertex in the graph,
p2 ¼ μ2. Thus setting this momentum spacelike p2 < 0,
corresponding to the “physical region” for the cut of the
type of Fig. 2(d) does not lead to any inconsistency. It is for
this reason that the analytical continuation to negative z ¼
μ2=m2 should be considered as to a negative μ2 while
preserving m2 positive, since the parameter m enters the
diagrams as dynamical in the propagator of the quark.
In what follows we denote the imaginary part of the

function fðzÞ resulting from the cuts of each type in Fig. 2
as respectively ImfΔ, ImðbÞf□, ImðcÞf□ and ImðdÞf□. It is a
simple exercise to verify (even before the integration over
the phase space of tt̄) that the expressions arising from the
cuts in Figs. 2(a) and 2(b) are related:

ImðbÞf□ ¼ − 4m2

μ2
ImfΔ; (6)

which implies, given Eq. (4), that these two expressions
combine in the total “s-channel” absorptive part ImðsÞf of
fðzÞ, corresponding to the process gg → tt̄ → hh with
on-shell quarks, having the form

ImðsÞfðzÞ ¼
π

2
θðz − 1Þz−1ð1 − 4z−1Þ

× ð1 − z−1Þ log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z−1

p

1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z−1

p ; (7)
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where θ stands for the step function. One can notice that the
expression in Eq. (7) has a nontrivial zero at m ¼ μ=2 in a
complete agreement with the nullification property for the
amplitudes describing the production of scalars at threshold
by on-shell fermions [12].
For the imaginary part generated by the cuts of the type

in Figs. 2(c) and 2(d) we find after a straightforward
calculation

ImðcÞf¼−π

2
θðz− 4Þz−1

�
ð3− 4z−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4z−1

p

− ð1þ 4z−1Þð1− 2z−1Þlog 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4z−1

p

1− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4z−1

p
�
; (8)

and

ImðdÞf ¼ π

2
θð−z− 4Þz−1

�
ð3− 4z−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4z−1

p

− ð1þ 4z−1Þð1− 2z−1Þlog 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4z−1

p

1− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4z−1

p
�
: (9)

A strong similarity between the expressions in Eqs. (8) and
(9) is apparent, but the reason for it is not.
The full absorptive part of the function fðzÞ is given by

the sum of the expressions (7), (8) and (9). The disconti-
nuity at the cuts and the condition that fðzÞ goes to zero at
jzj → ∞ and that it is also vanishing at z ¼ 0 is sufficient to
restore the full expression for fðzÞ (e.g. by using the
dispersion relation). The result can be written in a closed
analytical form as

fðzÞ ¼ 2z−1 þ z−1ð1 − 4z−1Þð1 − z−1Þarcsin2ð ffiffiffi
z

p Þ

þ z−1
�
ð3 − 4z−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z−1 − 1

p
arcsin

� ffiffiffi
z

p
2

�
þ ð1þ 4z−1Þð1 − 2z−1Þarcsin2

� ffiffiffi
z

p
2

��

þ z−1
�
ð4z−1 − 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4z−1

p
arcsinh

� ffiffiffi
z

p
2

�
þ ð1þ 4z−1Þð1 − 2z−1Þarcsinh2

� ffiffiffi
z

p
2

��
: (10)

Numerically, the actual masses of the top quark and the
Higgs boson correspond to the value z ¼ z0 ≈ 0.53, where
the expression (10) gives fðz0Þ ≈ −0.072. This value is
more than ten times smaller and of the opposite sign
compared with the contribution of the triangle graph alone:
fΔðz0Þ ≈ 0.77. Clearly, such significant cancellation

implies that besides the vanishing of fðzÞ at z ¼ 0, the

coefficients of the Taylor expansion for fðzÞ are quite small:

fðzÞ ¼ − 7

90
z − 1

14
z2 þOðz3Þ: (11)

(a) (b)

(c) (d)

FIG. 2. The types of cuts (the dotted lines) describing the imaginary part of the function fðzÞ.
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It can be noted that had one ignored the right and left “far”

cuts for fðzÞ starting at z ¼ �4 and restored this function

from the absorptive part (7) alone [but still using the

condition of fðzÞ vanishing at zero and infinity], the result

would be the function

~fðzÞ ¼ −4z−2 þ 11

3
z−1

− 2

45
z−1ð1 − 4z−1Þð1 − z−1Þarcsin2ð ffiffiffi

z
p Þ

¼ − 31

315
z − 12

175
z2 þOðz3Þ; (12)

which gives a reasonably close approximation for fðzÞ at
jzj < 1, so that, in this sense, the cut starting at z ¼ 1 gives

the major contribution to the full result in this domain of z.
Using the above formulas one can also estimate, in the

limit of small z, the behavior of the amplitude slightly
above the threshold, namely at the value of s for the two
bosons such that s > 4μ2, but still s ≪ m2. Indeed, the box
graph depends on the parameter s=m2 and in this limit can
be taken at its threshold value. The only dependence on s
then arises from the Higgs boson propagator in the diagram
with triangle. The contribution of the triangle graph to the
amplitude gg → hh is still described by one form factor F2

as in Eq. (1) which is given by

F2ðΔÞ ¼
1

v2
fΔ

�
s

4m2

�
3μ2

s − μ2

¼ 2

3v2
− 2

3v2
s − 4μ2

s − μ2
þO

�
s
m2

;
μ2

m2

�
: (13)

The first (constant) term cancels against the box graph
contribution, and one can see that the form factor deviates
toward negative values above the threshold. This is the
same negative sign as the threshold amplitude (10) at small,
but nonzero, values of z. Therefore it can be concluded that
the discussed cancellation between the box and triangle
contributions is the strongest at the threshold.
The small value of the leading standard model term for

the amplitude of gg → hh makes it very sensitive, besides
possible nonstandard effects, to higher order corrections. At
small z the most important correction at the threshold arises
from the modification of the Higgs trilinear coupling by a
top quark loop as shown in Fig. 3. (This is also the only
next-to-leading-order correction enhanced by the number
of colors Nc.) Indeed, in terms of the function fðzÞ this
correction, δf, is proportional to ðm2=v2Þðm2=μ2Þ and is
thus singular in z at z → 0. The coefficient of the singu-
larity is recently calculated [7] by using the effective Higgs
potential generated by the top quark loop, and the result
reads as

δfðzÞ ¼ − m2

π2v2
fΔð0Þ
z

¼ − 2m4

3π2v2μ2
≈ −0.063; (14)

a numerical value that is only slightly smaller than the
leading order result in Eq. (10).
Before concluding our discussion we would like to

mention, as a theoretical side remark, that the cancellation
at z → 0 between the one loop graphs at the threshold for
the process gg → hh is not limited to double Higgs boson
production, but also takes place at the thresholds for the
processes of n scalar boson production, gg → nh with even
n. It should be mentioned that this behavior is relevant only
when n2μ2 ≪ m2 and thus it appears to be not relevant for
the actual Higgs boson and the top quark, but can still be
useful in other studies. In order to establish this behavior
one can use the technique of generating functions for
calculating the amplitudes at multiboson thresholds
[12,15,16], which automatically takes into account all
the tree-type subgraphs generated by the self-interaction
in the Higgs sector. Within this approach one calculates
the vacuum polarization top quark loop Aðk1; k2; yÞ in the
classical background Higgs field depending on the
Euclidean time τ as

ϕðyÞ ¼ vþ hðyÞ ¼ v
1þ y=2v
1 − y=2v

; (15)

where y ¼ −2ve−μτ, so that the field ϕ is the familiar
solution to the classical equations of motion:
ϕ ¼ v tanhðμτ=2Þ. Each threshold amplitude An ¼ Aðgg →
nhÞ is then found as the nth derivative with respect to y of
Aðk1; k2; yÞ at y ¼ 0. In other words the latter is the
generating function for all the amplitudes An as

Aðk1; k2; yÞ ¼
X∞
n¼0

An

n!
yn: (16)

In the limit, when the ratio μ=m is very small, one can
consider the variation of the background field on the scale μ
as adiabatic and use the “free” expression for the quark loop

FIG. 3. The two loop diagram giving rise to a dominant
correction to the form factor F2. This correction is singular in
the limit μ2=m2 → 0.
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with a varying mass mðyÞ ¼ m½1þ hðyÞ=v�. The generat-
ing amplitude A, as well as all the amplitudes An, have the
same one-form-factor structure as in Eq. (1),

Aðk1; k2; yÞ ¼ − αs
4π

ðkμ1ϵaν1 − kν1ϵ
aμ
1 Þðk2μϵa2ν

− k2νϵa2μÞF ðyÞ; (17)

and one can write for the generating form factor the
expression

F ¼ 2

3
log

�
1þ hðyÞ

v

�
¼ 2

3
log

1þ y=2v
1 − y=2v

; (18)

and, upon the Taylor expansion, the formula for the
threshold form factors Fn:

Fn ¼ ½1þ ð−1Þn−1� 2
3

ðn − 1Þ!
ð2vÞn : (19)

Clearly, these form factors are vanishing at even n as a
simple consequence of F in Eq. (18) being an odd function
of y. It is interesting to note that for odd n, where the result
in Eq. (19) is nonzero, there is still a certain cancellation
between the (polygon) graphs taking place. Indeed, the
contribution to Fn of the triangle graph alone can be
evaluated similarly to Eq. (2):

FnðΔÞ ¼
2

3
hnhj h

v
j0i ¼ 2

3

2n!
ð2vÞn ; (20)

where the production amplitude hnhjhj0i can be found in
Ref. [15]. The triangle contribution is thus larger than the
full result (19) by the factor n: FnðΔÞ=Fn ¼ n.
Lacking a full calculation of the amplitude Aðk1; k2; yÞ

beyond the adiabatic in μ=m approximation, the form
factors Fn are not known at arbitrary z. We thus can note
here only a limited result regarding a generalization of
Eq. (7) to n > 2. Namely the imaginary part of FnðzÞ on the

unitary cut at z > 4=n2, associated with the process gg →
tt̄ → nh with on-shell quarks, is uniquely determined by
the zeros [12] of the tt̄ → nh amplitude as a function of z
and the matrix element hnhjhj0i and is given by

ImFnðsÞ ¼
π

2
θ

�
z − 4

n2

�
2n!
ð2vÞn z

−1 Yn
k¼1

�
1 − 4

k2
z−1

�

× log
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4=ðn2zÞ

p
1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4=ðn2zÞ
p ; (21)

although it is not clear at present whether this cut dominates
the behavior of the form factor FnðzÞ for a general n as it
does for n ¼ 2.
In summary, we have derived the closed analytical

expression in Eq. (10) for the amplitude of gg → hh at
the threshold of the two Higgs bosons, where the cancel-
lation between the triangle and the box graphs of Fig. 1 is
the strongest. The reasons for this cancellation are traced to
the vanishing of the amplitude as a function of the mass
ratio z ¼ μ2=m2 at both z → 0 and z → ∞ and, to an extent,
to the “extra” zero of the imaginary part of the amplitude on
the “major” cut, related to the property of nullification of
the on-shell threshold amplitudes tt̄ → nh. The strong
cancellation between the one loop contributions leads to
the fact that the main two loop correction in the limit z → 0
is numerically comparable to the one loop result for the
actual masses of the Higgs boson and the top quark. We
have also illustrated that the cancellation in the double
boson production amplitude is in fact a part of a more
general phenomenon of suppression of multiple scalar
boson production by two gluons at the corresponding
thresholds.
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