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We study the effect of disorder in a holographic superconductor by introducing a quasiperiodic chemical
potential. When the condensation of the superconductor is sufficiently small compared with the strength of
disorder, we find that there exists a discontinuous phase transition from superconducting state to normal
state with increasing disorder strength. For relatively large condensation, we find that disorder suppresses
but does not completely destroy superconductivity.
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I. INTRODUCTION

The effect of disorder in a superconductor has intrigued
scientists for several decades. Soon after the BCS theory
[1], Anderson found that weak disorder cannot destroy
the superconductivity [2]. Until now, both theories and
experiments have confirmed that a strong disorder will
eventually destruct superconductivity, driving the system
into an insulating state or a normal metal state [3–10].
However, the effect of interactions in a disordered super-
conductor is still not well understood. As a natural way
to study a strongly coupled quantum field theory system,
the AdS/CFT correspondence [17] has been used to study
the interplay of disorder and interaction [11–16]. The holo-
graphic correspondence has also been proved to be success-
ful to study various properties of superconductors [18,19].
In Ref. [20] the authors first studied a dirty holographic
superconductor, then found that the disordered supercon-
ductor always has a larger critical temperature relative to
the to the Tc for the uniform one. In this paper we focus
on understanding another important issue, the possible
Anderson localization in a holographic superconductor.
Technically, the weak disorder effect is introduced by a
quasiperiodic chemical potential on the boundary field
theory, and the strength of the disorder is controlled by
a parameter α. By tuning α we find that when the conden-
sation is small, the weak disorder will destroy the supercon-
ductivity; clearly this is a holographic realization of
Anderson localization in superconductors.

II. MODEL AND DEFINITION OF DISORDER

The starting action in the usual gravity dual of a
holographic superconductor is [18] S ¼ R

d4x
ffiffiffiffiffiffi−gp ½R−

2Λ − 1
4
FμνFμν − j∇ψ − iAψ j2 −m2jψ j2�’, where Λ ¼

−dðd − 1Þ=2L2 is the cosmological constant, d is the
dimension of the boundary, and Fμν ¼ ∂μAν − ∂νAμ is
the strength of the gauge field. The metric is an AdS
Schwarzschild black hole, ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ

r2ðdx2 þ dy2Þ with fðrÞ ¼ r2=L2ð1 − r30=r
3Þ, r being the

bulk radial coordinate, r0 the horizon position, and x, y
the boundary coordinates. Without loss of generality, we
set L ¼ 1. The temperature of the black hole is T ¼ 3r0

4π .
We use the ansatz of ψ ¼ ψðr; xÞ and A ¼

ðAtðr; xÞ; 0; 0; 0Þ, where x is the spatial coordinate of the
boundary field theory, and choose m2 ¼ −2. In the probe
limit, with the scaling of ψ → ψ=r and working in the coor-
dinates with z ¼ 1=r, we have the following equations of
motion (EOMs):

ð1 − z3ÞAð2;0Þ
t ðz; xÞ þ Að0;2Þ

t ðz; xÞ − 2Atðz; xÞψðz; xÞ2 ¼ 0;
(1)

ψðz; xÞðAtðz; xÞ2 þ z4 − zÞ þ ð1 − z3Þψ ð0;2Þðz; xÞ
þ ðz3 − 1Þ2ψ ð2;0Þðz; xÞ þ 3ðz3 − 1Þz2ψ ð1;0Þðz; xÞ ¼ 0: (2)

The superscripts on the fields mean the derivative of z
and x; for example, Að2;0Þ

t ðz; xÞ means ∂2
zAtðz; xÞ and

Að0;2Þ
t ðz; xÞ means ∂2

xAtðz; xÞ. The expansions of ψ and
At near the infinite boundary are

ψðr; xÞ ∼ ψ ð0ÞðxÞ þ ψ ð1ÞðxÞzþ � � � ; (3)

Atðr; xÞ ∼ μðxÞ þ ρðxÞzþ � � � : (4)

We choose the quantization such that ψ ð0ÞðxÞ ¼ 0 and
ψ ð1ÞðxÞ ¼ hOðxÞi is the order parameter. We introduce
the disorder through a quasiperiodic chemical potential
on the boundary as

μðxÞ ¼ μa þ ð1 − αÞðμ0 − μaÞ cosð2k1πx=2Þ
þαðμ0 − μaÞ cosð2k2πx=2Þ; (5)

where 2k1 and 2k2 are two coprime positive integers, μa is
the average value of μðxÞ, 0 ≤ α ≤ 1 controls the pattern of
μðxÞ, μ0 controls the maximal value μmax ¼ μ0 of μðxÞ, and
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the minimal value μmin ¼ −μ0 þ 2μa of μðxÞ. Thus, the
amplitude of the oscillating μðxÞ is 2ðμ0 − μaÞ. Then α is
the parameter of the disorder strength after fixing μa and
μ0, μ0 is the parameter of the amplitude of the oscillation
after fixing μa and α. Similar kind of quasiperiodic lattice
has been already used to study the Anderson localization in
Refs. [21–23]. Strictly, k1=k2 should an irrational number
for the quasiperiodic case; however, by using two coprime
positive integers 2k1 and 2k2 we can still induce some weak
disorder effect as shown in Fig. 1.
The EOMs are solved by using the Chebyshev

spectral method [24]. We discretize the EOMs on a two-
dimensional Chebyshev grid with 20 points along the z
direction and 400 points in the x direction. In all the
calculations we choose the length l of the sample to
be l ¼ 20.

III. INTERPLAY OF DISORDER EFFECT
AND PERIODIC EFFECT

A holographic superconductor with periodic chemical
potential has been studied in [25–27]. In [26,27] the authors
found that the superconductivity is enhanced by the pres-
ence of the periodic chemical potential. In Fig. 2 we plot the
average value of the order parameter hOai as a function of α
for various combinations of k1 and k2 with fixed μ0 and μa.
The lowest pink lines in Fig. 2 are the homogeneous
solutions with μðxÞ ¼ μa ¼ 4.05 and 5. μc ¼ 4.06 is the
critical value for the homogeneous configuration; after
μc we will see no superconductivity [18]. From the left plot
it can be seen that hOai ¼ 0 when μðxÞ ¼ 4.05 < 4.06,
while for the periodic or quasiperiodic cases we have non-
zero condensation for some regions of α. Similar phenom-
ena also happen for the case of μa ¼ 5. In all cases, both
periodic and quasiperiodic chemical potential induce a

larger value of order parameter compared to the homo-
geneous case.
When α ¼ 0 or α ¼ 1, we recover the cases of periodic

chemical potentials: μðxÞ ¼ μa þ ðμ0 − μaÞ cosðk1πxÞ and
μðxÞ ¼ μa þ ðμ0 − μaÞ cosðk2πxÞ. From Fig. 2, we can
see that hOai decreases with increasing k in the periodic
cases. As a check we see that when k ¼ k2 ¼ 7=2; 9/2,
which is greater than k1 ¼ 2, hOai for a periodic μðxÞ with
k ¼ k2 is small than that of k ¼ k1. If we keep increasing k
(the results are not include here), the condensation hOai
asymptotes some constant value. These results have also
been found in [25,27].
Looking at the two red lines with dots in the top of Fig. 2,

we see the condensation does not monotonically increase
with increasing α. The condensation decreases first then
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FIG. 1 (color online). Left: the plot of μðxÞ for the cases of μa ¼ 4.02, μ0 ¼ 8.04 and α ¼ 0; 0.1; 0.21 with k1 ¼ 2, k2 ¼ 7=2. Right:
the order parameter hOðxÞi for five cases α ¼ 0; 0.1; 0.2; 0.21; 0.25 (from top to bottom) with μa ¼ 4.02, μ0 ¼ 8.04, k1 ¼ 2, k2 ¼ 7=2.
We see that a phase transition happens when increasing α. Inset of the right plot: the average values of real part of conductivity along the
y direction for three cases α ¼ 0; 0.1; 0.25 in the right plot.
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FIG. 2 (color online). The average value of order parameter
hOai as a function of α for different k2 with a fixed k1 ¼ 2.
In the left plot μ0 ¼ 8.1, μa ¼ 4.05; in the right plot μ0 ¼ 10,
μa ¼ 5. The lowest two pink dotted lines are the homogeneous
case with μðxÞ ¼ 4.05 and μðxÞ ¼ 5, respectively. In all the plots
we increase α from 0 to 1 with a step δα ¼ 0.05.
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increases when we increase the portion of the case of k2 ¼
3=2 by tuning α. This means that there is an interplay
between the disorder effect and the periodic effect: periodic
chemical potential favors an increasing condensation, while
disorder favors a decreasing one. In the left plot of Fig. 2,
similar nonmonotonic behaviors of the two cases with k2 ¼
7=2 (blue lines) also confirm the existence of disorder
effect. We can also see a phase transition from the super-
conducting phase to a normal phase at αc ∼ 0.8 when
k1 ¼ 2, k2 ¼ 9=2, but the main reason of the phase transi-
tion is the periodic effect since the transition happens at
αc > 0.5 and the periodic case with k ¼ k2 ¼ 9=2 is of
a vanishing condensation.
We also studied how the condensation behaves when we

tune both μ0 and αwith a fixed μa. Figure 3 shows hOai as a
function of both α and μ0, where 0 < μ0 < 2μa is chosen in
order to have positive chemical potentials. The important
information from Fig. 3 is that when we reduce μ0 (the
oscillating amplitude) with fixed α, μa, k1 and k2, the con-
densation will be decreased.
The two parameters α and μ0 control the properties of the

disorder effect, and the quasiperiodic μðxÞ affect the super-
conductor in a complex way. With a fixed α, increasing the
amplitude 2ðμ0 − μaÞ of μðxÞ enhances the superconductiv-
ity, as shown in Fig. 3. When α ¼ 0 or 1 we reproduce the
result that the superconductivity of a striped holographic
superconductor will be enhanced [26–28].

However, with a fixed amplitude 2ðμ0 − μaÞ, the
disorder can always suppress the superconductivity when
by turning α from zero to a finite value, as shown in
Figs. 1–4.
The interplay between the disorder effect and the

periodic effect with fixed μ0 and μa will result in a
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FIG. 3 (color online). hOai as a function of both α and μ0 for a fixed μa ¼ 4.01 and μa ¼ 5. There are regions in which the con-
densation is zero when μa ¼ 4.01, which means that there is phase transition when increasing α when 7.1≼ μ0 < 8.02.
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FIG. 4 (color online). The Anderson localization phase transi-
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happens, in which we increase α step by step with the
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phase transition from the superconducting state to a non-
superconducting state in some regions of parameters as
shown in Fig. 1 and Fig. 3. The DC conductivity along
the y direction of the nonsuperconducting state is finite,
as shown by the inset in Fig. 1 (α ¼ 0.25), which means
that the nonsuperconducting state is a normal metal state
rather than an insulating state.

IV. DISCONTINUOUS PHASE TRANSITION FROM
SUPERCONDUCTING TO NORMAL STATE

With the results in the above section, we already see that
there is a phase transition when the superconductor is close
to Tc (μa ≈ μc ¼ 4.06) by increasing α from zero to a finite
value (< 0.5) for μa ¼ 4.02 and μa ¼ 4.01 as shown in
Figs. 1 and 3. Figure 4 shows the critical value of
αc < 0.5, at which a phase transition from the supercon-
ducting state to the normal state occurs when μa ¼ 4.02
and μa ¼ 4.01. We note that the value of αc for the case
of μ0 ¼ 8.02, μa ¼ 4.01, k1 ¼ 2, k2 ¼ 3=2 (≃0.2) is larger
than that for the case of μ0 ¼ 8.02, μa ¼ 4.01, k1 ¼ 2,
k2 ¼ 7=2, (≃0.15), which is a consequence of the interplay
between the disorder effect and the periodic effect as stud-
ied above. From the four insets in Fig. 4 (blue lines), we see
the order parameter goes discontinuous at αc, which indi-
cates that the superconducting to normal phase transition is
a discontinuous one. By computing many cases with other
values of μa systematically, we find that when μa > 4.03
there is no disorder-driven phase transition anymore
with k1 ¼ 2.
When the phase transition happens, the free energy of the

superconductor is also obtained by computing the on-shell
action according to the AdS/CFT dictionary. The results are
shown in Fig. 5. It is clear to see that the free energy also
goes discontinuously at αc, which means that this is a
zeroth-order phase transition. More details for the calcula-
tions of conductivity and free energy will be presented
elsewhere [29].

V. CONCLUSION

In this paper, we systematically studied the interplay of
disorder effect and periodic effect in two-dimensional
s-wave holographic superconductors. We reproduced the
results in condensed matter physics that the disorder will
suppress superconductivity and finally result in a discon-
tinuous superconducting-to-normal-state phase transition
when the gap is sufficiently small relative to the strength
of the disorder.

ACKNOWLEDGMENTS

We thank Zhe Yong Fan, Li Li, and D. Arean for many
valuable comments. We especially thank Antonio M.
García-García, who suggested we study the quasiperiodic
lattice effect. We also especially thank Hai Qing Zhang for
discussing the numerical method and the periodic cases.
H. B. Z. is supported by the National Natural Science
Foundation of China (under Grant No. 11205020) and
partly supported by a FCT, Grant No. PTDC/FIS/
111348/2009, and a Marie Curie International
Reintegration Grant, No. PIRG07-GA-2010-268172.

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).

[2] P. Anderson, J. Phys. Chem. Solids 11, 26 (1959).
[3] M. Ma and P. A. Lee, Phys. Rev. B 32, 5658 (1985).
[4] A. M. Goldman and N. Marković, Phys. Today 51, No. 11,

39 (1998).
[5] Y. Dubi, Y. Meir, Y. Avishai, Nature (London) 449, 876

(2007).
[6] E. Nakhmedov and R. Oppermann, Phys. Rev. B 81, 134511

(2010).
[7] A. M. Finkelstein, Physica (Amsterdam) 197B, 636

(1994).

[8] P. W. Anderson, K. A. Muttalib, and T. V. Ramakrishnan,
Phys. Rev. B 28, 117 (1983).

[9] A. Kapitulnik and G. Kotliar, Phys. Rev. Lett. 54, 473
(1985).

[10] M. Ma and Eduardo Fradkin, Phys. Rev. Lett. 56, 1416
(1986).

[11] S. A. Hartnoll and C. P. Herzog, Phys. Rev. D 77, 106009
(2008).

[12] M. Fujita, Y. Hikida, S. Ryu, and T. Takayanagi, J. High
Energy Phys. 12 (2008) 065.

[13] S. Ryu, T. Takayanagi, and T. Ugajin, J. High Energy Phys.
04 (2011) 115.

0.2 0.25 0.3 0.35
−32

−31

−30

−29

−28

−27

−26

−25

α

F

µ’=8.04, µ
a
=4.02, k

1
=2, k

2
=9/2

0.15 0.2 0.25
−32

−30

−28

−26

−24

−22

α

F

µ’=8.02, µ
a
=4.01, k

1
=2, k

2
=3/2

FIG. 5. The free energy of the superconductor when the phase
transition happens. (left) μ0 ¼ 8.04, μa ¼ 4.02, k1 ¼ 2, k2 ¼ 9=2.
(right) μ0 ¼ 8.02, μa ¼ 4.01, k1 ¼ 2, k2 ¼ 3=2.

HUA BI ZENG PHYSICAL REVIEW D 88, 126004 (2013)

126004-4

http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1016/0022-3697(59)90036-8
http://dx.doi.org/10.1103/PhysRevB.32.5658
http://dx.doi.org/10.1063/1.882069
http://dx.doi.org/10.1063/1.882069
http://dx.doi.org/10.1038/nature06180
http://dx.doi.org/10.1038/nature06180
http://dx.doi.org/10.1103/PhysRevB.81.134511
http://dx.doi.org/10.1103/PhysRevB.81.134511
http://dx.doi.org/10.1016/0921-4526(94)90267-4
http://dx.doi.org/10.1016/0921-4526(94)90267-4
http://dx.doi.org/10.1103/PhysRevB.28.117
http://dx.doi.org/10.1103/PhysRevLett.54.473
http://dx.doi.org/10.1103/PhysRevLett.54.473
http://dx.doi.org/10.1103/PhysRevLett.56.1416
http://dx.doi.org/10.1103/PhysRevLett.56.1416
http://dx.doi.org/10.1103/PhysRevD.77.106009
http://dx.doi.org/10.1103/PhysRevD.77.106009
http://dx.doi.org/10.1088/1126-6708/2008/12/065
http://dx.doi.org/10.1088/1126-6708/2008/12/065
http://dx.doi.org/10.1007/JHEP04(2011)115
http://dx.doi.org/10.1007/JHEP04(2011)115


[14] A. Adams and S. Yaida, arXiv:1102.2892.
[15] A. Adams and S. Yaida, arXiv:1201.6366.
[16] O. Saremi, arXiv:1206.1856.
[17] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); S.

S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett.
B 428, 105 (1998); E. Witten, Adv. Theor. Math. Phys. 2,
253 (1998).

[18] S. S. Gubser, Phys. Rev. D 78, 065034 (2008); S. A.
Hartnoll, C. P. Herzog, and G. T. Horowitz, Phys. Rev. Lett.
101, 031601 (2008).

[19] G. T. Horowitz, J. E. Santos, and B. Way, Phys. Rev. Lett.
106, 221601 (2011); M. Montull, A. Pomarol, and Pedro J.
Silva, Phys. Rev. Lett. 103, 091601 (2009); M. J. Bhaseen,
J. P. Gauntlett, B. D. Simons, J. Sonner, and T. Wiseman,
Phys. Rev. Lett. 110 015301 (2013).

[20] D. Arean, A Farahi, L. A. P. Zayas, I. S. Landea, and A.
Scardicchio, arXiv:1308.1920.

[21] X. Cai, L. J. Lang, S. Chen, and Y. Wang, Phys. Rev. Lett.
110, 176403 (2013).

[22] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M.
Zaccanti, G. Modugno, M. Modugno, and M. Inguscio,
Nature (London) 453, 895 (2008).

[23] M. Tezuka and A. M. Garcia-Garcia, Phys. Rev. A 82,
043613 (2010).

[24] L. N. Trefethen, Spectral M in MATLAB (Siam,
Philadelphia, 2000).

[25] R. Flauger, E. Pajer and S. Papanikolaou, Phys. Rev. D 83
064009 (2011).

[26] J. Erdmenger, X.-H. Ge and D.-W. Pang, J. High Energy
Phys. 11 (2013) 027.

[27] S. Ganguli, J. A. Hutasoit, G. Siopsis, Phys. Rev. D 86,
125005 (2012).

[28] G. T. Horowitz and J. E. Santos, arXiv:1302.6586.
[29] H. B. Zeng (to be published).

POSSIBLE ANDERSON LOCALIZATION IN A … PHYSICAL REVIEW D 88, 126004 (2013)

126004-5

http://dx.doi.org/arXiv:1102.2892
http://dx.doi.org/arXiv:1201.6366
http://dx.doi.org/arXiv:1206.1856
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1103/PhysRevD.78.065034
http://dx.doi.org/10.1103/PhysRevLett.101.031601
http://dx.doi.org/10.1103/PhysRevLett.101.031601
http://dx.doi.org/10.1103/PhysRevLett.106.221601
http://dx.doi.org/10.1103/PhysRevLett.106.221601
http://dx.doi.org/10.1103/PhysRevLett.103.091601
http://dx.doi.org/10.1103/PhysRevLett.110.015301
http://dx.doi.org/arXiv:1308.1920
http://dx.doi.org/10.1103/PhysRevLett.110.176403
http://dx.doi.org/10.1103/PhysRevLett.110.176403
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1103/PhysRevA.82.043613
http://dx.doi.org/10.1103/PhysRevA.82.043613
http://dx.doi.org/10.1103/PhysRevD.83.064009
http://dx.doi.org/10.1103/PhysRevD.83.064009
http://dx.doi.org/10.1007/JHEP11(2013)027
http://dx.doi.org/10.1007/JHEP11(2013)027
http://dx.doi.org/10.1103/PhysRevD.86.125005
http://dx.doi.org/10.1103/PhysRevD.86.125005
http://dx.doi.org/arXiv:1302.6586

