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In a class of supersymmetric gauge theories with asymptotic freedom, the low-energy effective theory
below the confinement scale is described by the composite superfields of the fundamental representation
fields. Based on the supersymmetric gauge theory withNc ¼ 2 andNf ¼ 3with an additional unbroken Z2

symmetry, we propose a new model where neutrino masses, dark matter, and baryon asymmetry of the
Universe can be simultaneously explained by physics below the confinement scale. This is an example for
the ultraviolet complete supersymmetric extension of so-called radiative seesaw scenarios with first-order
phase transition required for successful electroweak baryogenesis. We show that there are benchmark
points where all the neutrino data, the lepton flavor violation data, and the LHC data are satisfied. We
also briefly discuss Higgs phenomenology in this model.
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I. INTRODUCTION

The discovery of the Higgs boson [1] and measurements
of its properties [2] at the LHC provide us a clue to explore
the essence of electroweak symmetry breaking, which is
possibly described by new physics beyond the standard
model (SM) at the TeV scale. On the other hand, new
physics is required to explain phenomena such as neutrino
oscillation, existence of dark matter (DM), and baryon
asymmetry of the Universe (BAU). If the origins of these
phenomena are related to the essence of the Higgs sector,
they should also arise from new physics at the TeV scale. In
such cases, their origins can be found at current and future
collider experiments.
For example, let us consider the scenario of generating

neutrino masses by the quantum effect [3–8], in which tiny
neutrino masses are explained by perturbation of the
dynamics at the TeV scale. There is a class of models with
right-handed (RH) neutrinos which are assigned the odd
parity under an additional Z2 symmetry [5–8]. The Z2 sym-
metry forces the neutrino masses to be generated only at the
quantum level, giving loop suppression to the neutrino
masses. Also, the lightest Z2-odd particle can be a DM can-
didate if the Z2 symmetry is unbroken. We call such sce-
narios radiative seesaw scenarios. The Ma model is the
simplest one in such a scenario, in which neutrino masses
are generated at the one-loop level by the contribution of
an extra Z2-odd SUð2ÞL scalar doublet (inert doublet) and
Z2-odd RH neutrinos [5]. A neutral component of the inert
doublet field or the lightest RH neutrino can be the DM. On

the other hand, in the Aoki-Kanemura-Seto model
(the AKS model) [7,8], where Z2-odd charged and neutral
singlet scalars as well as Z2-odd RH neutrinos are added to
a two Higgs doublet model, neutrino masses are induced at
the three-loop level and at the same time the lightest Z2-odd
particle (the Z2-odd neutral singlet or the RH neutrino) can
be the DM. In addition, in this model, electroweak baryo-
genesis can be simultaneously realized due to strong first-
order electroweak phase transition (1stOPT) and the CP
violating phases in the Higgs sector [9].
These models of radiative seesaw scenarios have been

introduced as purely phenomenological models. For exam-
ple, in the AKS model, some of the coupling constants in
the Higgs sector and the new Yukawa coupling constants
for the RH neutrinos are of order one in order to satisfy the
condition of strong 1stOPT and also to reproduce the neu-
trino data. Consequently, these coupling constants blow up
as the energy scale increases and the Landau pole appears at
the point much below the Planck scale or the GUT scale,
and the model is well defined only below the Landau pole
[10]. This suggests that the model is a low-energy effective
description of a more fundamental theory above the cutoff
scale which corresponds to the Landau pole. It is then a
very interesting question what kind of a fundamental theory
can lead to such a low-energy effective theory.
In this paper, we propose a concrete model of the fun-

damental theory whose low-energy description gives a
phenomenological model [7] of radiative seesaw scenarios
with electroweak baryogenesis. In this model, the origin of
the Higgs force above the cutoff scale of the low-energy
theory is a new gauge interaction with asymptotic freedom.
In order to describe this picture, we consider the supersym-
metric (SUSY) SUðNcÞ theory with Nf flavors [11,12]. For
Nf ¼ Nc þ 1, confinement occurs at an infrared (IR) scale
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ΛH [13]. We here consider the simplest case with Nc ¼ 2
andNf ¼ 3.1 In the low-energy effective theory below the
confinement scale ΛH, Higgs superfields Hijð∼TiTjÞ
appear as the composite states of the fundamental super-
fields Tiði ¼ 1;…; 6Þ which are doublets of the SUð2ÞH
gauge symmetry [14]. In order to realize radiative seesaw
scenarios in the low-energy effective theory, we add
elementary RH neutrino superfields Nc

i ði ¼ 1;…; 3Þ to
the model. We further impose a Z2 symmetry to the model
assuming that Nc

i and some of the Ti’s are Z2 odd. Below
the confinement scale, the symmetries of the model are
SUð3ÞC × SUð2ÞL × Uð1ÞY × Z2, under which fifteen
Higgs superfields appear [15]. All the scalar particles
required in the AKS model are included in these fifteen
Higgs superfields. It is quite interesting that the compli-
cated particle content of the AKS model is predicted by
this SUð2ÞH × Z2 theory above the cutoff scale without
any artificial assumption.
The condition of strongly 1stOPT, ϕc=Tc ≳ 1, which is

required for successful electroweak baryogenesis deter-
mines the size of the coupling constants of the Higgs poten-
tial at the electroweak scale. This property commonly
results in the enhanced triple Higgs boson coupling
[17,18]. The electroweak baryogenesis scenario can parti-
ally be tested by measuring the triple Higgs boson coupling
at future collider experiments. By the renormalization
group equation (RGE) analysis of the coupling constant,
the scale of the Landau pole is evaluated as Oð10ÞTeV
[19,20], which is identical to the confinement scale ΛH
under the naive dimensional analysis (NDA) [21].
In our model, the lightest Z2-odd particle in the effec-

tive theory can be a DM candidate as in usual radiative
seesaw scenarios. If the R parity is also imposed, there
are two discrete symmetries, and a rich possibility for
the multicomponent DM scenario occurs [22]. In this
paper, however, we do not specify the scenario of DM.
Detailed analysis for the multicomponent DM scenario will
be performed in our model elsewhere [23].
We show that the neutrino masses are generated at the

loop level in the low-energy effective theory of our model.
It contains diagrams of both the Ma model and the AKS
model. We find benchmark points in the parameter space
where all the current experimental data for Higgs bosons,
neutrino data, constraints of lepton flavor violation proc-
esses, and the condition of strongly 1stOPT are satisfied.

We also discuss the possibility of testing this model at
current and future collider experiments.

II. MODEL BASED ON SUSY STRONG DYNAMICS

In this section, we will briefly review a SUSY model
with SUð2ÞH × Z2 symmetry and six chiral superfields,
denoted by Tiði ¼ 1;…; 6Þ, which are doublets of the
SUð2ÞH gauge symmetry. The superfield Ti’s are also
charged under the SM gauge groups SUð2ÞL ×Uð1ÞY .
The SM charges and Z2 parity assignments on Ti’s are
given in Table I. The tree-level superpotential respecting
all the gauge symmetries and the Z2 parity is written as

Wtree ¼ m1T1T2 þm3T3T4 þm5T5T6: (1)

The SUð2ÞH gauge coupling becomes nonperturbative at
an IR scale, denoted by ΛH. Below the scale ΛH, the theory
is described in terms of composite chiral superfields,
H0

ij ¼ TiTjði ≠ jÞ, which are singlets of SUð2ÞH. We have
the following dynamically generated superpotential
below ΛH:

Wdyn ¼ − 1

Λ3
ϵijklmnH0

ijH
0
klH

0
mn; (2)

where Λ is a dynamically generated scale [13]. The
total effective superpotential is simply the sum of
Wdyn and Wtree:

Weff ¼WdynþWtree ¼Wdynþm1H0
12 þm3H0

34þm5H0
56:

(3)

We cannot determine the normalization for the dynami-
cally generated superpotential. The effective Kähler
potential below the scale ΛH is also undetermined,
and so is the canonical normalization for the mesonic
superfields. However, the NDA suggests the following
form of the effective Kähler potential and normalization
for the effective superpotential at the scale ΛH [21]:

Keff ½ΛH�≃ 1

16π2Λ2
H
H0†

ijH
0
ij; (4)

TABLE I. The SM charges and Z2 parity assignments on the
SUð2ÞH doublets Ti.

Superfield SUð3ÞC SUð2ÞL Uð1ÞY Z2�T1

T2

�
1 2 0 þ1

T3 1 1 þ1=2 þ1
T4 1 1 −1=2 þ1
T5 1 1 þ1=2 −1
T6 1 1 −1=2 −1

1This is the same choice as in the minimal SUSY fat Higgs
model [11]. In this model, however, additional heavy superfields
are introduced in order to make some of the unnecessary
composite superfields to be very heavy. Consequently, in the
low-energy effective theory of the model, two SUð2ÞL doublet
and one singlet Higgs superfields appear as composite states
of fundamental superfields of the SUð2ÞH gauge symmetry, cor-
responding to the field content of the nearly minimal SUSY SM
(nMSSM) [16].
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Weff ½ΛH�≃− 1

16π2Λ3
H
ϵijklmnH0

ijH
0
klH

0
mn þm1H0

12

þm3H0
34 þm5H0

56: (5)

The canonically normalized mesonic superfields Hij at
the scale ΛH are then given by

Hij ≃ 1

4πΛH
H0

ij; (6)

and the superpotential at the scale ΛH is rewritten as

Weff ½ΛH�≃ 4πϵijklmnHijHklHmn þ 4πΛHm1H12

þ 4πΛHm3H34 þ 4πΛHm5H56: (7)

Thebasic setupexplained above is the sameas theone in the
minimal SUSY fat Higgs model [11]. In general, fifteen
mesonic superfieldsHij appear in the low-energy effective
theory of the fundamental SUð2ÞH gauge theory with three
flavors. In the minimal SUSY fat Higgs model, the super-
fields in the low-energy effective theory are made to be
identical to those in thenMSSM[16]by introducingseveral
SUð2ÞH singlet superfields which give masses as large as
ΛH to ten of the fifteen mesonic superfields. On the other
hand, in ourmodel,wedonot introduce such additional sin-
glets and thus all the fifteen mesonic chiral superfields
remain in the effective theory below ΛH.

We identify the fifteen mesonic chiral superfields, Hij,
with the MSSM Higgs doublets, Hu, Hd, and the exotic
chiral superfields in an extended Higgs sector, as

Hu≡
�
H13

H23

�
; Hd≡

�
H14

H24

�
; Φu≡

�
H15

H25

�
;

Φd≡
�
H16

H26

�
; N≡H56; NΦ≡H34; NΩ≡H12;

Ωþ≡H35; Ω−≡H46; ζ≡H36; η≡H45: (8)

The SM charge and Z2 parity of these Higgs superfields are
summarized in Table II. With these fields, the superpoten-
tial in Eq. (7) is rewritten as

Weff ¼ λ̂fNðHuHd þ v20Þ þ NΦðΦuΦd þ v2ΦÞ
þ NΩðΩþΩ− þ v2ΩÞ − NNΦNΩ − NΩζηþ ζHdΦu

þ ηHuΦd −ΩþHdΦd −Ω−HuΦug: (9)

After the Z2-even neutral fields N, NΦ, and NΩ get vacuum
expectation values (VEVs), the relevant terms of the effec-
tive superpotential are given by [15,20]

Weff ¼ −μHuHd − μΦΦuΦd − μΩðΩþΩ− − ζηÞ
þ λ̂fHdΦuζ þHuΦdη −HuΦuΩ− −HdΦdΩþg:

(10)

The relevant soft SUSY breaking terms are given by

LH ¼ −m2
Hu
H†

uHu −m2
Hd
H†

dHd −m2
Φu
Φ†

uΦu −m2
Φd
Φ†

dΦd −m2
ΩþΩþ†Ωþ −m2

Ω−Ω−†Ω− −m2
ζζ

†ζ −m2
ηη

†η

− fBμHuHd þ BΦμΦΦuΦd þ BΩμΩðΩþΩ− þ ζηÞ þ H:c:g

− fAζHdΦuζ þ AηHuΦdηþ AΩ−HuΦuΩ− þ AΩþHdΦdΩþ þ H:c:g −
�
m2

ζηη
†ζ þ B2

ζ

2
ζ2 þ B2

η

2
η2 þ H:c:

�
: (11)

The coupling constant λ̂ and the cutoff scale ΛH are
related through the NDA. Under the assumption of the
NDA, the coupling constant λ̂ becomes nonperturbative
at ΛH as λ̂≃ 4π. The value of λ̂ at the cutoff scale ΛH is
connected to those at low-energy scales by RGE.
Therefore, the cutoff scale ΛH can be predicted from
the value of the coupling constant λ̂ at the electroweak
scale, λ̂ðμEWÞ. In this paper, we constrain the range of
ΛH by requiring that the coupling constant λ̂ðμEWÞ sat-
isfies the condition of strongly 1stOPT, ϕc=Tc ≳ 1,
which is one of the conditions for successful electro-
weak baryogenesis [9]. In general, nondecoupling quan-
tum effects of additional scalar fields make the order of
electroweak phase transition strong. In Refs. [19,20],
some of the extra scalar fields such as Φu, Φd, Ωþ,
Ω− ζ, and η significantly contribute to make the order

of electroweak phase transition stronger, when the cou-
pling λ̂ satisfies λ̂ðμEWÞ ≳ 1.6 at the electroweak scale.
Correspondingly, the Landau pole appears at the scale
around ten TeV.

TABLE II. The field contents of the Higgs sector below ΛH.

Field SUð3ÞC SUð2ÞL Uð1ÞY Z2

Hu 1 2 þ1=2 þ1
Hd 1 2 −1=2 þ1
Φu 1 2 þ1=2 −1
Φd 1 2 −1=2 −1
Ωþ 1 1 þ1 −1
Ω− 1 1 −1 −1
N, NΦ, NΩ 1 1 0 þ1
ζ, η 1 1 0 −1
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III. LOOP INDUCED NEUTRINO MASSES

Wewill show that radiative seesawscenarios [5,7] are real-
ized in the low-energy effective theory of the SUð2ÞH × Z2

model by adding Z2-odd RH neutrino superfields Nc
i . The

superpotential relevant to the neutrino sector is given by

WN ¼ yijNN
c
i LjΦu þ hijNN

c
i E

c
jΩ− þMi

2
Nc

i N
c
i ; (12)

whereEc
i andLi are theRHcharged lepton chiral superfields

and the lepton doublet chiral superfield, respectively, and the
basis of the lepton fields is taken such that both the mass
matrix for the Nc

i and the charged lepton Yukawa matrix
are real and diagonal. Notice that the Z2 parity prohibits
the neutrino Yukawa interactions as Nc

i LjHu which give
neutrino masses at the tree level, so that the type I seesaw
mechanism does not work.
In our model, the neutrino masses are radiatively

generated by (I) one-loop diagrams and (II) three-loop dia-
grams. The one-loop diagrams correspond to the coupling
constants yijN , and the three-loop diagrams correspond to the
coupling constants hijN .

A. One-loop contributions

The one-loop diagrams which contribute to the neutrino
mass matrix are shown in Fig. 1. These diagrams corre-
spond to the SUSY extension of the Ma model [5]. Such
mass terms as η2 or ζ2 cannot be written in the superpoten-
tial of our model due to the SUSY dynamics at ΛH, so that
the loop diagrams with RH sneutrinos and Z2-odd fermions

do not contribute. The contributions to the mass matrix are
calculated as

mðIÞ
ij ¼ ðyNÞkiðyNÞkj

ð4πÞ2 fðO0Þ1αðO0Þ1αMk

− ðO0Þ5αðO0Þ5αMkgB̄0ðm2
Φα
;M2

kÞ; (13)

where the loop function B̄0 is given as

B̄0ðm2
1; m

2
2Þ ¼ −m2

1 ln m2
1 −m2

2 ln m2
2

m2
1 −m2

2

; (14)

and the matrix O0 is the mixing matrix for the Z2-odd
neutral scalars (see Appendix A).

B. Three-loop contributions

The three-loop diagrams which contribute to the neutrino
mass matrix are shown in Fig. 2. The contributions are
calculated as

mðIIÞ
ij ¼ λ̂4v2uðyEÞiðh�NÞkiðyEÞjðh�NÞkjMk

ð16π2Þ3 sin4βðU�þÞ4γðUþÞ4γðU�þÞ4δðUþÞ4δfðO0Þ2ρðO0Þ2ρ − ðO0Þ6ρðO0Þ6ρg

×FðM2
k;m

2
Φρ
;m2

ei ;m
2
H� ;m2

Φ�
γ
;m2

ej ;m
2
H� ;m2

Φ�
δ
Þ þ

2λ̂2ðyEÞiðh�NÞkiðyEÞjðh�NÞkjMkm ~Φ�
γ
m ~Φ�

δ

ð16π2Þ3 ðV�
LÞ2αðVLÞ2αðV�

LÞ2βðVLÞ2β
× ðU�

LÞ2γðURÞ2γðU�
LÞ2δðURÞ2δfðO0Þ3ρðO0Þ3ρ − ðO0Þ7ρðO0Þ7ρgFðM2

k;m
2
Φρ
;m2

~χ�α
;m2

~eRi
;m2

~Φ�
γ
;m2

~χ�β
;m2

~eRj
;m2

~Φ�
δ
Þ; (15)

where the loop function F is given by [8]

FðM2; m2
Φ; m

2
χ1 ;m

2
ϕ1
; m2

Ω1
;m2

χ2 ; m
2
ϕ2
; m2

Ω2
Þ ¼ ð16π2Þ3

i

Z
dDk
ð2πÞD

1

k2 −M2

1

k2 −m2
Φ

Z
dDp
ð2πÞD

p
p2 −m2

χ1

1

p2 −m2
χ1

1

p2 −m2
ϕ1

×
1

ðkþ p1Þ2 −m2
Ω1

Z
dDq
ð2πÞD

ð−qÞ
ð−qÞ2 −m2

χ2

1

ð−qÞ2 −m2
ϕ2

1

ðkþ ð−qÞÞ2 −m2
Ω2

¼ 1

ðM2 −m2
ΦÞðm2

χ1 −m2
ϕ1
Þðm2

χ2 −m2
ϕ2
Þ
Z

∞

0

k2Edðk2EÞ
�

M2

−k2E −M2
− m2

Φ

−k2E −m2
Φ

�

× fB̄1ð−k2E;m2
χ1 ; m

2
Ω1
Þ − B̄1ð−k2E;m2

ϕ1
; m2

Ω1
Þg

× fB̄1ð−k2E;m2
χ2 ; m

2
Ω2
Þ − B̄1ð−k2E;m2

ϕ2
; m2

Ω2
Þg; (16)

with B̄1 being

FIG. 1. A one-loop diagram which contributes to the neutrino
mass matrix.
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B̄1ðp2; m2
1; m

2
2Þ

≡−
Z

1

0

dxx ln
ð1 − xÞm2

1 þ xm2
2 − xð1 − xÞp2 − iε
μ2

:

(17)

The numerical behavior of the improper integrals in evalu-
ation of the functionF is discussed in Ref. [8]. The matrices
Uþ, UL, and UR are mixing matrices for Z2-odd charged
particles as given in Appendix A, while the matrices VL and
VR are the mixing matrices for the MSSM charginos as

V†
R

�
M ~W

ffiffiffi
2

p
mW cos βffiffiffi

2
p

mW sin β μ

�
VL ¼

�
m~χ1 0

0 m~χ2

�
;

(18)

where M ~W is the wino mass. This is a SUSY extension of
the AKS model [7,8].2 In the AKS model, extra neutral and
charged singlet scalar fields are added to a two Higgs dou-
blet model. The chiral superfields ζ and Ω− correspond to
these extra singlet scalar fields. In the SUSYextended AKS
model, an extra doublet superfield Φd is necessary to pro-
vide an indispensable quartic scalar interaction such as

HuH
†
dΩ−ζ� by F-term. The superfields Φu and Ωþ are

required for chiral anomaly cancellation. It is surprising
that all the superfields required in the SUSY AKS model
are automatically provided in the SUð2ÞH × Z2 model.

C. Benchmark points

We here consider the benchmark points where the neu-
trino oscillation data can be reproduced in addition to make
1stOPT strong as ϕc=Tc ≳ 1 in the SUð2ÞH × Z2 model.
The calculation of the order of electroweak phase transi-
tion, ϕc=Tc, is briefly reviewed in Appendix B. In general,
both the one-loop and the three-loop diagrams contribute to
the neutrino mass generation. However, we here consider
the following two limiting cases: (A) one-loop dominant
case (hijN ¼ 0), and (B) three-loop dominant case
(yijN ¼ 0). The definition of the two benchmark points
are shown in Table III. The mass of the SM-like Higgs
boson is tuned to be mh ¼ 125 GeV by choosing the
parameters in the scalar top sector; i.e., SUSY breaking soft
masses and left-right mixing parameter of the stops. For
simplicity, we do not put any additional flavor mixing in
the scalar lepton mass matrices.
We will discuss consequences of the benchmark points.

First, we will show the strength of 1stOPT ϕc=Tc and
related issues in Table IV. In order to satisfy ϕc=Tc > 1
by the mechanism discussed in Refs. [19,20], we take λ̂ ¼
1.8 which leads to the cutoff scale at around ΛH ¼ 5 TeV
on both benchmark points. The enhancement occurs by the
nondecoupling loop contributions of Z2-odd scalars. These
nondecoupling loop contributions affect the triple coupling
of the SM-like Higgs boson λhhh, and loop effects of
Z2-odd charged scalars can deviate the decay branching
ratio of the Higgs boson into diphoton Bðh → γγÞ from

FIG. 2. Three-loop diagrams which contribute to the neutrino mass matrix.

2In the original non-SUSYAKS model, the Higgs sector is the
type-X two Higgs doublet model with neutral and charged singlet
fields. The type-X two Higgs doublet model is adopted in order to
make the charged Higgs boson light with avoiding too large con-
tribution to the b → sγ process. On the other hand, in the model
discussed here, the Z2-even Higgs sector is the type II two Higgs
doublet model and the constraint from b → sγ can be satisfied
with the charged Higgs mass taken in the benchmark points.
In spite of such a small difference, one can say that the model
is essentially identical to the SUSY extended AKS model.
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the SM prediction. The ratio of λhhh to its SM prediction
and the ratio of Bðh → γγÞ to its SM prediction are evalu-
ated for each of the benchmark points as shown in Table IV,
and one finds 10%–20% deviations for them.
To see the detail of the nondecoupling effects on the

condition of ϕc=Tc, λhhh and Bðh → γγÞ, we show the mass
spectrumofZ2-oddparticles inTableV. In case (A), the spec-
trum is very similar to the one given in Ref. [20]. There, the
charged scalar eigenstate Φ�

1 and Φ�
2 are almost from the

charged scalar components of Ω− and Φu, respectively,
and their masses are dominated by the λ̂2v2 terms. So signifi-
cant nondecoupling effects appear in 1stOPT, λhhh and
Bðh → γγÞ. In theneutralZ2-oddscalar sector, there isnosig-
nificant nondecoupling effects, because all the mass eigen-
values are not dominated by the Higgs VEV contributions.

On the other hand, in case (B), the eigenstates Φ0
2 and Φ0

3

which are almost from the neutral components of η give
significant contributions to ϕc=Tc and λhhh. In addition,
the nondecoupling effect by Φ�

1 ∼Ω− contributes to
ϕc=Tc, λhhh and Bðh → γγÞ the same as in case (A).
Next, we will show the neutrino masses and mixing

angles obtained on the benchmark points. In order to obtain
the neutrino mass scale of order of 0.1 eV, the constants yijN
in case (A) are Oð10−4Þ. On the other hand, in case (B),
some elements of hijN are required to be rather large.
Especially, in order to compensate the suppression by
the small electron Yukawa coupling, the magnitudes of
couplings h1iN are of order one. With the coupling constant
matrices yijN and hijN given in Table III, the neutrino mass
eigenvalues and the mixing angles are obtained as dis-
played in Table VI. These predicted values are in the
allowed region which is given by the global fitting analysis
of neutrino oscillation data as [24]

2.28 <
jm2

3 −m2
1j

10−3 eV2
< 2.70; 7.0 <

m2
2 −m2

1

10−5 eV2
< 8.1;

0.27 < sin2 θ12 < 0.34; 0.34 < sin2 θ23 < 0.67;

0.016 < sin2 θ13 < 0.030; (19)

TABLE IV. The predicted value of the cutoff scale ΛH, ϕc=Tc,
the ratio of the coupling constant λhhh to its SM prediction
λhhh=λhhhjSM, and the ratio of the branching ratio Bðh → γγÞ
to its SM prediction Bðh → γγÞ=Bðh → γγÞjSM.
Case ΛH ϕc=Tc λhhh=λhhhjSM Bðh → γγÞ=Bðh → γγÞjSM
(A) 5 TeV 1.0 1.18 0.80
(B) 5 TeV 1.2 1.09 0.89

TABLE III. Benchmark parameter set for (A) the one-loop dominant case and (B) three-loop dominant case. For both cases,
BΦ ¼ BΩ ¼ Aζ ¼ Aη ¼ AΩþ ¼ AΩ− ¼ 0 is taken.

Case λ̂ tan β mH� m ~W μ μΦ μΩ

(A) 1.8 15 350 GeV 500 GeV 100 GeV 550 GeV −550 GeV
(B) 1.8 30 350 GeV 500 GeV 100 GeV 550 GeV −550 GeV

Case m̄2
Φu

m̄2
Φd

m̄2
Ωþ m̄2

Ω− m̄2
ζ m̄2

η

(A) ð100 GeVÞ2 ð1500 GeVÞ2 ð1500 GeVÞ2 ð100 GeVÞ2 ð1500 GeVÞ2 ð2000 GeVÞ2
(B) ð1500 GeVÞ2 ð1500 GeVÞ2 ð1500 GeVÞ2 ð30 GeVÞ2 ð1410 GeVÞ2 ð30 GeVÞ2

Case B2
ζ B2

η m2
ζη

(A) ð100 GeVÞ2 ð100 GeVÞ2 ð100 GeVÞ2
(B) ð1400 GeVÞ2 0 0

Case M1 M2 M3 m~νR1 m~νR2 m~νR3 m~eRiði ¼ 1; 2; 3Þ
(A) 60 GeV 120 GeV 180 GeV 60 GeV 120 GeV 180 GeV 5000 GeV
(B) 100 GeV 2000 GeV 4000 GeV 100 GeV 3000 GeV 5000 GeV 5000 GeV

Case ðyNÞij ðhNÞij

(A)

 −0.439 −0.424 0.512
0.226 0.218 −0.263
0.272 1.36 1.36

!
× 10−4

 
0 0 0

0 0 0

0 0 0

!

(B)

 
0 0 0

0 0 0

0 0 0

!  
0.003 0 0

−0.0164 − 1.26i −0.02424þ 0.0049i −0.0022þ 0.00097i
0.491 − 1.581i 0.02461þ 0.00537i 0.0016þ 0.0019i

!
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where miði ¼ 1; 2; 3Þ are the mass eigenvalues of the neu-
trinos, and θ12, θ23, and θ13 are the mixing angles relevant
to the solar neutrino mixing, atmospheric neutrino mixing,
and the reactor neutrino mixing, respectively.
The coupling constants yijN and hjiN can give significant

contributions to some of the lepton flavor violation proc-
esses through the RH neutrino and sneutrino mediation
diagrams. The predicted values of the branching ratios
Bðμ → eγÞ and Bðμ → eeeÞ are listed in Table VII. In
case (A), as already discussed, the coupling constants
yijN are so small that the contribution to the μ → eγ is
suppressed enough to satisfy the current upper bound given
by the MEG experiment Bðμ → eγÞ ≤ 5.7 × 10−13 [25].
In addition, the branching ratio of the μ → eee is
approximately given as

Bðμ → eeeÞ ∼ α

4π
Bðμ → eγÞ: (20)

Then the experimental upper bound on the branching ratio
such as Bðμ → eeeÞ ≤ 10−12 [26] is satisfied once the
μ → eγ is suppressed enough. In case (B), on the other
hand, large coupling constants h1iN enhance the μ → eγ
process. The constraint from Bðμ → eeeÞ is also severe
in this case, even if the branching ratio Bðμ → eγÞ is sup-
pressed enough [10]. It is because the order one coupling
constants h1iN enhance the contributions from box diagram
where the RH neutrinos and RH sneutrinos are running
in the loop. The predicted values of Bðμ → eγÞ and
Bðμ → eeeÞ on the benchmark points are shown in
Table VII, and we find that they satisfy these experimental
upper bounds on both benchmark points. In case (B), since
the branching ratio Bðμ → eγÞ is predicted just below the
current limit, it is expected that the μ → eγ process will be
observed in future experiments.
We have found that the benchmark points defined in

Table III can reproduce the correct values of neutrino
masses and mixing angles with satisfying the constraint
from lepton flavor violations and with keeping strong
enough 1stOPT for electroweak baryogenesis.

D. Collider signatures

In this paper, we do not perform any complete analysis of
specific collider signals. We here give some comments, and
detailed analysis of collider signatures in our model will be
discussed elsewhere.

TABLE VI. The neutrino masses and mixing angles obtained
on the benchmark points defined in Table III.

Case m1 m2 m3 sin2 θ12 sin2 θ23 j sin θ13j
(A) 0.0 eV 0.0087 eV 0.050 eV 0.31 0.50 0.14
(B) 0.0 eV 0.0084 eV 0.050 eV 0.32 0.50 0.14

TABLE VII. The prediction on the branching ratios of lepton
flavor violation processes Bðμ → eγÞ and Bðμ → eeeÞ on the
benchmark points defined in Table III.

Case Bðμ → eγÞ Bðμ → eeeÞ
(A) 5.2 × 10−19 8.1 × 10−21
(B) 5.0 × 10−13 8.5 × 10−13

TABLE V. The mass spectrum for the Z2-odd particles obtained from the benchmark points defined in Table III.

Z2-odd neutral bosons
Case Φ0

1 Φ0
2 Φ0

3 Φ0
4 Φ0

5 Φ0
6 Φ0

7 Φ0
8

(A) 88.3 GeV 88.5 GeV 1457 GeV 1462 GeV 1569 GeV 1571 GeV 2023 GeV 2028 GeV
(B) 126 GeV 294 GeV 294 GeV 1505 GeV 1506 GeV 1525 GeV 1535 GeV 1992 GeV

Z2-odd charged bosons
Case Φ�

1 Φ�
2 Φ�

3 Φ�
4

(A) 288 GeV 307 GeV 1496 GeV 1517 GeV
(B) 271 GeV 1459 GeV 1506 GeV 1574 GeV

Z2-odd neutral fermions
Case ~Φ0

1
~Φ0
2

~Φ0
3

~Φ0
4

(A) 429 GeV 429 GeV 721 GeV 721 GeV
(B) 422 GeV 422 GeV 725 GeV 725 GeV

Z2-odd charged fermions
Case ~Φ�

1
~Φ�
2

(A) 429 GeV 721 GeV
(B) 422 GeV 725 GeV
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1. Precise measurements of the Higgs couplings

As shown in Ref. [20], in the parameter region where
1stOPT becomes strong enough for successful electroweak
baryogenesis, the nondecoupling effect gives significant
contributions to Higgs couplings such as the hhh coupling
and the hγγ coupling. The directions of deviations for these
coupling constants are related to each other. Both couplings
can deviate as large as 20% from the SM predictions, which
can be tested by future collider experiments. At the LHC, the
branching ratio of Higgs to diphoton process will be
measured at about 20% accuracy, but the measurement of
triple Higgs boson coupling is very challenging. At the
High Luminosity LHC with the luminosity of 3000 fb−1,
Bðh → γγÞ will be measured with 10% accuracy [27].
The triple Higgs boson coupling can bemeasured at the high
luminosity LHC and much better at the international linear
collider (ILC). It is expected that the hhh coupling can be
measured with the accuracy of about 20% or better at the
ILC with

ffiffiffi
s

p ¼ 1 TeV with 2 ab−1 [28].

2. Direct search of the extra particles

There are many extra fields which can provide collider
signals in our model. The Z2-even sector of our model is
essentially the same as the nMSSM. Therefore we can
expect that the collider signals relevant to the Z2-even
particles are the same as those in the nMSSM which are
studied in the literature [29].
Our model is characterized by the Z2-odd sector, so that

the collider signals in this sector are very important. In case
(A) of our benchmark points, inert doubletlike scalars are
light. Collider signatures of the inert doublet scalars have
been studied in the literature [30–32]. The inert doublet sca-
lars are color singlet particles, then it is not easy to discover
them at the LHC. Even though they can be fortunately dis-
covered at the LHC, precise determination of their masses
and quantum numbers is challenging [30]. On the other
hand, the ILC is a very powerful tool to study such non-
colored inert doublet particles. At the ILC, the mass of
charged inert scalar can be measured in a few GeV accu-
racy, and the mass of neutral inert scalar can be measured in
better than 2 GeV accuracy [32].
In case (B), the Z2-odd singletlike charged particle is

required to be as light as 300 GeV for reconstructing correct
neutrino mass scale. As discussed in Ref. [8], such the light
singletlike charged particle can be studied at the ILC via the
pair production such as eþe− → ϕþ

1 ϕ
−
1 . Furthermore, due

to the interaction of Nc
i E

c
jΩ−, the production process such

as e−e− → ϕ−
1 ϕ

−
1 is possible. This process will be strong

evidence of a three-loop neutrino mass generation mecha-
nism [31]. The process can be detected at the e−e− collision
option of the ILC or the CLIC [8,31].
In addition, the SUSY extended Higgs sector of this

model includes several color singlet SUSY partner fer-
mions of the extra scalars. If such SUSY partner particles

are discovered, it discriminates our model from non-SUSY
models with radiative seesaw scenarios.

E. Discussions

1. Stability of the scalar potential

Since theHiggs sector consists of fourdoublet scalar fields
and two neutral and two charged singlet scalar fields, the
structureof scalar potential is complicated. It is not trivial that
the realistic vacuum where the VEVs of scalar fields are
hH0

ui ¼ vffiffi
2

p sin β, hH0
di ¼ vffiffi

2
p cos β and the other scalar

fields have no VEVs is on the global minimum of the poten-
tial. The stability of the vacuum should be tested. However,
the general analysis of stability of the vacuum is too compli-
cated.Herewehavedone itwith an assumption that the spon-
taneous breaking of electroweak charge and CP symmetry
does not occur.As for both benchmarkpoints,wehave found
that there is no other local minimum of the potential and the
realistic vacuum is on the global minimum at the tree level at
the zero temperature.
The thermal history of themultiscalar potential can be also

complicated. The thermal evolution of the vacuum state has
been studied in some extended Higgs sector such as the gen-
eral two Higgs doublet model [33], the inert doublet model
[34], and so on. In general, intermediate phases where Z2

parity, electromagnetic charge, and/or CP symmetry are bro-
ken can appear during the thermal evolution of the Universe,
even if the realistic vacuum is on the global minimum at the
zerotemperature.For thebenchmarkpoints,wehavechecked
that thedirect transitiontotherealisticvacuumoccurswithout
passing through the intermediate phases.

2. Evaluation of the baryon asymmetry of the Universe

For baryogenesis, we focus on the strength of 1stOPT
whichgives anecessarycondition for successful electroweak
baryogenesis, andwehavenotnumericallyevaluated thepre-
diction on the BAU in our scenario. In order to complete the
numerical evaluation of theBAU,we should also take care of
the CP phases. Since it is known that the CP violation in the
SM is too small for getting enough large BAU [35], extra CP
phases are also required in addition to the mechanism to
enhance 1stOPT. In SUSY models, new sources of the CP
violation which can contribute to the generation of the
BAU can be introduced [36]. In the literature [37], numerical
evaluationof theBAUdue to theelectroweakbaryogenesis in
theMSSMisdiscussed. Inprinciple,wecan introduce theCP
phases to the model in the similar ways as the papers men-
tioned above. We then expect to obtain a sufficient amount
of BAU, once the strong enough 1stOPT is realized.

3. Dark matter

This model includes an unbroken Z2 parity, which pro-
vides DM candidates. Since the Z2-odd extra fields except
for the RH neutrino have quite strong coupling with the
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Higgs bosons, they conflict with the bounds from direct
detection experiments of the DM. We choose both bench-
mark points in such a way that the lightest Z2-odd particle
is the RH neutrino and/or the RH sneutrino. If the R parity
is also imposed, the lightest SUSY particle also qualifies
as the DM candidate. It leads to a rich possibility of the
multicomponent DM scenario [22]. In this paper we do
not specify the scenario of DM. Detailed analyses of
the relic abundance and the direct detection constraints
are performed elsewhere.

4. Mediation mechanism of the SUSY breaking

Due to the nonrenormalization theorem, the neutrino
masses are not generated supersymmetric; i.e., soft
SUSY breaking terms are necessary for loop induced neu-
trino mass models. In our model, SUSY breaking terms in
the last line of Eq. (11) are essential. These terms are not
forbidden by the gauge symmetry, but no relevant terms are
in the superpotential given in Eq. (10). It may suggest a
specific mediation mechanism for the SUSY breaking. It
is a quite interesting point that the neutrino mass generation
is a key to explore the mediation mechanism of SUSY
breaking in our model.

IV. CONCLUSIONS

We have considered a model based on the SUSY gauge
theory with Nc ¼ 2 andNf ¼ 3with an additional exact Z2

symmetry. By adding Z2-odd RH neutrinos to the model,
we have proposed a concrete model which can be a funda-
mental theory of a low-energy effective theory with radia-
tive seesaw scenarios and with strong 1stOPT. We have
shown that radiative seesaw scenarios can be realized in
our model and there can be two types of contributions
to the neutrino mass matrix; i.e., by one-loop diagrams
and also by three-loop diagrams. These contributions cor-
respond to the SUSY versions of the Ma model and the
AKS model, respectively. We have also found out the
benchmark point for each contribution, where the neutrino
oscillation data are correctly reproduced with satisfying the
condition of strong 1stOPT and with satisfying the current
experimental constraints. Our model is a candidate of the
fundamental theory whose low-energy effective theory pro-
vides solutions to three serious problems in the SM; i.e.,
neutrino mass, DM and baryogenesis by physics at the
TeV scale. Our model can be tested at current and future
collider experiments.

APPENDIX A: MASS MATRICES AND MIXING
MATRICES FOR EXTRA FIELDS

Here we will list the mass terms of Z2-odd particles
which are obtained from the superpotential given by
Eq. (10) and the soft SUSY breaking terms given by
Eq. (11), and we will define the mixing matrices.
The mass terms for the Z2 odd neutral scalars are given

by

L ¼ −ðΦeven
u ζeven Φeven

d ηeven Φodd
u ζodd Φodd

d ηodd ÞM2
0

0
BBBBBBBBBBBBB@

Φeven
u

ζeven

Φeven
d

ηeven

Φodd
u

ζodd

Φodd
d

ηodd

1
CCCCCCCCCCCCCA
; (A1)

where the superscripts “even” and “odd” denote the CP-even neutral scalar component and CP-odd neutral scalar com-
ponent, respectively. The 8 × 8 mass matrix M2

0 can be written as

M2
0 ¼

�
M2

φφ M2
φχ

ðM2
φχÞT M2

χχ

�
; (A2)

where the three 4 × 4 matrices are defined as

M2
φφ ¼ ReM2

ϕ0 þ

0
BBB@

0 0 0 0

0 ReðB2
ζÞ 0 Reðm2

ζηÞ
0 0 0 0

0 Reðm2
ζηÞ 0 ReðB2

ηÞ

1
CCCA; (A3)
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M2
χχ ¼ ReM2

ϕ0 þ

0
BBB@

0 0 0 0

0 −ReðB2
ζÞ 0 Reðm2

ζηÞ
0 0 0 0

0 Reðm2
ζηÞ 0 −ReðB2

ηÞ

1
CCCA; (A4)

M2
φχ ¼ −ImM2

ϕ0 þ

0
BBB@

0 0 0 0

0 −ImðB2
ζÞ 0 −Imðm2

ζηÞ
0 0 0 0

0 Imðm2
ζηÞ 0 −ImðB2

ηÞ

1
CCCA; (A5)

and

M2
φ0 ¼

0
BBBBBBBB@

m̄2
Φu

þ λ̂2
v2d
2
þDΦ0 λ̂�μ vuffiffi

2
p þ A�

ζ
vdffiffi
2

p −B�
Φμ

�
Φ λ̂�μΩ

vdffiffi
2

p − λ̂μ�Φ
vuffiffi
2

p

λ̂μ� vuffiffi
2

p þ Aζ
vdffiffi
2

p m̄2
ζ þ λ̂2

v2d
2

λ̂μ�Φ
vd
2
− λ̂�μΩ

vuffiffi
2

p BΩμΩ

−BΦμΦ λ̂�μΦ
vdffiffi
2

p − λ̂μ�Ω
vuffiffi
2

p m̄2
Φd

þ λ̂2 v2u
2
−DΦ0 −λ̂μ� vdffiffi

2
p − Aη

vuffiffi
2

p

λ̂μ�Ω
vdffiffi
2

p − λ̂�μΦ
vuffiffi
2

p B�
Ωμ

�
Ω −λ̂�μ vdffiffi

2
p − A�

η
vuffiffi
2

p m̄2
η þ λ̂2 v2u

2

1
CCCCCCCCA
: (A6)

The matrix M2
0 is diagonalized by a real orthogonal matrix O0 as

OT
0M

2
0O0 ¼

0
BBBBBBBBBBBBBBBBBB@

m2
Φ0
1

0 0 0 0 0 0 0

0 m2
Φ0
2

0 0 0 0 0 0

0 0 m2
Φ0
3

0 0 0 0 0

0 0 0 m2
Φ0
4

0 0 0 0

0 0 0 0 m2
Φ0
5

0 0 0

0 0 0 0 0 m2
Φ0
6

0 0

0 0 0 0 0 0 m2
Φ0
7

0

0 0 0 0 0 0 0 m2
Φ0
8

1
CCCCCCCCCCCCCCCCCCA

: (A7)

The mass terms for Z2-odd neutral fermions are written as

L ¼ − 1

2
ð ~Φ0

u
~ζ0 ~Φ0

d ~η0 Þ ~M0

0
BBBBB@

~Φ0
u

~ζ0

~Φ0
d

~η0

1
CCCCCA; (A8)

where the mass matrix is given by

~M0 ¼

0
BBBBB@

0 λ̂ vdffiffi
2

p μΦ 0

λ̂ vdffiffi
2

p 0 0 μΩ

μΦ 0 0 −λ̂ vuffiffi
2

p

0 −λ̂ vuffiffi
2

p μΩ 0

1
CCCCCA: (A9)

The mass matrix ~M0 can be diagonalized by a unitary matrix ~U0 as
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~UT
0
~M0

~U0 ¼

0
B@

m ~Φ0
1

0 0 0

0 m ~Φ0
2

0 0

0 0 m ~Φ0
3

0

0 0 0 m ~Φ0
4

1
CA; (A10)

and one can obtain the real and positive mass eigenvalues m ~Φi
.

The mass terms for the Z2-odd charged scalars are given by

L ¼ −ð ðΦþ
u Þ� ðΩþÞ� Φ−

d Ω− ÞM2
�

0
B@

Φþ
u

Ωþ

ðΦ−
d Þ�

ðΩ−Þ�

1
CA; (A11)

with the mass matrix being

M2
� ¼

0
BBBBBB@

m̄2
Φu

þ λ̂2 v2u
2
þDΦ� λ̂μ�Φ

vdffiffi
2

p − λ̂�μΩ
vuffiffi
2

p B�μ�Φ λ̂�μ vdffiffi
2

p − A�
Ω− vuffiffi

2
p

λ̂�μΦ
vdffiffi
2

p − λ̂μ�Ω
vuffiffi
2

p m̄2
Ωþ þ λ̂2

v2d
2
þDΩ� −λ̂�μ vuffiffi

2
p þ A�

Ωþ
vdffiffi
2

p B�μ�Ω

BμΦ −λ̂μ� vuffiffi
2

p þ AΩþ vdffiffi
2

p m̄2
Φd

þ λ̂2
v2d
2
−DΦ� λ̂μ�Ω

vdffiffi
2

p − λ̂�μΦ
vuffiffi
2

p

λ̂μ� vdffiffi
2

p − AΩ− vuffiffi
2

p BμΩ λ̂�μΩ
vdffiffi
2

p − λ̂μ�Φ
vuffiffi
2

p m̄2
Ω− þ λ̂2 v2u

2
−DΩ�

1
CCCCCCA
: (A12)

The mass matrix M2
� can be diagonalized by a unitary matrix Uþ as

U†
þM2

�Uþ ¼

0
BBB@

m2
Φ�
1

0 0 0

0 m2
Φ�
2

0 0

0 0 m2
Φ�
3

0

0 0 0 m2
Φ�
4

1
CCCA: (A13)

The mass terms of the Z2-odd charged fermions are written as

L ¼ −ð ~Φþ
u

~Ωþ Þ ~M�

�
~Φ−
d

~Ω−
�
; (A14)

where the mass matrix is given by

~M� ¼
� −μΦ λ̂ vuffiffi

2
p

−λ̂ vdffiffi
2

p −μΩ
�
: (A15)

The mass matrix ~M� is diagonalized by two unitary matrices UL and UR as

U†
R
~M�UL ¼

�
m ~Φ�

1
0

0 m ~Φ�
2

�
; (A16)

where m ~Φ�
i
are the real and positive mass eigenvalues.

APPENDIX B: CALCULATION OF THE ORDER OF ELECTROWEAK PHASE TRANSITION

In this Appendix, we summarize the calculation of the order of electroweak phase transition, ϕc=Tc, which is done by
evaluating the one-loop effective potential at finite temperature [38].
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For our model, the one-loop effective potential at temperature T is given by

V1ðhu; hd;TÞ ¼ V0
1ðhu; hdÞ þ

T4

2π2

� X
i∈Bosons

niIBðmiðhu; hdÞ2=T2Þ þ
X

i∈Fermions

niIFðmjðhu; hdÞ2=T2Þ
	
; (B1)

where V0
1ðhu; hdÞ denotes the one-loop effective potential at

zero temperature. The functions IB, IF are defined as

IBðaÞ ¼
Z

∞

0

dxx2 log ½1 − expð−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a

p
Þ�; (B2)

IFðaÞ ¼
Z

∞

0

dxx2 log ½1þ expð−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a

p
Þ�: (B3)

“Bosons” in the summation include the W and Z bosons as
well as the bosonic components of Φu, Φd, Ωþ, Ω−, ζ, η.
“Fermions” include the top and bottom quarks as well as
the fermionic components of Φu, Φd, Ωþ, Ω−, ζ, η. Fields
other than the above have comparably small coupling con-
stants with the Higgs fields Hu, Hd, so we neglect their
contributions. ni denotes the off-shell degrees of freedom
of the field i and miðhu; hdÞ2 denotes its field-dependent

mass squared that depends on the VEVs of the neutral com-
ponents of the Higgs fields, hu, hd.
In our analysis, we use interpolating functions that

approximate the functions IB, IF. We numerically evaluate
the critical temperature Tc below which hu, hd take nonzero
values at the absolute minimum of the potential
V1ðhu; hd;TÞ. The field value at the critical temperature,

ϕc, is given as ϕc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhCu Þ2 þ ðhCd Þ2

q
, where hCu , hCd

denote the values of hu, hd at the absolute minimum of
the potential V1ðhu; hd;T ¼ TCÞ.
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