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We define an effective temperature and study its properties for a class of out-of-equilibrium steady

states in a heat bath. Our analysis is based on the anti-de Sitter spacetime/conformal field theory

(AdS/CFT) correspondence, and examples include systems driven by applied electric fields and branes

dragged in plasmas. We found that the effective temperature can be lower than that of the heat bath and

that the out-of-equilibrium noise can be smaller than that in equilibrium. We show that a generalization of

the fluctuation-dissipation relation holds for the effective temperature. In particular, we generalize the

Johnson-Nyquist relation for a large electric field.
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I. INTRODUCTION

Unlike equilibrium systems, which are under powerful
constraints of thermodynamics, only a few general prop-
erties are known for systems driven far out of equilibrium.
In this paper, we use the holographic principle to define an
effective temperature for a class of nonequilibrium steady
states and study its properties. We consider branes driven
by external energy sources and put them in a heat bath. The
heat bath is represented by a bulk geometry with an event
horizon. The Hawking temperature at the horizon is iden-
tified as the temperature T of the heat bath.

Before we turn on the external energy sources, tempera-
ture on the brane is the same as that of the bulk.
Holographically, this can be seen by the fact that the induced
metric on the brane has an event horizon with the same
Hawking temperature T.

We then pump energy into the brane by turning on an
external electric field or by dragging the brane in the heat
bath. Though this would drive the brane-bulk system out
of equilibrium, it can still be stationary if we allow the
excess energy on the brane to be released into the bulk.
In general, different degrees of freedom on the brane
observe different effective metrics. We find, however,
that all these metrics have an event horizon at the same
location with the same Hawking temperature T�. Since
the system is not in equilibrium, T� is in general different
from T in the heat bath.

The effective temperatureT� on out-of-equilibriumbranes
has been computed in some examples. A fundamental string
dragged in a heat bath of D3 branes has been investigated
extensively for applications in quark gluon plasma [1,2].
Branes with an applied electric field were studied in [3,4].
A study on Dp branes rotating in an internal sphere direc-
tion is found in [5]. See also a review [6] and references
therein.

However, questions have been raised on physical mean-
ing of T�. In this paper, we will address these questions

and provide a uniform view on the notion of the effective
temperature defined for these nonequilibrium branes.
For example, it was pointed out in [7] that, for the

dragged fundamental string, momentum fluctuations are
not isotropic, indicating deferent temperatures for different
degrees of freedom. We will show that, if we take into
account the nonlinear relation between the momentum and
the velocity in the relativistic setup, the energy distribution
is in fact isotropic and obeys the Maxwell-Boltzmann rule
at temperature T�.
For branes driven by applied electric fields, our results

generalize that of [3,4] in several ways. We consider a
larger class of brane configurations and we show that the
effective temperatures are the same for all degrees of
freedom on the brane in each case. We also propose a
generalization of Johnson-Nyquist relation in the far-
from-equilibrium regime.
Surprisingly, we find that T� < T in certain cases.

Namely, pumping energy into the probe brane turns its
temperature lower than that in the bulk.
We would like to note that, since our system is open and

driven by an external energy source, the second law of
thermodynamics does not necessarily apply and T� < T
does not contradict with known general properties of non-
equilibrium systems. In fact, there is a statistical model
where T� is less than T [8]. Our results show that this
phenomenon is robust and takes place in a large class of
examples.
While the effective temperature T� is the same for all

the degrees of freedom on the brane, their fluctuations and
dissipations can be different. In particular, we find that, in
certain cases, the noise for some degrees of freedom can be
smaller than that in equilibrium, namely the excess noise
generated by the driving force can be negative.
In the following, we define and compute the effective

temperature for systems driven by electric fields and for
branes dragged in plasmas. We then discuss the fluctuation-
dissipation relation and other properties of the temperature
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and the noise around the nonequilibrium steady states. We
compare our definition of the effective temperature with
those defined in the literature on nonequilibrium statistical
physics such as [9]. We also discuss to what extent our
definition applies to a more general class of nonequilibrium
systems.

II. ELECTRIC FIELD

Consider a quantum field theory in (pþ 1)-dimensions
at temperature T, which has a holographic gravity descrip-
tion with the metric,

ds2 ¼ gttdt
2 þ gxx

Xp
i¼1

ðdxiÞ2 þ grrdr
2 þ g��d�

2; (1)

where t is the time coordinate, xi are the spatial coordinates
for the (pþ 1)-dimensional theory, and d�2 is a metric on
some compact space, which reflects symmetry and other
properties of the theory. We assume that the bulk geometry
has a boundary at r ¼ 1 and that the metric components
depend only on r. Typically, gtt and gxx diverge and grr
vanishes at the boundary. The dilaton in the bulk (1) may
also depend on r. We use this bulk geometry as a heat bath
and assume that the metric has an event horizon with
temperature T.

We then introduce a (qþ 1)-dimensional defect in the
story, realized as a probe (qþ 1þ n)-brane, which extends
in (qþ 1) dimensions along the boundary and in the r
direction, and is wrapped on an n-dimensional subspace of
the compact space represented by d�2 in the target space
metric. We assume that the low energy effective theory is
described by the Dirac-Born-Infeld (DBI) action,

L ¼ e��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG

p
; (2)

where

Gab ¼ @aX
�@bX

�g�� þ Fab; ða; b ¼ 0; 1; . . . ; qþ 1Þ;
(3)

X� are the embedding coordinates (we ignore motion of
the brane in the compact directions), Fab is a Maxwell field
strength, and e�� is the dilaton factor times the volume of
the compact space.

In certain cases, Wess-Zumino type terms can be gen-
erated in the effective action on the brane. As shown in
[10,11], depending on the coefficients of such terms and
the strength of the electric field, they can cause instability
in the presence of a background electric field. We found
that, even though Wess-Zumino terms modify dispersion
relations of the gauge and scalar fields on the brane, when
they do not cause instabilities, they do not modify proper-
ties of the effective horizon on the worldvolume and in
particular the value of the effective temperature T�. We
plan to discuss these phenomena in a separate paper [12].

Before we proceed, let us set up some notations.
We call the symmetric and the antisymmetric parts of
Gab (the inverse of Gab) as Gab

ðSÞ and Gab
ðAÞ. We can then

write the equations of motion as

@aðGab
ðSÞ@bX

�g��LÞ ¼ 0; @aðGab
ðAÞLÞ ¼ 0: (4)

The inverses of Gab
ðSÞ and Gab

ðAÞ are denoted by GðSÞ
ab and GðAÞ

ab

(note that these are not symmetric and antisymmetric parts
of Gab).
We consider turning on a constant electric field

E ¼ �F01 in the 1 direction along the boundary r ¼ 1.
If we assume that only F01 and Fr1 are turned on, that they
are time independent, and that they depend only on r, the
Bianchi identity shows that F01 is in fact constant on the
brane. Thus, we can write,

A1 ¼ �Etþ hðrÞ: (5)

The first integral @L=@Fr1 is constant by the equations of
motion, and we denote the constant by J since it can be
interpreted as the current density generated by the electric
field E. The magnetic field Fr1 ¼ h0ðrÞ on the brane is then
expressed as

ðFr1Þ2 ¼ J2
grr
jgttj

E2 � jgttjgxx
J2 � e�2�jgttjgq�1

xx

: (6)

In the holographic models we consider in this paper,
jgttjgxx diverges at r ¼ 1 and vanishes at the horizon r ¼
r0. Thus, ðE2 � jgttjgxxÞ must vanish somewhere between
r0 and 1. Let us call the largest of zero points as r�. Since
ðFr1Þ2 must be nonnegative, the brane configuration be-

comes unphysical for r < r� unless (J2 � e�2�jgttjgq�1
xx )

also vanishes at r�. Since r� defined as the largest solution
of E2 ¼ jgttjgxxðr�Þ, it is a function of E and so is

J2 ¼ e�2�jgttjgq�1
xx ðr�Þ. The resulting relation between

the current density J and the electric field E determines
the nonlinear conductivity in this nonequilibrium setup
[13]. Using this method, negative differential conductivity
and associated nonequilibrium phase transitions have been
derived [14,15].
The point r� turns out to be the location of the horizon

with respect to an effective metric on the brane [3,16]. To
see this, we look at fluctuations of the embedding coordi-
nate: X� þ �X�. The linearized equations of motion for
�X� takes the form,

@a
h
��q=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detGðSÞ

p
Gab

ðSÞ@b�X
�
i
¼ 0; (7)

where �ðrÞ is some combination of metric components
and e�� that remains positive for the range of r we are
interested in. Thus, the effective metric on the brane expe-

rienced by fluctuations �X� is ~gab ¼ ��1GðSÞ
ab .

We can diagonalize the effective metric by introducing a

new time coordinate � defined by d� ¼ dtþ ~gtr
~gtt
dr as,
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ds2eff ¼�jgttjgxx�E2

�gxx
d�2þe�2�gq�1

xx jgttjgrr=�
e�2�jgttjgq�1

xx �J2
dr2þ��� :

(8)

In particular,

ds2 ¼ �aðr� r�Þd�2 þ b

r� r�
dr2 þ � � � ; (9)

near r ¼ r� for some a and b. This shows that there is
a horizon at r ¼ r� on the worldvolume. The Hawking
temperature is computed as

T� ¼ 1

4�

ffiffiffi
a

b

r
¼ 1

4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgttgxxÞ0ðe�2�gttg

q�1
xx Þ0

e�2�gqxxjgttjgrr

vuut
�����������r¼r�

; (10)

where 0 denotes the derivative with respect to r.
It turns out that the gauge field on the brane also

observes the same Hawking temperature. The linearized
equations for gauge field fluctuations �fab are

@bðhabð1Þ þ habð2ÞÞ ¼ 0; (11)

where

habð1Þ ¼ e��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG

p ½�Gac
ðSÞ�fcdG

db
ðSÞ�; (12)

habð2Þ ¼ e��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG

p �
1

2
Gcd

ðAÞ�fcdG
ab
ðAÞ �Gac

ðAÞ�fcdG
db
ðAÞ

�
:

(13)

We can show that habð2Þ vanishes and that the equation of

motion for �fab is equivalent to the linearized Maxwell

equation with the effective metric 	�1GðSÞ
ab , where 	ðrÞ is

some combination of metric components and e�� and is in
general different from � (this has also been pointed out in
[16]). Since the overall normalization of the metric does
not affect the Hawking temperature, fluctuations of the
gauge field experience the same temperature as that is
given in (10).

As an example, consider the heat bath to beN Dp branes
(with p < 7) at temperature T. Its holographic dual has the
metric [17],

ds2 ¼ r
7�p
2 ½�ð1� r7�p

0 =r7�pÞdt2 þ d~x2�

þ dr2

r
7�p
2 ð1� r7�p

0 =r7�pÞ
þ r

p�3
2 d�2; (14)

where d�2 is the metric on the unit S8�p, and the dilaton

e� ¼ e�0rðp�3Þð7�pÞ=4. The horizon is at r ¼ r0 and the

Hawking temperature T is given by c�1
0 r

5�p
2

0 , where

c0 ¼ 4�
7�p .

Consider a single Dðqþ 1þ nÞ brane as a probe in this
geometry. It is extended in (qþ 1) dimensions along the
boundary and stretches in the r direction. It is also wrapped

on an equatorial Sn subspace of the S8�p in such a way that
the induced metric of the probe brane in the static gauge
agrees with that of the background geometry. By applying
the procedure in the above, we find that the expectation
value of the current J in response to the constant electric
field is

J ¼ E½r7�p
0 þ E2�C�1

2 Vne
��0 ; (15)

where Vn is the volume of the unit Sn and

C ¼ 1

2

�
qþ 3� pþ p� 3

7� p
n

�
: (16)

The horizon r� for the worldvolume metric is given by

r� ¼ ½r7�p
0 þ E2� 1

7�p: (17)

Note that the area element of the horizon increases as
we turn on the electric field E. The effective Hawking
temperature (10) in this case is given by,

T� ¼ c�1
0

h
ðc0TÞ

14�2p
5�p þ CE2

i1
2

h
ðc0TÞ

14�2p
5�p þ E2

i 1
7�p

: (18)

As expected, when we turn off the electric field, the
worldvolume horizon r� approaches the bulk horizon r0
and the Hawking temperature T� reduces to the bulk
temperature T.
The case at p ¼ 5 is special since the Hawking tem-

perature T is independent of r0. In this case, ðc0TÞ
14�2p
5�p in

(18) should be replaced by r7�p
0 . When p < 5, on the other

hand, we can adjust the temperature T. It is interesting to
note that, even if we take the zero temperature limit T ! 0
in the bulk, the effective temperature T� on the brane does
not vanish,

T� ! c�1
0 C1=2E

5�p
7�p; ðT ! 0Þ; (19)

assuming that C is positive. We should note that the only
case with C< 0 that can be realized as a straightforward
intersecting brane configuration in string theory is a D6-D2
system, but it is not clear if we can useN D6 branes at finite
temperature as a heat bath since it has a negative specific
heat. Otherwise C is always positive and we can take a
smooth T ! 0 limit as in the above.
Let us examine this formula for T� for some examples.

When p ¼ 3, namely, when the heat bath is made of N D3

branes, we have r� ¼ ðr40 þ E2Þ1=4 and

T� ¼ ��1

h
ð�TÞ4 þ q

2E
2
i1
2

h
ð�TÞ4 þ E2

i1
4

: (20)

Note that, for q � 1, T� is an increasing function of E2.
Since we need at least one spatial dimension on the defect
to turn on the electric field, this covers all the cases relevant
for p ¼ 3. Thus, in this case, pumping energy into the
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probe brane raises its temperature from T toT�. In particular,
when q ¼ 2, we find T� ¼ ��1½ð�TÞ4 þ E2�14, reproducing
the result by [4].

Surprisingly, this is not always the case in higher dimen-
sions. More explicitly,

T� ¼ T þ 1

2

�
C� 2

7� p

�
E2

ðc0TÞ
14�2p
5�p

T þOðE4Þ; (21)

and T� is lower than T at the order of E2 if

C� 2

7� p
¼ 1

2

�
qþ 3� pþ ðp� 3Þn� 4

7� p

�
< 0: (22)

Note that r� > r0 does not imply T� > T.
For example, when n ¼ 0 and p ¼ 4, we have

T� ¼ 1

c0

h
ðc0TÞ6 þ q�1

2 E2
i1
2

h
ðc0TÞ6 þ E2

i1
3

(23)

with c0 ¼ 4�=3, and this is a decreasing function of E2

for q ¼ 1, 2. The case with q ¼ 1 can be realized as the
worldvolume theory of a single D2 brane probing D4
branes. In this case,

T� ¼ c20T
3

½ðc0TÞ6 þ E2�13 ; (24)

showing that it is a decreasing function of the electric field.
Thus, we can lower the temperature on the D2 brane in the
heat bath of D4 branes by turning on the electric field.

More generally, C is an increasing function of q for fixed
p and n. This means that T� tends to be lower when the
codimensions (p� q) of the defect is larger. Note that this
effect is of the order of E2 and is beyond the linear response
regime.

It is interesting to note that, although the effective tempera-
tureT� decreases in some of the cases discussed here, the area
of the effective horizon set by r� computed in (17) is always
greater than the area of the horizon in the bulk. If one could
define an entropy on the brane and if it is related to the area
of the horizon, the increase of the entropy under decreasing
temperaturewould imply negative specific heat. It is not clear,
however, if one can define an entropy in the far-out-of equi-
librium setup discussed here. More importantly, we have
analyzed linear perturbations to the brane configurations—
this is how we computed the effective temperature—and
found no indications of instability. In particular, frequencies
of linear perturbation modes are all real-valued.

III. DRAG FORCE

We can use a similar method to compute an effective
temperature on a probe brane dragged by an external force
in a heat bath. Consider a Dðqþ 1þ nÞ brane as a probe in
a heat bath ofDp branes. We assume that the probe brane is
wrapped on an equatorial Sn part of the S8�p and extended

in the r direction. This represents a q-dimensional object in
the (pþ 1)-dimensional theory on the Dp branes. Choose
a spatial coordinate X in (pþ 1) dimensions transverse to
the probe brane and apply the ansatz,

X ¼ vtþ xðrÞ; (25)

analogous to (5) in the previous case. We can interpret v
as the velocity of the probe brane. The equations of
motion for xðrÞ can be solved by using the first integral
@L=@x0 [18–20].
We can then compute the effective metric on the probe

brane experienced by fluctuations of the embedding coor-
dinates and find that it has a horizon r� at

r� ¼ r0

ð1� v2Þ 1
7�p

: (26)

As in the previous case, we find the area element of
the horizon increases as a function of the velocity v.
The Hawking temperature T� for the worldvolume metric is,

T� ¼ ð1� v2Þ 1
7�pð1þ Cv2Þ12T; (27)

where C is given at (16). Note that the expression for T�
differs from that given by [20] using a Lorentz boost
argument; the power of the Lorentz factor (1� v2) is
different and there is the Lorentz noninvariant factor

ð1þ Cv2Þ1=2. Since the brane configuration (25) shows
bending in the bulk in a way that has nontrivial dependence
on the velocity v, the relation between T and T� does not
necessarily follow from a Lorentz boost argument alone.
There are important similarities and differences from the

case driven by the applied electric field. If we assume the
velocity v is small and expand the effective temperature in
powers of v, we find

T� ¼ T þ 1

2

�
C� 2

7� p

�
v2T þOðv4Þ: (28)

Interestingly, the condition for T� < T at the order of v2 is
identical to that in the previous case at the order of E2.
On the other hand, the location of the worldvolume

horizon r� is proportional to that of the bulk horizon r0,
and the T� is proportional to T. This is in contrast to the
previous case when r� and T� remain finite even in the limit
of T ! 0 provided we turn on E.
When the probe is a fundamental string, we find that

T� ¼ ð1� v2Þ 1
7�p, namely the Lorentz noninvariant factor

ð1þ Cv2Þ12 is absent. In particular, T� ¼ ð1� v2Þ1=4T for
p ¼ 3, reproducing the result of [1,2]. Note that T� < T in
this case.

IV. FLUCTUATION-DISSIPATION RELATION

The emergence of the event horizon on the brane and
the fact that the Hawking temperature is the same for all
degrees of freedom on the brane suggest that the effective
temperature T� is a robust and universal feature of the class
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of nonequilibrium systems discussed here. In this section,
we show that the fluctuation-dissipation relation also gives
the same effective temperature and that fluctuations
around the steady states obey the Maxwell-Boltzmann
distribution at T�.

The fluctuation-dissipation relation is a property of an
equilibrium system at temperature T, and it can be stated in
terms of Green’s functions as

G
sym
ij ð!Þ ¼ � coth ð!=2TÞ ImGR

ijð!Þ; (29)

where Gsym
ij ð!Þ is the symmetrized Wightman function

defined as a Fourier transform
R
dte�i!t of hOiðtÞOjð0Þ þ

Ojð0ÞOiðtÞi=2 for a set of operatorsOi and we assume that

their expectation values hOii have been subtracted.GR
ijð!Þ,

on the other hand, is the retarded Green’s function defined
as a Fourier transform of �i�ðtÞh½�OiðtÞ; �Ojð0Þ�i.

In the limit ! ! 0, this relation reduces to,


ij ¼ 2T�ij; (30)

where 
ij ¼ G
sym
ij j!¼0 represents the noise, namely,

the strength of fluctuation, whereas �ij ¼ �lim !!0

ImGR
ijð!Þ=! represents the dissipation. Holographically,

the relation (29) arises from the Schwinger-Keldysh for-
malism in AdS/CFT [21], where the temperature T defined
by (30) is the Hawking temperature at the horizon. Note
that T in this case is independent of which operator one
uses to observe it.

The fluctuation-dissipation relation (29) holds for the
class of nonequilibrium systems studied in this paper,
where the temperature T is replaced by the effective tem-
perature T�, as

Gsym
ij ð!Þ ¼ � coth ð!=2T�Þ ImGR

ijð!Þ; (31)

as expected from the Schwinger-Keldysh formalism
applied to degrees of freedom on the branes [1,2]. The
effective temperature T� can be determined by the mea-
surements of noise and dissipation via


ij ¼ 2T��ij: (32)

Let us examine implications of (32) for the cases studied in
the previous sections.

A. Electric field

For the case with the applied electric field, we takeOi to
be the electric current density Ji. In the linear response
regime, �ij is identified with the conductivity �ij by the

Kubo formula. The fluctuation-dissipation relation (30)
then reproduces the Jonson-Nyquist noise, 
ij ¼ 2T�ij.

When nonlinear effects in the applied electric field E
are relevant, the differential conductivity �diff

ij ¼ @Ji=@E
j

is different from the standard conductivity defined by
Ji ¼ �ijE

j, and it is the former that is directly related to

the retarded Green’s function as

�lim
!!0

ImGR
ijð!Þ
!

¼ @Ji
@Ej ¼

�
�ij þ @�ik

@Ej E
k

�
: (33)

We have used our holographic models to check the relation
(33) explicitly by computing GR

ij with the ingoing-wave

boundary condition at the worldvolume horizon and com-
paring its imaginary part with the differential conductivity
directly obtained from (15).
The generalized fluctuation-dissipation relation (32)

then implies


TT ¼ 2T��TT; 
LL ¼ 2T�
�
�LL þ EL @�LL

@EL

�
; (34)

where L and T refer, respectively, to directions longitudinal
and transverse to the applied electric field. Though these
equations show that current fluctuations are not isotropic,
the effective temperature T� is isotropic by definition. The
anisotropy originates from the nonlinearity of the differen-
tial conductivity. The transverse (TT) part of (34) in the case
of p ¼ 3 and q ¼ 2 has previously been verified in [4].

B. Drag force

Here we will focus our attention to the case with p ¼ 3,
q ¼ 0 and n ¼ 0. Fluctuation of the force acting on the
dragged particle has been computed in [1,2,7], and the
relationship between T� and fluctuation-dissipation rela-
tion corresponding to (32) has been studied in [22].
In [7], it was noted that momentum fluctuations in the

transverse and longitudinal directions, denoted by pT and
pL, respectively, obey different distributions,

PðpTÞ ’ 1

2�m
T�
exp

�
� p2

T

2m
T�

�
;

PðpLÞ ’ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�m
3T�

p exp

�
� p2

L

2m
3T�

�
;

(35)

where 
 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
and m is the mass of the dragged

object. This raised a question on whether one can define an
effective temperature that applies to all degrees of freedom
on the brane.
We would like to make a point that the energy distribu-

tion, which is more directly related to temperature, is
isotropic. Suppose the momentum fluctuates around P as
P ! Pþ p and expand the kinetic energy as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðPþ pLÞ2 þ p2

T

q

¼ m
þ hp2
Ti

2m

þ hp2

Li
2m
3

þ � � � : (36)

The Lorentz factors 1=
 and 1=
3 that accompany p2
T and

p2
L in the above are exactly the same as those appear in

the momentum distribution (35). Thus, both the transverse
and the longitudinal momentum fluctuations obey the
Maxwell-Boltzmann distribution at temperature T�.
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Our definition of the effective temperature is related to
some of those discussed in the literature on nonequilibrium
statistical physics. In [9], for example, the effective tem-
perature is defined by (17) and (21), i.e., the fluctuation-
dissipation relation. These correspond to (31) and (32) of
this paper.

For our definition of T�, it has been essential that the
degrees of freedom on the brane is decoupled from those
in the bulk. In particular, we have ignored back-reactions to
the bulk degrees of freedom. Since the causal structures
on the brane and in the bulk are different—for example, the
horizons are located differently at r0 and r�—it is likely
that coupling the degrees of freedom on the brane and in
the bulk will modify the notion of the effective temperature
T� on the brane.

V. NEGATIVE EXCESS NOISE

Whereas the effective temperature T� is the same for all
the degrees of freedom on the brane, the fluctuation 
ij can

depend on which degree of freedom we observe. For the
current noises in (34),


ðEÞ ¼ 
ðE ¼ 0Þ
�
1þ 1

2
~C

E2

ðc0TÞ
14�2p
5�p

þOðE4Þ
�
; (37)

where

~C ¼ C� 2

7� p
þ �ðC� 1Þ; (38)

with � ¼ 3 for the longitudinal fluctuations and � ¼ 1 for

the transverse fluctuations. If ~C< 0, the current noise at
the order of E2 is smaller than that at E ¼ 0, namely, the

noise is reduced by driving the system by the electric field.
The reduction of noise may be counterintuitive, but it is
not forbidden and is known as negative excess noise [23].
Our models provide explicit examples of realization of this
curious phenomenon. This occurs if T� < T for p < 5, for
example. However, we find that T� < T is not a necessary
condition, e.g., it also happens when q ¼ 1 and p ¼ 3
where T� > T.
For the dragged branes studied in this paper, the excess

noise is negative to the order of v2 if C� 2
7�pþ

�ðCþ 1Þ< 0, where � ¼ 3 (� ¼ 1) for the longitudinal
(transverse) fluctuations. For p < 5, this occurs only for
the transverse mode in the case of ðp; q; nÞ ¼ ð4; 0; 1Þ,
corresponding to a D2 brane in a heat bath of D4 branes
(even in this case, the longitudinal mode has positive
excess noise). In all other cases, excess noises are positive
for p < 5 even when T� < T.

ACKNOWLEDGMENTS

We thank S. S. Gubser, C. P. Herzog, A. Karch, E.
Kiritsis, K. Kobayashi, H. Liu, S. Sasa, T. Takayanagi, D.
Teaney and Y. Utsumi for discussions and comments. The
work of H.O. is supported in part by U.S. DOE Grant
No. DE-FG03-92-ER40701, the Simons Foundation, JSPS
Grant-in-Aid for Scientific Research C-23540285, and
the WPI Initiative of MEXT of Japan. He also thanks the
hospitality of the Aspen Center for Physics and the
National Science Foundation, which supports the Center
under Grant No. PHY-1066293, and of the Simons Center
for Geometry and Physics. The work of S. N. was sup-
ported in part by the Grant-in-Aid for Scientific Research
on Innovative Areas No. 2104, and Grant-in-Aid for
Challenging Exploratory Research No. 23654132.

[1] S. S. Gubser, Nucl. Phys. B790, 175 (2008).
[2] J. Casalderrey-Solana and D. Teaney, J. High Energy

Phys. 04 (2007) 039.
[3] K.-Y. Kim, J. P. Shock, and J. Tarrio, J. High Energy Phys.

06 (2011) 017.
[4] J. Sonner and A.G. Green, Phys. Rev. Lett. 109, 091601

(2012).
[5] S. R. Das, T. Nishioka, and T. Takayanagi, J. High Energy

Phys. 07 (2010) 071.
[6] V. E. Hubeny and M. Rangamani, Adv. High Energy Phys.

2010, 297916 (2010).
[7] G. C. Giecold, E. Iancu, and A.H. Mueller, J. High Energy

Phys. 07 (2009) 033.
[8] K. Sasaki and S. Amari, J. Phys. Soc. Jpn. 74, 2226 (2005).
[9] L. F. Cugliandolo, J. Phys. A 44, 483001 (2011).
[10] S. Nakamura, H. Ooguri, and C.-S. Park, Phys. Rev. D 81,

044018 (2010).
[11] H. Ooguri and C.-S. Park, Phys. Rev. D 82, 126001 (2010).

[12] S. Nakamura and H. Ooguri (unpublished).
[13] A. Karch and A. O’Bannon, J. High Energy Phys. 09 (2007)

024.
[14] S. Nakamura, Phys. Rev. Lett. 109, 120602 (2012).
[15] S. Nakamura, Prog. Theor. Phys. 124, 1105 (2010).
[16] K.-Y. Kim and D.-W. Pang, J. High Energy Phys. 09 (2011)

051.
[17] N. Itzhaki, J.M. Maldacena, J. Sonnenschein, and S.

Yankielowicz, Phys. Rev. D 58, 046004 (1998).
[18] C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz, and L.G.

Yaffe, J. High Energy Phys. 07 (2006) 013.
[19] S. S. Gubser, Phys. Rev. D 74, 126005 (2006).
[20] J. F. Fuini, III. andA.Karch, Phys. Rev. D 85, 066006 (2012).
[21] C. P. Herzog and D.T. Son, J. High Energy Phys. 03 (2003)

046.
[22] U. Gursoy, E. Kiritsis, L. Mazzanti, and F. Nitti, J. High

Energy Phys. 12 (2010) 088.
[23] G. B. Lesovik and R. Loosen, Z. Phys. B 91, 531 (1993).

SHIN NAKAMURA AND HIROSI OOGURI PHYSICAL REVIEW D 88, 126003 (2013)

126003-6

http://dx.doi.org/10.1016/j.nuclphysb.2007.09.017
http://dx.doi.org/10.1088/1126-6708/2007/04/039
http://dx.doi.org/10.1088/1126-6708/2007/04/039
http://dx.doi.org/10.1007/JHEP06(2011)017
http://dx.doi.org/10.1007/JHEP06(2011)017
http://dx.doi.org/10.1103/PhysRevLett.109.091601
http://dx.doi.org/10.1103/PhysRevLett.109.091601
http://dx.doi.org/10.1007/JHEP07(2010)071
http://dx.doi.org/10.1007/JHEP07(2010)071
http://dx.doi.org/10.1155/2010/297916
http://dx.doi.org/10.1155/2010/297916
http://dx.doi.org/10.1088/1126-6708/2009/07/033
http://dx.doi.org/10.1088/1126-6708/2009/07/033
http://dx.doi.org/10.1143/JPSJ.74.2226
http://dx.doi.org/10.1088/1751-8113/44/48/483001
http://dx.doi.org/10.1103/PhysRevD.81.044018
http://dx.doi.org/10.1103/PhysRevD.81.044018
http://dx.doi.org/10.1103/PhysRevD.82.126001
http://dx.doi.org/10.1088/1126-6708/2007/09/024
http://dx.doi.org/10.1088/1126-6708/2007/09/024
http://dx.doi.org/10.1103/PhysRevLett.109.120602
http://dx.doi.org/10.1143/PTP.124.1105
http://dx.doi.org/10.1007/JHEP09(2011)051
http://dx.doi.org/10.1007/JHEP09(2011)051
http://dx.doi.org/10.1103/PhysRevD.58.046004
http://dx.doi.org/10.1088/1126-6708/2006/07/013
http://dx.doi.org/10.1103/PhysRevD.74.126005
http://dx.doi.org/10.1103/PhysRevD.85.066006
http://dx.doi.org/10.1088/1126-6708/2003/03/046
http://dx.doi.org/10.1088/1126-6708/2003/03/046
http://dx.doi.org/10.1007/JHEP12(2010)088
http://dx.doi.org/10.1007/JHEP12(2010)088
http://dx.doi.org/10.1007/BF01316834

