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Proposed medium-baseline reactor neutrino experiments offer unprecedented opportunities to probe, at
the same time, the mass-mixing parameters which govern νe oscillations both at long wavelength (δm2 and
θ12) and at short wavelength (Δm2 and θ13), as well as their tiny interference effects related to the mass
hierarchy (i.e., the relative sign of Δm2 and δm2). In order to take full advantage of these opportunities,
precision calculations and refined statistical analyses of event spectra are required. In such a context, we
revisit several input ingredients, including nucleon recoil in inverse beta decay and its impact on energy
reconstruction and resolution, hierarchy and matter effects in the oscillation probability, spread of reactor
distances, irreducible backgrounds from geoneutrinos and from far reactors, and degeneracies between en-
ergy scale and spectrum shape uncertainties.We also introduce a continuous parameter α, which interpolates
smoothly between normal hierarchy (α ¼ þ1) and inverted hierarchy (α ¼ −1). The determination of the
hierarchy is then transformed from a test of hypothesis to a parameter estimation, with a sensitivity given by
the distance of the true case (either α ¼ þ1 or α ¼ −1) from the “undecidable” case (α ¼ 0). Numerical
experiments are performed for the specific setup envisaged for the JUNOproject, assuming a realistic sample
ofOð105Þ reactor events.We find a typical sensitivity of∼2σ to the hierarchy in JUNO, which, however, can
be challenged by energy scale and spectrum shape systematics, whose possible conspiracy effects are in-
vestigated. The prospective accuracy reachable for the other mass-mixing parameters is also discussed.
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I. INTRODUCTION

In ν̄e disappearance searches with reactor neutrinos, the
survival probability Pee ¼ Pðν̄e → ν̄eÞ is generally not
invariant under a swap of the neutrino mass ordering between
normal hierarchy (NH) and inverted hierarchy (IH) [1]. The
possible discrimination of the hierarchy via high-statistics
reactor neutrino experiments at medium baseline (few tens
of km) was originally proposed in [2] and is now a very
active and promising field of research [3]. The main idea
is to probe, at the same time, the mass-mixing parameters
which govern νe oscillations at short wavelength (δm2,
θ12) and at long wavelength (Δm2, θ13), as well as their tiny
interference effects which depend on the mass hierarchy,
signðΔm2=δm2Þ [2,4]. The relatively large value of θ13
established in 2012 via ν̄e disappearance at short baseline
reactors [5–10], in agreement with appearance measurements
at long-baseline accelerators [11–13] and with previous indi-
cations from global analyses [14,15], makes the hierarchy-
dependent interference effects large enough to be possibly
observed in future, dedicated reactor experiments, such as
the so-called RENO-50 [16] and JUNO projects [17–19].1

The literature in this field is rapidly growing. An incom-
plete list of pre-2012 studies following [2,4] includes early
tentative experimental projects [20], theoretical aspects in
comparing disappearance probabilities for NH and IH with
floating oscillation parameters [21–23], prospective data
analyses with Fourier transform techniques [24–27] also
compared with χ2 analyses [28]. Post-2012 studies have
focused on the characterization of more detailed and real-
istic requirements needed to achieve hierarchy discrimina-
tion, such as detector exposure and energy resolution
[29,30], peak structure resolution [31], optimal baselines
[29,30], multiple reactors effects [17,32,33], energy scale
uncertainties [17,28,34–36], statistical tests of different
hierarchy hypotheses [30,37,38], and possible synergy
[39] with future, independent constraints on Δm2

[17,40,41]; see also [42] for a very recent review and
up-to-date results on prospective data fits. All these studies
generally find that the hierarchy discrimination should be
possible at a significance level of ≳2σ, provided that one
can achieve unprecedented levels of detector performance
and collected statistics, which will require the control of
several systematics at (sub)percent level. Such demand-
ing experimental goals must be matched by accurate theo-
retical calculations of reactor event spectra and by refined
statistical analyses.
In this context, we think it is useful to investigate in more

detail some issues related to the precision calculation and

1Our estimate seems more optimistic than the rate of
∼40 events=day quoted in [19]. We are unable to trace the
source(s) of this difference which, if confirmed, could be com-
pensated by rescaling our assumed lifetime from 5 to 6.8 years
in order to collect the same event statistics.
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the statistical analysis of reactor event spectra, which may
provide a useful complement to previous studies in this
field.Whenever possible, we shall highlight analytical results
of general applicability. Numerical results will instead refer
to a specific experimental setup, namely, the JUNO configu-
ration described in detail in [17], including far-reactor and
geoneutrino contributions.
The structure of our work is as follows. In Sec. II we

present the basic notation and conventions. In Secs. III
and IV we revisit, from an analytical viewpoint,
(sub)percent spectral effects related to nucleon recoil and
to neutrino oscillations in matter, respectively. We also
introduce a useful continuous parameter α, which interpo-
lates smoothly between normal hierarchy (α ¼ þ1) and
inverted hierarchy (α ¼ −1). In Sec. V we discuss the
ingredients of our numerical and statistical analysis of
hypothetical samples of Oð105Þ reactor events in a
JUNO-like experiment. In Sec. VI we present the results
of the analysis, and discuss the prospective sensitivity to
the hierarchy in terms of the distance between the true case
(either α ¼ þ1 or α ¼ −1) and the “undecidable” null case
(α ¼ 0). The prospective accuracy expected for the relevant
mass-mixing parameters is also reported. In Sec. VII we
separately discuss several subtle issues raised by the
interplay of energy scale and spectrum shape uncertainties.
We summarize our work in Sec. VIII.

II. NOTATION

We present below the basic notation used in this work.
Explicit definitions are also needed to avoid confusion
with similar (but not necessarily equivalent) conventions
reported in the literature.
Concerning the neutrino mass-mixing parameters, the

squared mass differences and the associated vacuum phases
are defined as

Δm2
ij ¼ m2

i −m2
j ; Δij ¼

Δm2
ijL

4E
; (1)

where mi are the neutrino masses, E is the neutrino energy,
and L is the baseline, in natural units. As in previous papers

[1,14,15], we use a specific notation for the “small” and
“large” squared mass differences (and phases),

δm2 ¼ Δm2
21 > 0; δ ¼ δm2L

4E
> 0; (2)

Δm2 ¼ 1

2
jΔm2

31 þ Δm2
32j > 0; Δ ¼ Δm2L

4E
> 0: (3)

Note that, hereafter, δ will represent the vacuum oscillation
phase related to δm2, and not a possible Dirac phase related
to CP violatuion (δCP). The two possible hierarchies are
distinguished by a discrete parameter α,

α ¼
�þ1ðnormal hierarchyÞ;
−1ðinverted hierarchyÞ; (4)

which will be transformed into a continuous variable in
Sec. IV. Trigonometric functions of the mixing angles
θij (in standard notation [43]) are abbreviated as

cij ¼ cos θij; sij ¼ sin θij: (5)

Concerning the inverse beta decay (IBD) process,

ν̄e þ p → eþ þ n; (6)

the relevant information is contained in the IBD event
spectrum S as a function of the observed “visible” energy
of the event. The spectrum S is obtained by integrating out
the (unobservable) true energies of the incoming neutrino
and of the outgoing positron,

SðEvisÞ ¼ εðEvisÞ
Z

∞

me

dEe

Z
∞

ET

dE

�X
i

N i ΦiðEÞPiðEÞ
�

×
dσðE;EeÞ

dEe
rðEeþme;EvisÞ; (7)

where

SðEvisÞ ¼ spectrumof events per unit of energy; (8)

E ¼ ν̄e energy; (9)

ET ¼ E threshold for IBD; (10)

Ee ¼ true positron energy ðtotalÞ; (11)

me ¼ positronmass; (12)

dσðE;EeÞ=dEe ¼ IBD differential cross section; (13)

F. CAPOZZI, E. LISI, AND A. MARRONE PHYSICAL REVIEW D 89, 013001 (2014)

013001-2



Ee þme ¼ true visible energy of the event; (14)

Evis ¼ obseved visible energy of the event; (15)

rðEe þme; EvisÞ ¼ energy resolution function; (16)

εðEvisÞ ¼ detector effciency; (17)

i ¼ ν̄e source index; (18)

ΦiðEÞ ¼ ν̄e flux ðper unit of energy; area and timeÞ; (19)

PiðEÞ ¼ ν̄e survival probability; (20)

N i ¼ normalization and conversion factor: (21)

In the above equations, integration over time is implicit: the
source fluxes Φi or the detector efficiency ε should be
understood either as constants or as time averages, unless
otherwise stated. Further details on these and related ingre-
dients of the analysis are described in the following sections.

III. RECOIL EFFECTS IN IBD

The kinematics and dynamics of the IBD cross section
have been thoroughly studied in [44–46]. Here we revisit
nucleon recoil effects on reactor spectra, which are not
entirely negligible (as it is often assumed) in the context
of high-precision experiments. We show that such effects
can be included in the calculation of (un)binned reactor
neutrino event spectra, through appropriate modifications
of the energy resolution function.

A. Positron energy spectrum at fixed neutrino energy E

The IBD kinematical threshold is given by

E ≥ ET ¼ ½ðmn þmeÞ2 −m2
p�=2mp ¼ 1.806 MeV; (22)

where mp and mn are the proton and neutron masses,
respectively. In the popular “recoilless” approximation,
the positron energy Ee is directly linked to the neutrino
energy E via E − Ee ≃ Δnp (where Δnp ¼ mn −mp ¼
1.293 MeVÞ. However, since a small fraction of energy
[of OðE=mpÞ] is carried by the recoiling nucleon, this esti-
mate provides only an approximate upper bound to Ee.
More precisely, Ee falls within a well-defined kinematical
range,

Ee ∈ ½E1; E2�; (23)

where explicit expressions for E1;2 can be found, e.g.,
in [46]. For E largely above threshold, the boundaries
of the neutrino-positron energy difference E − Ee are
approximately given by

E − E2 ≃ Δnp; (24)

E − E1 ≃ Δnp þ 2ðE − ΔnpÞE=mp: (25)

Figure 1 reports the exact boundaries (with no approxima-
tion) as a function of E. From this figure and from the above
expressions it appears that, in the high-energy tail of the reac-
tor spectrum (E≃ 6–8 MeV), recoil corrections can reach
the percent level, comparable to the prospective energy scale
accuracy and resolution width [17,34] in the same range. We
emphasize that the correction to the recoilless approximation
is twofold: at any given E, the typical Ee energy is displaced
atOðE=mpÞ and it also acquires a spread ofOðE=mpÞ. Both
effects can be taken into account as follows.
Within the narrow range ½E1; E2�, the IBD dynamics

governs the spectral distribution of Ee, i.e., the normalized
differential cross section σ−1dσ=dEe. Figure 2 shows this
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FIG. 1 (color online). Inverse beta decay: range of the
difference between the ν̄e energy (E) and the eþ energy (Ee),
as a function of E. The extrema are indicated as E − E1 and
E − E2. See the text for details.
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distribution in terms of deviations of Ee from its midvalue,
ΔEe ¼ Ee − ðE1 þ E2Þ=2, for selected values of the neu-
trino energy E. For definiteness, we have used the cross
section as taken from [46]. At small energies, the distribu-
tions in Fig. 2 approach the “Dirac deltas” expected in
the recoilless approximation, while at high energies there
is a noticeable spread. For our purposes (see the next
subsection) each distribution can be approximated by a
“top hat” function for Ee ∈ ½E1; E2�:

1

σðEÞ
dσðE;EeÞ

dEe
≃ 1

E2 − E1

; (26)

whereσðEÞ ¼ R
dEeðdσ=dEeÞ.Wehaveverified that further

corrections related to the slight slopes inFig. 2 are completely
negligible in the calculation of observable event spectra.

B. Recoil effects in unbinned spectra

For any detected IBD event, the observed visible energy
Evis may differ from the true visible energy Ee þme, due to
intrinsic fluctuations in the collected photon statistics and
other possible uncertainties. We assume a Gaussian form
for the corresponding energy resolution function r,

rðEeþme;EvisÞ

¼ 1

σeðEeÞ
ffiffiffiffiffiffi
2π

p exp

�
−1

2

�
Evis−Ee−me

σeðEeÞ
�

2
�
; (27)

with a prospective width [17]

σeðEeÞ
Ee þme

¼ 3 × 10−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEe þmeÞ=MeV
p (28)

which decreases from ∼3% at E ∼ 2 MeV to ∼1%
at E ∼ 8 MeV.

Various assumptions and empirical parametrizations
for the width σe have been studied elsewhere (see,
e.g., [17,29–31,34,42] for recent examples), showing that
it is imperative to have σe as small as possible, i.e., close
to the ideal limit of full light collection. The empirical
form of σe in a real detector is actually determined by a
combination of calibration experiments and light-yield
Monte Carlo simulations, which fix at the same time the
energy scale and the energy resolution, as well as their
correlated uncertainties [47]. In this work we do not deal
with these subtle experimental aspects, and simply assume
σe as in the above equation; we instead focus on the inclu-
sion of recoil effects of OðE=mpÞ which, as noted, can be
as large as Oðσe=EÞ for E≃ 8 MeV.
In the approximation of Eq. (26) and for a Gaussian

resolution function as in Eq. (27), the inner integral of
the continuous (unbinned) spectrum S in Eq. (7) can be
performed analytically, yielding

SðEvisÞ ¼ εðEvisÞ
Z

∞

ET

dE

�X
i

N i ΦiðEÞPiðEÞ
�

×
σðEÞ

E2 − E1

Z
E2

E1

dEe rðEe þme; EvisÞ (29)

¼ εðEvisÞ
Z

∞

ET

dE

�X
i

N iΦiðEÞPiðEÞ
�

σðEÞ RðE; EvisÞ

(30)

where R is the recoil-corrected energy resolution function,

RðE;EvisÞ ¼
1

2ðE2 − E1Þ
�
erf

�
E2 þme − Evisffiffiffi

2
p

σe

�

− erf

�
E1 þme − Evisffiffiffi

2
p

σe

��
; (31)

with erfðxÞ defined as [48]

erfðxÞ ¼ 2ffiffiffi
π

p
Z

x

0

dte−t2 : (32)

The function R in Eq. (31) reduces to the function r in
Eq. (27) in the recoilless limit.
Figure 3 compares the energy resolution functions with

recoil (R) and without recoil (r), as solid and dotted lines,
respectively, for different neutrino energies E. All functions
are aligned to their average visible energy, which is also
the origin of the x-axis scale ΔEvis. The alignment removes
one of the recoil effects [the relative displacement of cent-
roids at OðE=mpÞ] in order to emphasize the other effect,
namely, the widening of the energy resolution tails.
Summarizing, nucleon recoil effects can be implemented

in the unbinned spectrum S by using the modified energy
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FIG. 2 (color online). Inverse beta decay: shape of the eþ
energy spectrum for representative values of the ν̄e energy E. The
spectra are aligned to their median value for graphical convenience.
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resolution function R in Eq. (31), instead of the usual func-
tion r in Eq. (27). Similar results hold for a binned spectrum
as described below.

C. Recoil effects in binned spectra

Although we shall focus on unbinned spectral analyses
in Sec. V C, for completeness we also discuss recoil effects
in binned spectra, in the realistic case where the efficiency
function εðEvisÞ is smooth enough to be nearly constant in
each bin. Let us consider a spectrum S divided into bins, the
ith one covering a range Evis ∈ ½E0

i; E
00
i � and containing a

number of events given by

Ni ¼
Z

E00
i

E0
i

dEvis SðEvisÞ: (33)

Since S is a double integral [see Eq. (7)], the calculation of
Ni involves in general a triple integral,

R
dEvis

R
dEe

R
dE.

A useful reduction is possible if the efficiency function
εðEvisÞ can be taken as approximately constant in each
bin range, namely, εðEvisÞ≃ εi for Evis ∈ ½E0

i; E
00
i �. In this

case, the integration ordering can be swapped intoR
dE

R
dEe

R
dEvis, where the two inner integrals are ana-

lytical. A similar reduction was used in [49] in another
context. The final result is

Ni ¼ εi

Z
∞

ET

dE

�X
i

N i ΦiðEÞPiðEÞ
�

σðEÞ WiðEÞ;

(34)

where the function WiðEÞ is given by

WiðEÞ ¼
ffiffiffi
2

p
σe

2ðE2 − E1Þ
½gðE00

i − E1Þ − gðE00
i − E2Þ

− gðE0
i − E1Þ þ gðE0

i − E2Þ�; (35)

and

gðxÞ ¼ x −meffiffiffi
2

p
σe

erf

�
x −meffiffiffi

2
p

σe

�
þ 1ffiffiffi

π
p e

−ðx−meffiffi
2

p
σe
Þ2
: (36)

In the above formulas, tiny variations of σe for Ee ∈
½E1; E2� have been neglected [e.g., the value of σe can
be taken at Ee ¼ ðE1 þ E2Þ=2�]. In the limit of no recoil
and perfect resolution (σe → 0), Wi reduces to a top-hat
function of width E00

i − E0
i; finite resolution and recoil

effects smear out the top-hat shape. In conclusion, with
or without binning, recoil effects on the event spectrum
can be included in terms of a single integral over the
neutrino energy E with appropriate kernels, according to
Eqs. (30) and (34).

IV. OSCILLATION PROBABILITY

In this section we discuss in detail the reactor neutrino
survival probability Pee. We cast Pee in a closed analytical
form, including matter and multiple reactor effects [see
Eq. (58) below]. This form allows us to make the discrete
parameter α in Eq. (4) continuous, so as to interpolate
smoothly between NH (α ¼ þ1) and IH (α ¼ −1). In this
way one can cover the null case of undecidable hierarchy
(α ¼ 0) in the subsequent statistical analysis.

A. Oscillation probability in vacuum

Using the notation in Sec. II, the 3ν vacuum survival
probability Pðν̄e → ν̄eÞ can be written in the form

P3ν
vac ¼ 1 − 4c413s

2
12c

2
12sin

2δ − 4s213c
2
13c

2
12sin

2ðαΔþ δ=2Þ
− 4s213c

2
13s

2
12sin

2ð−αΔþ δ=2Þ: (37)

As observed in [1], the above expression is not invariant
under a change of hierarchy ðα → −αÞ, except for the case
c212 ¼ s212 which is experimentally excluded.
It is tempting to separate α-odd terms in the oscillation

amplitudes. However, these terms carry a spurious depend-
ence on the conventional squared mass parameter which
is kept fixed while its sign is flipped. For instance,
α-odd terms at fixed Δm2 in Eq. (37) are proportional to
sin δ,

P3ν
odd ¼ 2αs213c

2
13ðs212 − c212Þ sinð2ΔÞ sin δ; (38)

while α-odd terms at fixed Δm2
31 [30] or fixed Δm2

32 [50]
are proportional to sin 2δ. Convention-independent effects
should not impose that the largest squared mass difference
(be it Δm2

31, Δm2
32, or a combination such as Δm2) is the
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FIG. 3 (color online). Energy resolution function without
(solid) and with (dashed) the inclusion of nucleon recoil effects,
for the same representative values of the neutrino energy E as
in Fig. 2. The functions are aligned to their median value for
graphical convenience.
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same in NH and IH. It is thus incorrect to claim, on this
basis, that sin 2δ ¼ 1 is an optimal condition to observe
hierarchy effects in reactor experiments [50].
In order to circumvent this drawback, one may separate

α-odd terms in the oscillation phase without fixing the
squared mass parameter, as proposed in [22,23] and revis-
ited in [31,34]. In particular, the probability P3ν

vac in Eq. (37)
can be exactly rewritten as [23]

P3ν
vac ¼ c413P

2ν
vac þ s413 þ 2s213c

2
13

ffiffiffiffiffiffiffiffi
P2ν
vac

q
cosð2Δee þ αφÞ;

(39)

in terms of the 2ν limit

P2ν
vac ¼ lim

θ13→0
P3ν
vac ¼ 1 − 4s212c

2
12sin

2δ; (40)

and of an effective squared mass parameter [21–23],

Δm2
ee ¼ Δm2 þ α

2
ðc212 − s212Þδm2; (41)

with

Δee ¼
Δm2

eeL
4E

¼ Δþ α

2
ðc212 − s212Þδ; (42)

while the phase φ in Eq. (39) is parametrically defined as
[23,39]

cos φ ¼ c212 cosð2s212δÞ þ s212 cosð2c212δÞffiffiffiffiffiffiffiffi
P2ν
vac

p ; (43)

sinφ ¼ c212 sinð2s212δÞ − s212 sinð2c212δÞffiffiffiffiffiffiffiffi
P2ν
vac

p : (44)

Equation (39) also allows a clear separation between “fast”
(Δee-driven) oscillations and “slow” (δ-driven) modulations
in P2ν

vac and φ.
Expressing φ via an arctan function [from the ratio of

Eqs. (44) and (43)] is not particularly convenient, as it leads
to a quadrant ambiguity. We have found a useful empirical
approximation to φ in closed form,

φ≃ 2s212δ
�
1 − sin δ

2δ
ffiffiffiffiffiffiffiffi
P2ν
vac

p
�
; (45)

which will be used hereafter. Figure 4 shows a com-
parison of exact and approximate values of φ as a func-
tion of neutrino energy E, calculated for reference values
s212 ¼ 0.307, δm2 ¼ 7.54 × 10−5 eV2 , and L ¼ 52:5 km.
The numerical differences are negligible for any prac-
tical purpose. Similar results (not shown) hold for s212

and δm2 taken in their �3σ phenomenological range
[15]. In addition, the approximate expression for φ
[Eq. (45)] shares two analytical properties of the exact
parametric definition of φ [Eqs. (43) and (44)]; namely,
it periodically increases with δ as φðδþπÞ¼φðδÞþ2πs212
[23], and it starts with a cubic term (δ3) in a power
expansion [31].
As it was emphasized in [23] and later in [31,34], the

hierarchy dependence of P3ν
vac is physically manifest in

the odd term �φ, which induces either an observable
advancement (þφ) or a retardation (−φ) of the oscillation
phase, with a peculiar energy dependence not proportional
to L=E (see Fig. 4). Conversely, hierarchy-odd effects
which are proportional to L=E [as in Eq. (42)] are imma-
terial, as far as they can be absorbed into a redefinition
of Δm2 within experimental uncertainties. Determining
the hierarchy with reactor experiments thus amounts
to finding evidence for an extra, non-L=E oscillation
phase with definite sign (either þφ or −φ), for uncon-
strained values of Δm2

ee. This requirement places the focus
of the measurement on the low-energy part of the spectrum
where φ is large, while the high-energy part acts as a
calibration.

B. Multiple reactor cores

In the presence of n ¼ 1; :::::; N reactor cores
(placed at slightly different distances Ln and contributing
with different fluxes ΦnÞ, damping effects arise on the fast
oscillating terms, while being negligible on the slow ones
[17,33]. Such effects can be taken into account analytically
as follows.
Let us define the flux weights wn, the flux-weighted

baseline L, and the fractional baseline differences
λn as

E [MeV]
1 10

π/φ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

exact
approximated

FIG. 4 (color online). Comparison of exact and approximate
values (in units of π) of the phase contribution φ embedding
hierarchy effects, as a function of neutrino energy E, for
s212 ¼ 0.307, δm2 ¼ 7.54 × 10−5 eV2, and L ¼ 52:5 km. See
the text for details.

F. CAPOZZI, E. LISI, AND A. MARRONE PHYSICAL REVIEW D 89, 013001 (2014)

013001-6



wn ¼
ΦnP
nΦn

; (46)

L ¼
X
n

wnLn; (47)

λn ¼
Ln − L

L
; (48)

where
P

nwn ¼ 1 and
P

nλn ¼ 0. The fast oscillating
term in P3ν

vac is obtained by summing up the weighted con-
tributions from different cores,

P3ν
vac ≃ c413P

2ν
vac þ s413

þ 2s213c
2
13

ffiffiffiffiffiffiffiffi
P2ν
vac

q X
n

wn cos

�
Δm2

eeLn

2E
þ αφ

�
; (49)

and by reducing it via the trigonometric identity

X
n

wn cosðxþ ξnÞ ¼ w cosðxþ ξÞ; (50)

where

w2 ¼
X
n;m

wnwm cosðξn − ξmÞ; (51)

tan ξ ¼
P

nwn sin ξnP
nwn cos ξn

: (52)

In our case, x ¼ ðΔm2
eeL=2EÞ þ αφ and ξn ¼

Δm2
eeLλn=2E. By keeping the first nontrivial terms in a

ξ and ξn power expansion, the final result can be cast in
the form

P3ν
vac ≃ c413P

2ν
vac þ s413 þ 2s213c

2
13

ffiffiffiffiffiffiffiffi
P2ν
vac

q
w cosð2Δee þ αφÞ;

(53)

where the damping factor w reads

w≃ 1 − 2ðΔeeÞ2
X
n

wnλ
2
n: (54)

Let us consider the specific JUNO setting, characterized by
N ¼ 10 reactor cores (six being located at Yangjiang and
four at Taishan) with average power Pn [17]. Assuming
fluxes Φn ∝ Pn=L2

n, we obtain a flux-weighted distance
L ¼ 52:474 km and a damping coefficient

P
nwnλ

2
n ¼

2.16 × 10−5. In this case, the amplitude of the hierarchy-
sensitive cosine term in Eq. (53) is reduced by as much
as 28% at low energy (E≃ 2 MeV).

Finally, we remark that damping effects may acquire a
slight time dependence via reactor power variations,
Pn ¼ PnðtÞ. This dependence may be effectively embedded
in time-dependent weights wn ¼ wnðtÞ, baseline L ¼ LðtÞ;
and damping factor w ¼ wðtÞ. For the sake of simplicity,
we shall only consider stationary conditions (constant L
and w) hereafter.

C. Oscillation probability in matter

At medium baselines L ∼Oð50Þ km, reactor ν̄e’s mostly
propagate within the upper part of the Earth’s crust.
For a nearly constant electron density Ne, the ratio of
matter to vacuum terms in the propagation Hamiltonian
reads [51]

μij ¼
2

ffiffiffi
2

p
GFNeE
Δm2

ij

¼ 1.526 × 10−7
�

Ne

mol=cm3

��
E

MeV

��
eV2

Δm2
ij

�
: (55)

Assuming a typical crust density Ne ≃ 1.3 mol=cm3,
the only non-negligible ratio is μ12 ∼Oð10−2Þ.
Correspondingly, the ðν1; ν2Þ mass-mixing parameters in
matter (δ ~m2; ~θ12) [51] read, at first order in μ12 and for
ν̄e oscillations,

sin 2~θ12 ≃ sin 2θ12ð1 − μ12 cos 2θ12Þ; (56)

δ ~m2 ≃ δm2ð1þ μ12 cos 2θ12Þ: (57)

Note that, for E ∼ 8 MeV, the fractional matter cor-
rection to mass-mixing parameters is ∼8 × 10−3, which
is definitely not negligible as compared with the
prospective fit accuracy on the same parameters (see
below).
We implement matter effects via the replacement

ðδm2; θ12Þ → ðδ ~m2; ~θ12Þ from Eqs. (56)–(57) into P2ν
vac,

obtaining as a final result

P3ν
mat ≃ c413P

2ν
mat þ s413 þ 2s213c

2
13

ffiffiffiffiffiffiffiffiffi
P2ν
mat

q
w cosð2Δee þ αφÞ;

(58)

where

P2ν
mat ¼ 1 − 4~s212 ~c

2
12sin

2 ~δ: (59)

These two equations provide our “master formula” for
the oscillation probability in either NH (α ¼ þ1) or IH
(α ¼ −1), including matter effects in the crust and damping
effects of multiple reactor cores.
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A final remark is in order. We have omitted the replace-
ment ðδm2; θ12Þ → ðδ ~m2; ~θ12Þ into φ, since it leads to
insignificant numerical variations of P3ν

mat. We have also
compared the above P3ν

mat with the exact probability derived
from numerical flavor evolution in matter of ν̄e ’s from each
single reactor source,

P3ν
exact ¼

X
n

wnP3ν
exactðLn; E; Ne; δm2;Δm2

ee; θ12; θ13; αÞ;

(60)

for α ¼ �1, obtaining permill-level differences
(jP3ν

mat − P3ν
exactj < 2 × 10−3 for E ≥ ET) which can be

safely neglected in the data analysis. In conclusion,
Eq. (58) is a very good approximation to the exact
oscillation probability.

D. Continuous “interpolation” between
the two hierarchies

The analytical form of Pee in Eq. (58) isolates hierarchy
effects via an extra, non-L=E contribution �φ to the “fast”
L=E oscillation phase 2Δee; then, the sign of the extra
phase (i.e., the occurrence of either an advancement or a
retardation of phase) can tell the hierarchy [23,31,34].
In realistic situations, it may occur that an experiment

finds no evidence for an extra phase, or some evidence
for it but with the wrong sign, or even with a wrong
(too large or too small) amplitude. We propose to cover
all these possible outcomes by generalizing the discrete
parameter α ¼ �1 in Eqs. (4) and (58) as a formally
continuous parameter,

α ¼ �1 → α ¼ free parameter; (61)

whose value should be constrained by a fit to prospective or
real data. Evidence for α ≠ 0 will then translate into evi-
dence for hierarchy effects, with NH or IH being signaled
by sign(α). Vice versa, the hierarchy discrimination will be
compromised if the data favor either the “null” case α≃ 0
or implausible cases with jαj > 1.
This phenomenological approach makes the data analy-

sis easier, since α is formally treated as any other free
parameter in the fit; moreover, it offers an alternative view-
point to some subtle statistical issues recently highlighted
in [30,38,52]. In particular, it appears that the traditional
Δχ2 distance between the “true” and “wrong” hierarchy
cases, if naively interpreted, may overestimate the real sen-
sitivity to the hierarchy for at least two reasons: (1) Δχ2 is
an appropriate statistical measure for (continuous) param-
eter estimation tests, but not necessarily for (discrete)
hypotheses tests; (2) the hierarchy discrimination is already
compromised in cases which are halfway between the true
and wrong expectations. Various statistical methods and
measures have been introduced in [25,26,30,38,52] to
quantify more properly the hierarchy sensitivity. Our

approach offers an alternative perspective by (1) introducing
a continuous parameter α which allows usual χ2 analyses,
and (2) comparing the cases α ¼ �1 with the null case
α ¼ 0 in order to estimate the hierarchy sensitivity. See
Sec. VI for related comments.

E. Oscillation probability for geoneutrinos
and far reactors

In general, medium-baseline reactor experiments
designed to probe the hierarchy at L ∼Oð50Þ km suffer
from irreducible backgrounds from farther reactors at
L ≫ 50 km [17,31] (insensitive to Δm2) and from geoneu-
trinos [27] (insensitive to both Δm2 and δm2). For the
“far” and “geo” background components, we shall take
the oscillation probability as

P3ν
far ≃ c413P

2ν
mat þ s413; (62)

with P2ν
mat as in Eq. (59) and

P3ν
geo ≃ c413ð1 − 2s212c

2
12Þ þ s413; (63)

respectively.
We remark that the geoneutrino background may acquire

a slight δm2 dependence through nonaveraged oscillation
effects in the local crust. These effects, not considered
herein, may be estimated or at least constrained by con-
structing detailed geological models for the local distribu-
tion of Th and U geoneutrino sources [53].

V. INGREDIENTS OF THE NUMERICAL
AND STATISTICAL ANALYSIS

In the previous Secs. I and II, we have discussed features
of the differential cross section and of the oscillation prob-
abilities, which may be useful for generic medium-baseline
reactor experiments. In this section we describe further
ingredients which refer to the specific JUNO experimental
setting described in [17] and to other choices made in our
numerical and statistical analysis.

A. Priors on oscillation parameters

At present, global neutrino data analyses show no
significant indication in favor of either normal or inverted
hierarchy. We thus conflate the (slightly different) current
results for normal and inverted hierarchy as taken from
[15], and assume the following α-independent priors for
the relevant oscillation parameters in Eq. (58),

δm2=eV2 ¼ ð7.54� 0.24Þ × 10−5; (64)

Δm2
ee=eV2 ¼ð2.43� 0.07Þ × 10−3; (65)
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s212 ¼ 0.307� 0.017; (66)

s213 ¼ 0.0242� 0.0025; (67)

with errors at �1σ.

B. Fluxes and normalization

In this section we fix the fluxes and normalization factors
in the integrand of Eq. (7), namely,

NMBΦMBP3ν
mat þN farΦfarP3ν

far þN geoΦgeoP3ν
geo (68)

where, in the context of JUNO, the three terms refer to the
contributions from the ten medium-baseline reactors (MB)
[17], the two dominant far-reactor complexes (far) [17], and
geoneutrinos (geo) [54], respectively.
The reactor fluxes depend, in general, on the

(time-dependent) relative U and Pu fuel components. For
our prospective data analysis, we assume typical average
values from Fig. 21 in [6],

235U∶239Pu∶238U∶241Pu≃ 0.60∶0.27∶0.07∶0.06; (69)

for both medium-baseline and far reactors. The correspond-
ing fluxes are taken from [55].
Concerning the reactor event normalization, from the

information reported in [6] we derive the following rough
estimate for the number of unoscillated events expected
for a detector of mass M at distance L from a reactor
complex of thermal power P in typical conditions at
Daya Bay (including detection efficiencies and reactor duty
cycles):

unoscillated events
year

≃ 2.65 × 105
�
M
kT

��
P

GW

��
km
L

�
2

:

(70)

For our numerical analysis of JUNO, we assume M ¼
20 kT and P ¼ 35:8 GW from [17], L ¼ 52:474 km from
Sec. IV D, and an exposure of 5 years, yielding a total
of 3.4 × 105 events expected for no oscillations; these
numbers fix the normalization of the term NMBΦMB
after energy integration. Oscillations typically reduce the
expectations to ∼105 events for oscillation parameters as
in Sec. VA, hence the title of this work. Such an oscillated
rate corresponds to ∼55 oscillated events per day in typical
conditions.2

By repeating the previous exercise for the two far reac-
tors with power P ¼ 17:4 GW at L ¼ 215 and 265 km
[17], we obtain 104 and 6.5 × 103 unoscillated events in
5 years, respectively. These estimates fix the normalizations
of the two far-reactor subterms in N farΦfar.
Concerning the normalization of geoneutrino events, we

assume from [54] the following unoscillated flux estimates
near the Daya Bay site (central values): ΦðUÞ ¼
4.04 × 106=cm2=s and ΦðThÞ ¼ 3.72 × 106=cm2=s, which
correspond to unoscillated event rates RðUÞ ¼ 51:7 TNU
and RðThÞ ¼ 15:0 TNU, where one terrestrial neutrino unit
(TNU) corresponds to 10−32 events per target proton per
year [56]. Assuming a liquid scintillator detector of
20 kT mass and proton fraction ∼11%, operating for five
years with typical low-energy efficiency ε≃ 0.8, we esti-
mate an effective geoneutrino exposure of ∼5.2 × 1033

in units of protons × years, which implies ∼2.7 × 103

(U) and ∼0.8 × 103 (Th) unoscillated events, fixing the
geoneutrino normalization in our analysis. Concerning
the geoneutrino fluxes, we use the same spectral shape
as in [53].
Notice that, in the above estimates, typical efficiency

factors are already embedded in the normalization
factors N . Therefore, we take εðEvisÞ ¼ 1 in Eq. (7).
With all the ingredients described so far, the absolute event
spectrum can be calculated for any value of the continuous
parameters (δm2, Δm2

ee, θ12, θ13, α).
3

Figure 5 shows the total absolute spectrum of oscillated
events and its breakdown into three main components
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FIG. 5 (color online). Absolute energy spectrum of events
expected in JUNO for normal hierarchy (α ¼ þ1) and
assuming the central values of the oscillation parameters
defined in the text. The breakdown of the total spectrum in its
three components (medium baseline reactors, far reactors,
geoneutrinos) is also shown.

2Our estimate seems more optimistic than the rate of
∼40 events=day quoted in [19]. We are unable to trace the
source(s) of this difference which, if confirmed, could be com-
pensated by rescaling our assumed lifetime from 5 to 6.8 years
in order to collect the same event statistics.

3In this study we have ignored further oscillation-independent
backgrounds; see [42] for a recent evaluation in the context of
JUNO.
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(medium-baseline reactors, far reactors, and geoneutrinos),
in terms of the measured visible energy Evis. The calcula-
tion refers to normal hierarchy (α ¼ þ1) and to the central
values in Sec. VA. Although the far-reactor component is
small, its modulation over the whole energy spectrum
affects the determination of the (δm2, θ12) parameters
which govern the “slow” oscillations. In addition, the small
geoneutrino component adds some “noise” at low energy,
where most of the hierarchy information is confined via the
phase φ. These effects will be discussed quantitatively
in Sec. VI.
For the sake of completeness, Fig. 6 compares the total

absolute spectra of oscillated events in the two cases of nor-
mal hierarchy (α ¼ þ1) and inverted hierarchy (α ¼ −1).
In this figure we have used the same oscillation parameters
as in Fig. 5 for both hierarchies; hence, the NH and IH
spectra merge at high energy where φ → 0. The low-energy
differences between the two spectra are generally very
small, and may become even smaller with floating mass-
mixing parameters, making a detailed statistical analysis
mandatory.

C. χ 2 function

We assume that the true spectrum S�ðEvisÞ is the one cal-
culated for the central values of the oscillation parameters
in Sec. V A and for either normal hierarchy (α ¼ þ1)
or inverted hierarchy (α ¼ −1). The true spectrum S� is
then compared with a family of spectra SðEvisÞ obtained
by varying the continuous parameters (δm2, Δm2

ee, θ12,
θ13, α), in terms of a χ2 function which contains statistical,
parametric, and systematic components,

χ2 ¼ χ2stat þ χ2par þ χ2sys: (71)

Following [30], we define the statistical component χ2stat in
the limit of “infinite bins,”

χ2stat ¼
Z

9 MeV

0 MeV
dEvis

dχ2stat
dEvis

¼
Z

9 MeV

0 MeV
dEvis

�
S�ðEvisÞ − SðEvisÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S�ðEvisÞ
p

�
2

: (72)

We have verified that this limit is already realized numeri-
cally by using ≳250 energy bins, irrespective of linear or
logarithmic binning in Evis.
The parametric component χ2par is a quadratic penalty for

the priors on the four oscillation parameters pi ¼ p̄i � σi in
Sec. V A,

χ2par ¼
X4
i¼1

�
pi − p̄i

σi

�
2

: (73)

The continuous parameter α, which interpolates between
normal hierarchy (α ¼ þ1) and inverted hierarchy
(α ¼ −1) is left free in the fit.
Finally, we assume three systematic normalization fac-

tors fj ¼ 1 with 1σ errors �sj (j ¼ R, U, Th). The factor
fR multiplies all (medium-baseline and far) reactor spectra
with an assumed error sR ¼ 0.03. The factors fu and fTh
multiply the U and Th geoneutrino spectra, respectively,
with tentative errors sTh ¼ sU ¼ 0.2. The systematic χ2

component is then

χ2sys ¼
X

j¼R;U;Th

�
fj − 1

sj

�
2

: (74)

In principle, one might include further relevant systematics
via appropriate penalties (the “pull method” [57]). For
instance, energy scale uncertainties and pulls have been
introduced in terms of linear [28] or even polynomial
[17] parametrizations. However, it is not obvious that these
parametrizations can cover peculiar nonlinear profiles for
the energy scale errors [47], which may mimic the effects
of the “wrong hierarchy” in the worst cases [34]. In this
context, the issue of systematic shape uncertainties is not
really captured just by increasing the systematic “pulls,”
but requires dedicated studies; very recent examples have
been worked out in [36,42]. In this work we prefer to keep
χ2sys as simple as in Eq. (74) and to separately discuss
the subtle interplay of energy scale and spectrum shape
uncertainties in Sec. VII.
The total χ2 used hereafter is a function of eight

parameters, including the fj’s:

χ2 ¼ χ2ðδm2;Δm2
ee; θ12; θ13; α; fR; fU; fThÞ: (75)

Numerically, the minimization procedure and the identifi-
cation of isolines of Δχ2 ¼ χ2 − χ2min is performed through
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FIG. 6 (color online). Comparison of absolute energy spectra of
events expected in JUNO for normal hierarchy (α ¼ þ1) and
inverted hierarchy (α ¼ −1), assuming in both cases the same
oscillation parameters as in Fig. 5.
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a Markov chain Monte Carlo method [58]. By construction,
minimization yields χ2min ¼ 0 when the spectrum S equals
the true one S�. We shall typically show iso-Nσ contours,
where Nσ ¼

ffiffiffiffiffiffiffiffi
Δχ2

p
. Projections of such contours over

a single parameter provide the bounds at Nσ standard
deviations on such parameter [43]. It is understood that
undisplayed parameters are marginalized away.
A final comment is in order. We surmise that, when real

data will be available, the most powerful statistical analysis
will involve maximization of unbinned (or finely binned)
likelihood in both energy and time domain, as already
performed in the context of KamLAND results [59,60].
Such an analysis allows us to include any kind of systematic
error via pulls, and helps to separate, on a statistical basis,
stationary backgrounds (e.g., geoneutrinos) from time-
evolving reactor fluxes, thus enhancing the statistical signifi-
cance of the relevant signals [59,60]. However, a refined
time-energy analysis will probably be restricted only to
the experimental collaboration owning the data, since the
detailed reactor core evolution information is generally either
classified or averaged over long (yearly or monthly) time
periods.

VI. RESULTS OF THE ANALYSIS

We discuss below the results of our statistical analysis of
prospective JUNO data as defined in the previous section.
We focus on the case of true NH, the results for true IH
being rather symmetrical.
Figure 7 shows the results of the fit in the plane (Δm2

ee, α)
for true NH, in terms of Nσ ¼ 1, 2, 3 contours for one
parameter (Δχ2 ¼ 1, 4, 9), all other parameters being

marginalized away. The errors are rather linear on both
parameters, and appear to be significantly anticorrelated.
The anticorrelation stems from the tendency of the fit to
keep constant the oscillation phase 2Δee þ αφ in
Eq. (58) for typical neutrino energies E≃ 3–5 MeV: an
increase of Δm2

ee is then compensated by a decrease in α.
In Fig. 7, the case of wrong hierarchy (α ¼ −1) is

formally reached at ∼3.4σ; however, it would be mislead-
ing to take this “distance” as a measure of the sensitivity
to the hierarchy. Physically, the discrimination of NH vs
IH is successful if the data allow us to tell the sign of a
non-L=E phase, which advances or retards an hierarchy-
independent L=E oscillation phase. In our adopted formal-
ism, this requirement amounts to telling the sign of α: when
the sign is undecidable (α≃ 0), the discrimination is
already compromised. Therefore, the sensitivity to the hier-
archy is more properly measured by the distance of the true
case (either α ¼ þ1 or α ¼ −1) from the null case (α ¼ 0):
Nσ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2ðα ¼ �1Þ − χ2ðα ¼ 0Þ

p
. In Fig. 7, this distance

is ∼1.7σ, namely, about 1=2 of the ∼3.4 sigma which
formally separate the NH and IH cases. Thus, we recover
independently the approximate “factor of 2” reduction of
the sensitivity with respect to naive expectations
[30,37,38], as expressed by the “rule of thumb” Nσ ≃
0.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δχ2ðNH − IHÞ

p
[42]. Our approach reaches such

result via a fit to a continuous parameter (α), which is
conveniently treated as any other floating parameter in
the statistical analysis. The case of true IH (not shown)
is very similar, with only a slight enhancement of the
sensitivity to the hierarchy (∼1.8σ instead of ∼1.7σ).
In conclusion, the results in Fig. 7 show that the sign

of α (i.e., the advancement or retardation of phase due to
the hierarchy) can be determined at a level slightly below
∼2σ. This value is in the sameballpark of all recent estimates
under similar assumptions, but has been derived via a differ-
ent approach. In particular, we have recovered the “rule of
thumb” Nσ ≃ 0.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δχ2ðNH − IHÞ

p
that was found and dis-

cussed in [30,37,38,42] for two alternative discrete cases, by
connecting the two cases via a continuous variable α, whose
sign tells the hierarchy. The hierarchy discrimination is suc-
cessful if the data prefer jαj ¼ 1with sufficient significance
with respect to α ¼ 0; conversely, a preference for α ¼ 0
would compromise the experiment, while surprisingly large
values jαj ≫ 1would signal possible systematics which are
artificially enhancing the hierarchy effects. If the hierarchy
discrimination is successful, then fit results such as those
in Fig. 7 provide the central value and error of Δm2

ee and
also of Δm2 via Eq. (41); namely,

Δm2 ¼ Δm2
ee − signðαÞ

2
ðc212 − s212Þδm2: (76)

The determination of the fundamental parameter Δm2 thus
depends also on the constraints achievable on the parameters
(δm2, s212), which we now discuss.

]2 [eV-3/10ee
2 m∆
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FIG. 7 (color online). Constraints in the plane (Δm2
ee, α) at 1, 2

and 3σ (Δχ2 ¼ 1, 4, 9) from a fit to prospective JUNO data
assuming true normal hierarchy (α ¼ þ1). Although the inverted
hierarchy case (α ¼ −1) is ∼3.4σ away, the hierarchy discrimi-
nation is already compromised at ∼1.7σ, where the “undecidable”
case (α ¼ 0) is allowed.
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Figure 8 shows the fit results in the plane (δm2, s212) at 1,
2 and 3σ. The slight anticorrelation is due to the fact that, in
general, a slight increase of the “slow” oscillation phase δ
can be partly compensated by a decrease of the correspond-
ing amplitude sin2ð2θ12Þ. The 1σ errors on each parameter
correspond to a nominal accuracy of a few permill, i.e.,
1 order of magnitude better than the current experimental
constraints. Such a prospective accuracy makes evident, a
posteriori, the importance of including subpercent effects
due to propagation in matter (which affect both s212
and δm2; see Sec. IV C) and to nucleon recoil (which
affect δm2 via the δm2=E dependence and the positron
energy reconstruction; see Sec. III). Energy scale nonlinear-
ities (see next section) must also be kept under control
at a similar level of accuracy, in order to avoid biased
determinations of δm2.
Figure 9 shows the prospective constraints in the plane

(fR, s213). The two parameters are positively correlated,

since an increase in the reactor flux normalization can
be partly compensated by a higher s213 enhancing electron
flavor disappearance. In any case, the improvement on the
s213 accuracy is moderate: the prior ∼10% error on this
parameter becomes just ∼7% after the fit.
Table I summarizes the information about the parameter

accuracy in terms of fractional percent errors at 1σ, before
and after the fit to prospective JUNO data, assuming either
normal or inverted true hierarchy. In order to average out
small nonlinearities and asymmetries, posterior fractional
errors are defined as 1=6 of the �3σ fit range, divided
by the central value of the parameter (which, by construc-
tion, is the same before and after the fit). We also report the
results without the far-reactor or geoneutrino backgrounds,
so as to gauge their impact on the final accuracy.
Table I shows that the cases of true NH and IH are almost

equivalent in terms of final accuracy on the fit parameters.
In particular, α is determined to be þ1.00� 0.59 for true
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FIG. 8 (color online). Constraints in the plane (δm2, s212) at 1, 2
and 3σ from a fit to prospective JUNO data, assuming true
normal hierarchy.
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FIG. 9 (color online). Constraints in the plane (fR, s213) at 1, 2
and 3σ from a fit to prospective JUNO data, assuming true normal
hierarchy.

TABLE I. Statistical analysis of prospective JUNO data: fractional percent errors (1σ) on the free parameters, before and after the fit
to prospective JUNO data, assuming either normal or inverted true hierarchy. The hypothetical cases without contributions from far
reactors (“all − far”) or from geoneutrinos (“all − geo”) are also reported. In the latter case, the normalization factors fTh;U are absent.

% error after fit (NH true) % after fit (IH true)
Parameter % error (prior) All data All − far All − geo All data All − far All − geo

α ∞ 59.2 59.0 57.0 56.2 55.3 54.0
Δm2

ee 2.0 0.26 0.25 0.26 0.26 0.25 0.25
δm2 3.2 0.22 0.21 0.16 0.21 0.21 0.16
s212 5.5 0.49 0.47 0.39 0.49 0.46 0.42
s213 10.3 6.95 6.88 6.95 6.84 6.77 6.84
fR 3.0 0.66 0.66 0.64 0.65 0.65 0.64
fTh 20.0 15.3 14.6 � � � 15.5 15.4 � � �
fU 20.0 13.3 13.3 � � � 13.3 13.3 � � �

F. CAPOZZI, E. LISI, AND A. MARRONE PHYSICAL REVIEW D 89, 013001 (2014)

013001-12



NH and −1� 0.56 for true IH. Concerning the other
parameters, prospective JUNO data always lead to a reduc-
tion of the prior uncertainty, which is very significant for
(Δm2

ee, δm2, s212, fR) and moderate for the (s213, fTh, fU).
The far-reactor background does not appear to affect
significantly any fit parameter, while the geoneutrino back-
ground and its uncertainties tend to degrade somewhat the
final accuracy of the mass-mixing parameters (δm2, s212),
whose observable oscillation cycle mainly falls in the geo-
neutrino energy region (see Fig. 5). Indeed, the (δm2, s212)
parameters have non-negligible correlations with the
geoneutrino normalization factors (fTh, fU) after the fit
(not shown).
Finally, we discuss the contributions to the χ2 difference

between true and wrong hierarchies, assuming for definite-
ness the case of true NH as in Fig. 7. The best fit for fixed
α ¼ −1 (wrong hierarchy) is reached at χ2 ¼ 11:7, and is
dominated by the statistical contribution (χ2stat ¼ 11:5).
Figure 10 shows the corresponding χ2stat density, namely,
the integrand of Eq. (72), as function of the visible energy
Evis, together with its cumulative distribution (i.e., the
integral of the density with running upper limit). It can
be seen that 80% of the contribution to the χ2 comes from
the spectral fit in a very small range at low energy,
Evis ∈ ½1.5; 3.5� MeV. In this range, the vertical mismatch
between the true and wrong spectra changes sign many
times, leading to a wavy pattern of the χ2 density, also vis-
ible with smaller amplitude at higher energies. Intuitively,
one can recognize that this wavy pattern is very fragile
under small relative changes of the horizontal scale
between the true and wrong spectra, due to possible energy
scale uncertainties which, in the worst cases, might largely
erase the pattern itself, at least at low energy. The next

section is devoted to a discussion of this issue, whose
relevance was pointed out in [34].

VII. ENERGY SCALE AND SPECTRAL
SHAPE UNCERTAINTIES

It was observed in [34] that changes in energy scale
(E → E0) at percent level can flip the sign of the
hierarchy-dependent phase φ in Eq. (58) (namely,
α ¼ �1 → α ¼ ∓1), provided that

Δm2
eeL

2E
� φðEÞ ¼ Δm20

eeL
2E0 ∓φðE0Þ; (77)

where Δm2
ee ≠ Δm20

ee in general. Multiplying the above
terms by 2E0=LΔm2

ee, one gets an implicit equation for
the ratio E0=E, which is amenable to iterative solutions
by taking φðEÞ as in Eq. (45). The first iteration after
the trivial solution (E≃ E0) yields the compact expression:

E0

E
≃ Δm20

ee

Δm2
ee
∓2s212

δm2

Δm2
ee

�
1 − sin δðEÞ

2δðEÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ν
vacðEÞ

p
�
; (78)

which is already a very good approximation to the exact
numerical solution of Eq. (77), as we have verified in a
number of cases. Note that the upper (lower) sign refers
to true NH (IH). Equation (78) usefully separates the linear
and nonlinear terms which can jointly flip the sign of the
phase φ in the transformation E → E0.
It has been shown that transformations E → E0 as in

Eq. (78) can compromise the hierarchy determination
[34,36,42], even if they do not lead to a complete degen-
eracy between the observable spectra in NH and IH. Below
we discuss in detail two specific cases in the context of the
JUNO project, and then we make some general comments.

A. Energy scale transformation E → E0
with E ¼ E0 at high energy

Let us specialize Eq. (78) by selecting the subcase with
Δm2

ee ¼ Δm20
ee. In this case, the function E0=E takes the

nonlinear form reported in Fig. 11, where the curves for
true NH and IH tend to unit value at high energy (see also
[34]). For definiteness, we consider the case of true NH, the
case of true IH being qualitatively very similar. Several con-
sequences emerge in the fit, which deserves a detailed
discussion.
First of all, the parameter α is shifted from the true value

α ¼ þ1 to a wrong fitted value α≃−1, as expected from
the sign flip of φ. Figure 12 shows this shift in the plane
(Δm2

ee, α), to be compared with the results in Fig. 7. It
appears the error ellipses are moved downwards from
α ¼ þ1 to α≃−1 at nearly the same value of Δm2

ee.
However, at the preferred point ðΔm2

ee; αÞ≃ ð2.43 ×
10−3 eV2;−1Þ in Fig. 12, the best fit is very poor, being
characterized by χ2 ≃ 360. The reason is that, as also
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FIG. 10 (color online). Density and cumulative distribu-
tion functions for χ2stat in the case of wrong inverted hierarchy,
assuming true normal hierarchy. The cumulative function values
can be read on the same vertical axis as for the density, but in
dimensionless units.

NEUTRINO MASS HIERARCHY AND ELECTRON NEUTRINO … PHYSICAL REVIEW D 89, 013001 (2014)

013001-13



recently observed in [36,42], the degeneracy induced by the
transformation E → E0 is never exact, since it also changes
other spectral ingredients besides the oscillation phase φ. In
particular, in our numerical experiment, it leads to a notice-
able energy shift of≃2.2% close to the energy threshold, as
one can read directly from Fig. 11. As a result, the rapidly
rising part of the spectrum just above threshold moves by
the same amount, and the agreement between expected and
observed spectra at low energy is compromised, as can be
seen in Fig. 13. The analysis of the χ2 density in Fig. 14
confirms that the energy scale shift E → E0 does erase
the wavy pattern in Fig. 10 (as a consequence of the sign
flip of φ), but it also leads to a large increase of the χ2

just around the threshold and, to a much lesser extent,
around the two steplike features of the geoneutrino energy
spectrum. Therefore, the low-energy part of the observed
spectrum may act as a self-calibrating tool to diagnose
energy scale shifts at the percent level near the known
IBD threshold (ET ¼ 1.806 MeV).4

However, the possible self-calibration of the low-energy
spectrum tail may fail, if the spectral shape itself is not
accurately known in that region. In particular, if the shape
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FIG. 11 (color online). Profile of the neutrino energy ratio E0=E
which flips the sign of the hierarchy-dependent phase φ in the
JUNO experiment, for the case Δm2

ee ¼ Δm20
ee. The profiles for

true NH and true IH are shown for E ≥ ET ¼ 1.806 MeV.
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FIG. 13 (color online). Comparison of the true NH spectrum
with the best-fit IH spectrum from Fig. 12.
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FIG. 12 (color online). Constraints in the plane (Δm2
ee, α) for

true NH, with energy scale variations as in Fig. 11. (Compare
with Fig. 7.)

4Additional effects (not shown) induced by the energy scale
transformation in Fig. 11 include shifts of best-fit parameters
(δm2, s212) and (fU, fTh) by ∼1–2σ, in units of standard deviations
after the fit (see Table I). Therefore, energy scale errors tend also
to significantly bias such parameters, while the corresponding
biases on the (fR, s213) parameters are found to be < 1σ in our
analysis.
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errors in the observable reactor spectrum Φσ (where Φ is
the reactor flux and σ is the IBD cross section) are compa-
rable to the deviations ΦðEÞσðEÞ → ΦðE0ÞσðE0Þ induced
by E → E0, then most of the low-energy spectral changes
can be “undone” by a fudge factor fðEÞ with the following
energy profile:

fðEÞ ¼ ΦðEÞσðEÞ
ΦðE0ÞσðE0Þ ; (79)

in which case the best-fit spectrum for the wrong hierarchy
becomes almost completely indistinguishable from the
original, true-hierarchy spectrum. In other words, the
simultaneous occurrence of an energy scale transformation
as in Eq. (78) and of a spectral deformation as in Eq. (79)
make the true and wrong hierarchies nearly degenerate
from a phenomenological viewpoint.
Figure 15 shows the fudge factor fðEÞ corresponding to

the specific transformation E → E0 with Δm2
ee ¼ Δm20

ee,
for both NH and IH. The factor diverges at threshold
but, for neutrino energies sufficiently above ET (say,
E≳ 2.1 MeV) it takes values of Oð10%Þ and can become
as low as Oð2%Þ in the high-energy part of the spectrum.
Shape variations of about this size may still be tolerated
within current uncertainties on the reactor spectrum
[55,61], and thus should be kept under control in future
JUNO-like experiments.
If one applies, at the same time, the transformation

E → E0 in Fig. 11 and the fudge factor fðEÞ in Fig. 15
to the case of true NH, the results in Fig. 12 remain
basically the same (i.e., the wrong IH is preferred), but
the spectral mismatch around threshold in Fig. 13 is largely
cured, and the total χ2 in Fig. 14 drops from ∼360 to ∼22.
In this case, the best-fit IH spectrum is almost completely
degenerate with the true NH spectrum.

Fig. 16 shows the corresponding χ2 density, which is
now dominated by the residual shape mismatch of the
geoneutrino energy spectrum, whose steplike features
still occur “at the wrong energy” and slightly break the
degeneracy. Geoneutrinos thus offer an additional handle
to self-calibrate the low-energy scale to some extent, as also
pointed out in another context [62].
To summarize, an energy scale transformation as in

Fig. 11 is able to swap the hierarchy in the fit (Fig. 12),
but it also induces a mismatch in the spectral features
around threshold (Fig. 13) and thus a very high χ2 value
at best fit (Fig. 14), which could be used as a diagnostic,
self-calibration tool. However, specific variations of the
reactor spectrum shape (Fig. 15) can largely “undo” the
low-energy mismatch, leaving only a residual misfit in
the geoneutrino spectral shapes (Fig. 16) which could be
used as a secondary self-calibration tool. There is thus a
subtle interplay between energy scale systematics and
spectral shape uncertainties, which need to be kept under
control in order to discriminate the hierarchy and to get
unbiased estimates of the νe oscillation parameters.

B. Energy scale transformation E → E0
with E ¼ E0 at threshold

In the previous section, it has been shown that the
specific choice Δm2

ee ¼ Δm20
ee in Eq. (78) leads to both

energy scale and spectral variations mainly localized at
relatively low energies, Evis ≲ 3 MeV. However, other
choices in Eq. (78) may move the relevant variations to
the high-energy part of the spectrum. In particular, one
may choose the ratio Δm20

ee=Δm2
ee in Eq. (78) so as to

get E=E0 ¼ 1 just at threshold (E ¼ ET). For the considered
JUNO setup, this choice corresponds to taking Δm20

ee=
Δm2

ee ≃ 1.022 (0.978) for true NH (IH). Figure 17 shows
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FIG. 15 (color online). Energy profiles of the fudge factors
which would undo the reactor spectral changes induced by the
changes E → E0 reported in Fig. 11.
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the corresponding profile of the energy ratio E=E0, which is
≲2 permill for E≲ 3 MeV, but grows to ∼2% at higher
energies.
If we fit the prospective JUNO data (for true NH) with

E → E0 as in Fig. 17, the preferred value of α is shifted
down to ∼ − 1 (similarly to Fig. 12), and the best-fit value
of Δm2

ee=ð10−3eV2Þ is shifted to ∼2.48≃ 1.022 × 2.43 as
expected (not shown). In this case, the effect of the energy
scale variation in Fig. 17 is quite dramatic: at best fit, not
only is the wrong hierarchy preferred, but the value ofΔm2

ee
is biased by an order of magnitude more than its prospec-
tive 1σ accuracy (as reported in Table I). However, also
in this case the degeneracy between the spectra for true
and wrong hierarchies is not complete: the best fit in the
wrong IH is very bad (χ2 ≃ 280), and receives contribu-
tions mainly from the high-energy part of the spectrum,
Evis ≳ 3 MeV (not shown).
A misfit of the high-energy tail of the spectrum might be

used as a diagnostic of systematic energy scale deviations
in that region; however, the misfit could be largely compen-
sated by appropriate variations of the reactor spectrum
shape via a fudge factor fðEÞ, analogously to the case dis-
cussed in the previous section. Figure 18 shows the fudge
factor which brings the best-fit spectrum for the wrong hier-
archy in much closer agreement with the original spectrum
for the true hierarchy (either normal or inverted), for energy
variations as in Fig. 17. If deviations as large as in Fig. 18
are allowed within reactor spectral shape uncertainties
[55,61], then the degeneracy between true and wrong hier-
archies would be almost complete along the whole energy
range, with residual misfits located mainly in the geoneu-
trino energy region. Indeed, by applying the fudge factor in
Fig. 18, the wrong hierarchy is still preferred, but the χ2 at
best fit drops by an order of magnitude, and the best-fit

value ofΔm2
ee is brought back to the original value ∼2.43 ×

10−3 eV2 (not shown).

C. Further comments on energy scale and
spectral shape deviations

The simultaneous occurrence of energy scale deviations
E → E0 as in Eq. (78) and of reactor spectral shape devia-
tions fðEÞ as in Eq. (79) makes true and wrong hierarchies
nearly degenerate across the whole visible energy range,
with small residual misfits mainly located in the geoneu-
trino energy region. If such deviations are allowed within
the systematic uncertainties of the JUNO experiment, the
discrimination of the hierarchy would be seriously compro-
mised, being degraded at a significance level necessarily
lower than the ∼2σ estimated in Sec. VI.
At present it is premature— if not impossible— to guess

the final accuracy on the energy scale achievable with dedi-
cated calibration experiment and detector simulations, as
well as the reduction of spectral shape uncertainties reach-
able after the current campaign of high-statistics, near-
detector measurements. It is also not particularly useful
to embed such deviations by means of arbitrary functional
forms (e.g., polynomials) and corresponding pulls in the fit,
unless such functions can also cover the family of nonlinear
deviations implied by Eqs. (78) and (79) (see also [36,42]).
We are thus approaching a new and unusual situation in
neutrino physics, which was already highlighted in another
context [63]: spectral measurements with very high statis-
tics require dedicated studies of the “shape” of nonlinear
systematics, which are not necessarily captured by simply
adding a few more pulls and penalties in the fit.
Finally, we emphasize that, in our approach with free α,

the discrimination of the hierarchy is already compromised
when α ¼ �1 is misfitted as α ¼ 0 (case of undecidable
hierarchy) rather than as α ¼ ∓1 (case of wrong hierarchy).
In particular, the energy scale deviation which would bring
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FIG. 17 (color online). Profile of the neutrino energy ratio
E0=E which flips the sign of the hierarchy-dependent
phase φ in the JUNO experiment, for the case Δm20
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1.022 (0.978) in NH (IH). The profiles are shown for
E ≥ ET ¼ 1.806 MeV.
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α ¼ �1 to α ¼ 0 (“canceling” the hierarchy-dependent
oscillation phase φ) obeys the equation

Δm2
eeL

2E
� φðEÞ ¼ Δm20

eeL
2E0 ; (80)

which is approximately solved by

E0

E
≃ Δm20

ee

Δm2
ee
∓s212

δm2

Δm2
ee

�
1 − sin δðEÞ

2δðEÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ν
vacðEÞ

p
�
: (81)

In comparison with Eq. (78), the nonlinear term in the
above equation is a factor of 2 smaller. Therefore, energy
scale deviations of about half the size discussed in the pre-
vious two sections [as well as spectral deviations fðEÞ
reduced by a similar factor] are already sufficient to com-
promise the hierarchy determination, bringing the fit close
to the null case α ¼ 0, as we have explicitly verified
numerically in various cases. For instance, Fig. 19 shows
the fit results assuming Δm20

ee ¼ Δm2
ee in Eq. (81). In this

case, the deviations of E0=E from unity are exactly 1=2
smaller than in Fig. 11, and the true value α ¼ 1 is misfitted
as α≃−0.2� 0.5 at �1σ, which is more consistent with
α ¼ 0 (undecidable hierarchy) than with α ¼ �1 (true or
wrong hierarchy). In this respect, it is useful to compare
Fig. 19 with both Fig. 7 (best fit at the true hierarchy)
and Fig. 12 (best fit at the wrong hierarchy).
In a sense, the challenge of the energy scale may actually

be greater than pointed out in [34] and [36,42], by approx-
imately a factor of 2. In particular, in order to reject cases
leading to α≃ 0 with, say, 3σ confidence, the ratio E0=E
should be kept close to unity at the few permill level over

the whole reactor neutrino energy range. Moreover, as
shown in this section, the conspiracy of energy scale
and spectrum shape systematics may lead to an even
stronger degeneracy between cases with different values
of α (e.g., α ¼ �1 versus α ¼ ∓1, or versus α ¼ 0), mak-
ing it very difficult to prove the occurrence of a non-L=E
oscillation phase φ with a definite sign. An additional
detector close to the main reactors might help to mitigate
the impact of such systematics (see [36,42]), provided that
the near and far detector responses are proven to be very
similar at all energies, so as to cancel out correlated uncer-
tainties on both the x and y axes of event spectra. All these
delicate issues definitely require further investigations, in
order to prove the feasibility of hierarchy discrimination
at reactors with sufficient statistical significance.

VIII. SUMMARY AND CONCLUSIONS

Medium-baseline reactor neutrino experiments can offer
unprecedented opportunities to probe, at the same time, all
the parameters which govern the mixing of ν̄e with the
neutrino mass states, namely, the mixing angles θ12 and
θ13, the two squared mass differences δm2 and Δm2,
and the hierarchy parameter α (þ1 for NH and −1 for
IH). These goals largely justify the current efforts towards
the construction of such experiments, as currently envis-
aged by the JUNO and RENO-50 projects.
In this context, we have revisited some issues raised by

the need for precision calculations and refined statistical
analyses of reactor event spectra. In particular, we have
shown how to include analytically IBD recoil effects in
binned and unbinned spectra, via appropriate modifications
of the energy resolution function (Sec. III). We have also
generalized the oscillation probability formula by including
analytically matter propagation and multiple reactor
damping effects, and by treating the parameter α as a
continuous— rather than discrete— variable (Sec. IV).
The determination of the hierarchy is then transformed
from a test of hypothesis to a parameter estimation, with
a sensitivity given by the statistical distance of the true case
(either α ¼ þ1 or α ¼ −1) from the undecidable case
(α ¼ 0). Numerical experiments have been performed for
the specific experimental setup envisaged for the JUNO
experiment, assuming a realistic sample of Oð105Þ
medium-baseline reactor events, plus geoneutrino and
far-reactor backgrounds, via an unbinned χ2 analysis.
We have found a typical sensitivity to the hierarchy slightly
below 2σ in JUNO, and significant prospective improve-
ment upon current errors on the oscillation parameters
(see Table I and Figs. 7–9), as far as systematic uncertain-
ties are limited to reactor and geoneutrino normalization
errors (Sec. V).
Further systematic uncertainties, associated to energy

scale and spectrum shape distortions, may seriously com-
promise the hierarchy sensitivity and may also bias the
oscillation parameters (Sec. VI). In particular, specific
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true NH, after applying the energy scale variations of Fig. 11
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the true hierarchy ðα ¼ þ1Þ and the wrong hierarchy (α ¼ −1).
See the text for details.
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energy scale variations— for which we have provided com-
pact expressions— can move the reconstructed value of α
away from the true one; e.g., α ¼ þ1 can be misfitted as
α≃−1 or as α≃ 0. However, the overall fit is generally
very bad in such cases, since the reactor spectrum is also
distorted at either low or high energies with respect to
expectations. In principle, these shape distortions might
be used as a diagnostic of energy scale errors; however,
they might also be compensated by opposite ones within
current shape uncertainties, in which case the degeneracy
between true and wrong values of α would be almost com-
plete (up to residual, unbalanced distortions of geoneutrino
spectra). For instance, the joint occurrence of distortions as
in Figs. 11 and 15 (or as in Figs. 17 and 18) would essen-
tially flip the hierarchy parameter (α ¼ �1 → α≃∓1)

with only a modest increase in the χ2. Distortions of
about half this size are sufficient to bring the fit close
to the case of “undecidable hierarchy” as in Fig. 19
(α ¼ �1 → α≃ 0), thus compromising the hierarchy dis-
crimination. It is thus very important to control, at the same
time, the systematic uncertainties on both the x axis (energy
scale) and the y axis (spectrum shape) of measured and
simulated reactor event spectra, with an accuracy sufficient
to reject the above distortions at high confidence level.
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