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Charged lepton corrections to scaling neutrino mixing
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Assuming the Majorana nature of neutrinos, a general expression for the charged lepton corrections to
scaling neutrino mixing has been obtained in the context of three flavor neutrino oscillations. The nonzero
value of the reactor mixing angle is nicely accommodated. It is noted that scaling in the effective neutrino
mass matrix is equivalent to the presence of two vanishing minors corresponding to first row elements of
the effective neutrino mass matrix. A value of the reactor mixing angle which is fairly close to the currently
measured best fit is predicted for charged lepton corrections of the order of the Cabbibo angle. We also
present symmetry realization of such texture structures in the framework of the type-I seesaw mechanism
with a nondiagonal charged lepton mass matrix using discrete Abelian flavor symmetry.
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I. INTRODUCTION

The discovery of neutrino oscillations [1] is one of the
major discoveries in particle physics which provided the first
hint of nonzero neutrino masses and mixing leading to phys-
ics beyond the Standard Model (SM). Considerable progress
has been made in the precise determination of neutrino
masses and mixing during the recent past. Recently, anumber
of neutrino oscillation experiments [2—6] have established
a nonvanishing and relatively large value of the reactor
neutrino mixing angle (63) with a best fit value around 9°.
The relatively large value of 6,5 has opened the possibilities
to explore Dirac-type CP violation in the lepton sector,
distinguishing neutrino mass hierarchy and identifying the
octant of the atmospheric neutrino mixing angle (6,3).
A nonzero value of 8,3 has made it necessary to modify mix-
ing schemes like Tribimaximal mixing [7] and others result-
ing from some underlying flavor symmetries which predict
613 = 0. One of the ways to achieve a deviation of 65 from
zero is to consider charged lepton corrections and many
attempts have been made in the past [8] and, especially, very
recently [9] to achieve the deviation of 8,5 from zero in terms
of charged lepton corrections. In addition, other theoretical
ideas such as texture zeroes [10], vanishing minors [11,12],
hybrid textures [13], and equalities between mass matrix ele-
ments or cofactors [ 14] have been proposed which, naturally,
accommodate a nonzero 65.

One of the attempts to identify the structure of the effec-
tive neutrino mass matrix is the strong scaling Ansitze
(SSA) proposed by Mohapatra et al. [15]. In SSA [16],
the elements of the effective neutrino mass matrix (M,)
are related as
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where s is the scaling factor. The scaling neutrino mass
matrix has the following form:

a b b/s
M, = ( b d d/s ) 2)
b/s d/s dJs*

which is singular and has a vanishing eigenvalue. The
eigenvector associated with the vanishing eigenvalue is
0,——L—,—= )T Hence, the above mass matrix is onl

( VI+s2 o/ l+sz) y

compatible with the inverted neutrino mass hierarchy along
with a vanishing mass eigenvalue and predicts a vanishing
reactor mixing angle, implying the absence of Dirac-type
CP violation in the lepton sector. However, in light of
recent experimental results on 6,3 one needs suitable
modifications to the SSA to explain a nonzero value of 65.
To accomplish this, deviations from SSA have been consid-
ered recently by adding some scaling breaking parameters
to the effective neutrino mass matrix elements [17].
Equation (1) implies the following relations between the
neutrino mass matrix elements:

my, My, — my,m,, =0,
My eMer — MeeMyr = 0,
and  my,my, —mgm,, =0, 3)

which correspond to vanishing minors of the first row ele-
ments of the neutrino mass matrix. These three relations are
not independent and it can be easily seen that the vanishing
of any set of two minors leads to a vanishing third minor.
The interesting fact that has been completely overlooked in
the literature is that scaling in the effective neutrino mass
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matrix is equivalent to two vanishing minors corresponding
to the first row of the effective neutrino mass matrix. In the
flavor basis, all possible cases of two vanishing minors in
the neutrino mass matrix have been studied in [12]. The
cases Sy, S5, S3 in the nomenclature of [12] correspond
to the SSA. In recent works, where deviations from the
SSA are considered to accommodate the nonzero value
of 6,3 by introducing some scaling breaking parameter
in the neutrino mass matrix elements, other predictions
of scaling are also lost. For example, the mass eigenvalue
m3 becomes nonvanishing and one has to do away with the
prediction that only the inverted hierarchy of neutrino
masses is satisfied.

In the present work, we study charged lepton corrections
to the scaling neutrino mixing in terms of two vanishing
minors in the first row of the neutrino mass matrix, thereby,
accommodating the nonzero value of 0,3 with the advan-
tage that such corrections will only affect the neutrino
mixing and CP violation, whereas some scaling properties
like the inverted hierarchy and vanishing m; remain intact.
One of the most elegant mechanisms to understand the
smallness of neutrino masses is the type-I seesaw mecha-
nism [18] in which one extends the SM by adding heavy
right-handed neutrinos. In the framework of the type-I
seesaw mechanism, the effective Majorana neutrino mass
matrix is given by

M, ~—-MpMz'MFE, 4)

where M, is the Dirac neutrino mass matrix and My, is the
right-handed Majorana neutrino mass matrix. In the context
of the type-I seesaw mechanism, scaling in the effective

C12€13
— i
V=1 —sncs— C12823813€'

5
$12823 — €12€23513€

with s;; = sin 0;; and ¢;; = cos 6;;, P = diag(e'/1, €', ¢¥:),
and P = diag(1, e'®, ¢/Pt9)), where the diagonal phase
matrix P is physically unobservable. However, one needs
to take into account the phase matrix P to avoid parameter
mismatch [21]. P is the diagonal phase matrix with one
Dirac-type CP-violating phase 0 and two Majorana-type
CP-violating phases a, . A general unitary 3 x 3 matrix
can be parametrized in terms of three mixing angles and
six phases as [22]

U= PUQ, (10

where P = diag(e1, 2, e'3) and Q = diag(1,e'1, e?) are
diagonal phase matrices and U has the form similar to V as
given in Eq. (9). M, can be diagonalized by a biunitary
transformation:
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neutrino mass matrix can be obtained by considering a
diagonal M with M having the form

A 0 B
0 0 D

which, by no means, is the only possibility. We present the
symmetry realization of above M, and My, in the nondiag-
onal charged lepton basis using the discrete Abelian flavor
symmetry Zg.

II. FORMALISM

A complex symmetric Majorana neutrino mass matrix is
diagonalized by a unitary matrix U, as

M, =UM*®yT, (©6)
where M2 = diag(m,,m,,m;). The lepton mixing matrix
(U ppns) can be written in terms of the product of two 3 x 3
unitary matrices U; and U, arising from the diagonalization
of the charged lepton mass matrix (M;) and the neutrino
mass matrix (M,), respectively, [19]

UPMNS - U;. Ul/’ (7)

which can be, further, parametrized as

Upyns = PVP, ®)
where [20]
_'5
$12€13 size!
i
C12Co3 — S12823513€" $23€13 | ©
i5
—C12823 — S12C3513€" €23C13
|
M, = UM™U},. (11)

The Hermitian product M;M ,T, therefore, becomes
MM = UM ULURMIUT = U/ (M) U7, (12)

where U,:Plf]l. For individual i—j sectors (i< j=1, 2, 3),
U' becomes a real orthogonal rotation matrix correspond-
ing to rotation in that particular sector. Using Egs. (6)
and (7), the effective neutrino mass matrix can be written
as [23]

M, = UIUPMNSMSiagUgMNSUIT' (13)

The Dirac-type CP violation in neutrino oscillation exp-
eriments can be described through a rephasing invariant
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quantity Jcp [24] which, in the parametrization adopted
here, is given by

_ 2
Jep = $12523513C12C23¢13 Sin 0. (14)

III. CHARGED LEPTON CORRECTIONS AND
SCALING NEUTRINO MASS MATRIX

In this section, we first study the effects of charged lep-
ton corrections coming from i—j (i < j =1, 2, 3) sectors
individually along with scaling in the neutrino mass matrix.
The analysis is done by considering two vanishing minors
corresponding to the elements of the first row of the neu-
trino mass matrix and then substituting ms; = 0. We then
obtain the most general results for the combined contribu-
tion of the charged lepton sector to the reactor neutrino
mixing angle 6,5 and the Dirac-type CP-violating phase 9.

A. Contribution from the 2-3 sector

For contributions coming from individual charged lepton
sectors, Eq. (13) can be written as

M, = PO UpynsMy U,y sOLTPIT, (15)

where O! ; represents the real orthogonal mixing matrix of
the i—j sector

cos 6}, sin@, 0
O\y=| —sin@, cosd, 0],
0 0 1
cos 0, 0 sin 6},
0!y = 0 1 0 : (16)
—sin 0} 0 cos 6y
1 0 0
O =10 cos@ sin6

— ]
0 —sin 0y cos Oy,

For the contribution from the 2-3 sector of charged leptons,
Eq. (15) has the following form:

M, = PlOSUpyysMy 8 UbysOL TP (17)

The simultaneous existence of two vanishing minors cor-
responding to the first row of the effective neutrino mass
matrix with m3; = 0 implies a common vanishing factor

s13€ CHotds) = (18)

which is independent of the contribution from the 2-3 sec-
tor of charged leptons. The reactor mixing angle remains
zero and there is no Dirac-type CP violation in this case
as Jcp = 0. However, the atmospheric mixing angle 03
gets affected because of the change in the scaling factor
due to contribution from the charged lepton sector [15].
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B. Contribution from 1-2 sector

When only the 1-2 sector of charged leptons contributes
to lepton mixing, the effective neutrino mass matrix can be
written as

M, = PlOYLUpynsMe™ U, s0LTPIT. (19)
Following the procedure outlined above, the condition of

two vanishing minors corresponding to the first row of
M, reduces to

5513 cOS(8+ s+ 3) + C1381,503 cos(py + ¢3) =0, (20)

o813 SIN(8 + ¢y + 3) + 13505803 sin(¢py + ¢p3) =0,

2D
which implies
tan & = tan(¢p; — ¢,), (22)
. 9 l
sin )3 = — 1 2231 (23)

\/1 — (s}, cos 03)?

From Egq. (22), the phase difference (¢, — ¢b,) can be identi-
fied as the Dirac-type CP-violating phase in the PDG repre-
sentation [20] and Eq. (23) implies a nonzero 6,5 resulting
from the contribution from the 1-2 charged lepton sector.
The correlation plot between 6,5 and 6,5 is given in Fig. 1(a).
The present experimental constraints [25] limit the charged
lepton contribution s}, to the range (0.15-0.29). The variation
of 6,3 with s!, has been depicted in Fig. 1(b). For a maximal
atmospheric neutrino mixing angle, i.e., s,; = - and
charged lepton contribution s}, = 0.223, which is of the
order of the Cabbibo angle, we get a reactor neutrino mixing
angle 613 = 9.19° close to the current experimental best fit
value. The current best fit value of s,3 with s!, = 0.223
predicts a reactor mixing angle €3 = 10.05° which is within
the 3o range of the current experimental data. The Jarlskog
measure of Dirac-type CP violation J-p is given by

- 1sin 2912 sin 2923 sin 923 /
4 (1= (51, cos 653)%)*? .

(cly)? sin(¢py —,).
(24)

C. Contribution from the 1-3 sector

The effective neutrino mass matrix for charged lepton
corrections coming from the 1-3 sector can be written in
the form

M, = PO UpynsMy™ Ul O TPT. (25
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FIG. 1 (color online).
the presently allowed 3¢ range of 0.

The condition of two vanishing minors corresponding to
the first row of M, implies

3813 cos(8 4 ¢y + 3) + ci3ca38t5 cos(y + o) =0,
(26)

3513 Sin(8 + ¢y + ¢3) + ci3ca3shy sin(gy + ¢y) =0,

(27)
which gives
tan § = tan(¢p; — ¢h3), (28)
0 1
sin 03 = ————— 213 (29)

V1= (s sin 6,3)°

From Eq. (28), one can see that the phase difference
(¢ — ¢3) is the same as the Dirac-type CP-violating phase
in the PDG representation. The correlation plot between 03
and 6,3 for the charged lepton contribution coming from
the 1-3 sector is given in Fig. 2(a). The present experimen-
tal constraints limit the charged lepton contribution s!; to
the range (0.15-0.326). The variation of 0,3 with sl13 has
1

been depicted in Fig. 2(b). For 5,3 = 7 and a charged

FIG. 2 (color online).
the presently allowed 3¢ range of 6,5.
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Correlation plots for the charged lepton correction from the 1-2 sector. The region between the dashed lines is

lepton contribution s}, = 0.223, which is of the order of
the Cabbibo angle, we get a reactor neutrino mixing angle
013 = 9.19°, which is fairly close to the current experi-
mental best fit value. The current best fit value of 5,3 with
sty = 0.223 predicts 0,3 = 8.24° which is within the 26
range of the current experimental data. The Jarlskog mea-
sure of Dirac-type CP violation Jp is given by

7 1sin 260, sin 26,3 cos 0,3
=—— s
cp 4 (1—(Sll3 sin 923)2)3/2 13

(cl3)? sin(¢; — ¢3)
(30)

D. General results

Now we discuss the general case when all i—j
(i< j=1, 2, 3) sectors contribute to lepton mixing.
The presence of scaling or the simultaneous existence of
two vanishing minors corresponding to the first row of
the effective neutrino mass matrix with m; = 0 implies a
common vanishing factor:

cize'h (023(0222) f]€31) - 0%21)[7%32))
+ S23€i¢3(f/€21)l~]€33) - 0223)[%31)))

+ ei(5+4)2+4)3)([}€23)f]€32) — f]ézz) 0233))5‘13 =0, 31
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= past
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Correlation plots for the charged lepton correction from the 1-3 sector. The region between the dashed lines is
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where U éi i) (i, j = 1,2, 3) denote the elements of U ; Which
on simplification yields

clycl3813 €os(8+ hy + b3) + c13¢i381,503 cos(py + 3)
+ C13C23S113 COS(&I + ¢1 + ¢2) = 0, (32)

clycl3s13 8In(8 + by + 3) + c13¢1350,503 sin(ehy + 3)
+ c13¢03815 Sin(8 + ¢y + ) = 0. (33)

Equations (32) and (33) can also be reexpressed as

asys cos(8 + ¢y + ¢3) + (b cos(py + ¢p3)
+ ¢ cos(8' + ¢y + ¢r))er3 =0, (34)

asyz sin(é + ¢, + ¢3) + (b sin(¢ + ¢3)
+ ¢ sin(8' + ¢y + ¢a))c13 =0, (35)
where
c= c23s113 (36)

_ _ 1l
a = C|5Cl3s b = sy3¢1381,, and

1sin 26, sin 20,3(b sin(¢p; — ¢,) + ¢ sin(8' + ¢y — ¢3))a?
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are functions of charged lepton mixing angles and the
atmospheric neutrino mixing angle. Solving Eqgs. (34)
and (35) leads to the following expressions for tan § and
Sin29]3:

x — tan(¢2 + ¢3)

tan & = 7
an 1 + x tan(¢p2 + ¢3)° @7
) b% + ¢ + 2bc cos(8' + ¢, —
sin*0)3 = —————— : 1¢2 %) > (38)
a” + b* 4 ¢* 4 2bc cos(6' + ¢y — ¢p3)
where
_ bsin(¢; + ¢3) + ¢ sin(8' + ¢y + ) (39)

b cos(p; + ¢3) + ¢ cos(8 + py + )

One can easily see that for the most general charged lepton
corrections, #3 is independent of the charged lepton con-
tribution from the 2-3 sector (i.c., 9123) which is also evident
from Eq. (18). The Jarlskog measure of Dirac-type CP
violation Jp is given by

J — —
CcP 4

For s, = 55, = 0, Egs. (37), (38), and (40) reduce to the
contributions coming from the 1-2 charged lepton sector
whereas for s!, = s, = 0 Egs. (37), (38), and (40) reduce
to the contributions coming from the 1-3 charged lepton
sector which have been discussed individually in this work.
The observation of a nonzero value of the effective
Majorana mass of electron neutrino (M,,) in neutrinoless
double beta (NDB) decay experiments will establish lepton
number violation and the Majorana nature of neutrinos. The
effective Majorana mass M ,,, which determines the rate of
NDB decay, is given by

M., = |myctyciy + mysiycize® + mystye®?|. (41)

A large number of projects [26] aim to achieve a sensitivity
up to 0.01 eV for M,,. Since in scaling m5 = 0, so only one
Majorana phase is present and the expression for M,,
in terms of mass squared differences (Am%]. =m? — m?)

can be written as

22 A2 2 2 i 2 2
M, = |crycizy/|Am3 | + 51,1377/ Amy — Amy, |.
42)

(a® + b + ¢ + 2bc cos(8' + ¢y — ¢p3))*/?

(40)

The range of M, for scaling the neutrino mass matrix with
charged lepton corrections, using the present experimental
neutrino oscillation parameters [25], is (0.011-0.052) eV
which is well within the reach of forthcoming NDB decay
experiments.

IV. SYMMETRY REALIZATION

The symmetry realization of SSA has been studied in the
pastby many authors [15,16] using discrete non-Abelian fla-
vor symmetries. Since scaling is equivalent to two vanishing
minors in the first row of the neutrino mass matrix, it is pos-
sible to obtain SSA using discrete Abelian symmetries as
two vanishing minors in M, can be realized using discrete
Abelian symmetries in the context of the type-I seesaw
mechanism. In the flavor basis, where the charged lepton
mass matrix is diagonal, similar texture structures have also
been realized in Ref. [12] using discrete Abelian flavor sym-
metries. We now present a type-I seesaw realization of the
scaling neutrino mass matrix using the discrete Abelian fla-
vor symmetry Z in the nondiagonal charged lepton basis.
To obtain scaling in the effective neutrino mass matrix, one
of the simplest possibilities which by no means excludes
others is to have the following structures for Mp and My:
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A 0 B X 0 O
Mp={10 0 C|, Mr={0 Y 0], 43
0 0 D 0 0 Z

which lead to scaling neutrino mass matrix with a scaling
factor equal to C/D. Here, M, has zero textures in a basis
where Mp is diagonal. In general, the underlying sym-
metries for obtaining zero textures in a mass matrix can
be the Abelian discrete symmetries [27].

In addition to the SM left-handed SU(2) lepton doublets
Dy (I =e, pu, 7) and the right-handed charged lepton SU
(2) singlets [, we introduce three right-handed neutrinos
vjr- In the scalar sector, we need three Higgs doublets P,
(i =1, 2, 3) and a scalar singlet y. In case of nondiagonal
charged lepton contributions from the 1-2 sector, we consider
the following transformation properties of various fields
under Zg:

DeL - DeL9 €Rr — WER, Vegp = wzyeR’
> > 3
D/,tL - wDﬂL’ HR — WHR, VﬂR - w I‘/ﬂR’
DTL - w2D1L7 Tr — w4TR7 ViR = URs (44)
where
i,
D, = , (45)
3
with @ = €?7/¢ as the generator of Zs. The bilinears D, I,

Dy vz, and v gy g relevant for M, M ), and M g, respectively,
transform as

I~

woow w
Dylg~ | w* w> w |,
wdowd o1
w2 w1
Dyvg~|w w* w |, and
wt ow w?
whow w?
vrvr~ | w1 w3 (46)
wr w1

For the contribution to neutrino mixing coming from the 1-2
charged lepton sector, M; and M, require the presence of
three SU(2) scalar Higgs doublets which transform under
Zg as

@1 - W4(b1, @2 - Ws(pz, @3 d @3. (47)
These transformations give the desired singular Dirac neu-
trino mass matrix Mp of the form given in Eq. (43) with
the following structure of M;:

PHYSICAL REVIEW D 89, 013006 (2014)

x x 0
Ml:<x X 0), (48)
0 0 x

where X represents nonvanishing mass matrix elements.
To obtain a diagonal My, one requires a scalar singlet y trans-
forming as y — w?y which couples with the (1,1) element of
My whereas (2,2) and (3,3) elements are the bare mass terms.
For the charged lepton contribution coming from the 1-3
sector only, we consider the following transformation prop-
erties of various fields under Zg:
D eL =™ D el

_ 25 _ _
D;AL_)wDyL’ D‘L’L_)a)DTL’

TR — WTpR, (49)

4
eg — weg,  jig = @ pig,

while keeping the transformations of right-handed neutri-
nos (vj), the Higgs doublets (®;), and the scalar singlet
(), the same as in the earlier case. These Zg assignments
lead to the desired structures of M, and My given in
Eq. (43) with M, having the following structure:

x 0 x
M,:<O X 0). (50)
x 0 x

Similarly, the symmetry realization for the most general
contribution from the charged lepton sector can be achieved
with an extended Higgs sector and some larger discrete
Abelian flavor symmetry.

V. SUMMARY

To summarize, it is noted that scaling in the effective
neutrino mass matrix is equivalent to the presence of
two vanishing minors corresponding to the elements of
the first row. We utilize this fact to explore the contributions
from different sectors of charged leptons to the scaling neu-
trino mixing and find that the charged lepton contributions
from the 1-2 and 1-3 sectors result in a nonzero reactor mix-
ing angle and Dirac-type CP violation. For charged lepton
contributions of the order of the Cabibbo angle from either
1-2 or 1-3 sectors, the reactor mixing angle is predicted to
be fairly close to the current best fit value. The advantage of
our approach is that such corrections will only affect neu-
trino mixing and CP violation whereas generic predictions
of scaling such as an inverted hierarchy with a vanishing
mass eigenvalue remain intact. The most general results
for the reactor mixing angle and the Dirac-type CP-
violating phase have been obtained in terms of charged
lepton contributions to the scaling neutrino mixing. We also
present symmetry realization of these texture structures in
the context of the type-I seesaw mechanism using a discrete
Abelian symmetry Zg where the charged lepton mass
matrix is nondiagonal with contributions from either the
1-2 or 1-3 sectors and scaling in the neutrino mass matrix.
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