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The crucial property of particle colliders is their ability to convert (e.g. electrical) energy into the mass of
heavy particles. We have become used to the extremely low efficiency of this conversion and the severe
limitations on the mass scale of heavy particles that can be reached. In view of this situation, it appears
reasonable to ask whether a perfect conversion machine of this type (a perfect “collider”) exists even in
principle and whether there is a highest mass scale that can be reached by such a machine. It turns out that,
with a number of assumptions, such a machine is conceivable in a world with a strongly coupled, approx-
imately scale-invariant four-dimensional (4D) field theory with five-dimensional (5D) gravity dual. This
machine can be realized as a 5D tower built on the IR brane (in Randall-Sundrum model language). Trans-
porting mass to the tip of this tower is, under certain conditions, equivalent to producing heavy pointlike 4D
particles. Hence, this can be thought of as a perfect “collider.” In the simple, “pure Randall-Sundrum
setting” that we analyze, this machine can only reach a certain maximal energy scale, which falls as
the gravity-dual of the 4D quantum field theory (QFT) approaches the strong coupling domain. On these
grounds, one might expect that a no-go theorem (in the spirit of that of Carnot for the conversion of heat
into work) exists for generic weakly coupled QFTs.
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I. INTRODUCTION

The production of very heavy particles is one of the main
goals of modern experimental particle physics. The method
of choice is the acceleration of beams of charged particles
(i.e. the conversion of electrical into kinetic energy) and
their subsequent collision (i.e. the conversion of at least
a small fraction of that kinetic energy into the mass of
heavy particles). While in practice the longevity of these
particles has always been very limited, the production of
stable very heavy states (such as the famous WIMP pos-
sibly making up dark matter) is most certainly conceivable.
In this context, one naturally encounters the following

apparently very basic and general question: Does there
exist, at least in principle, a perfect machine for the con-
version of work into mass of heavy particles? To give
an extreme example, is it conceivable to take just
543 kWh ¼ 1.22 × 1019 Gev from the electrical grid and
covert them into one Planck mass particle?
It is, of course, well known that conventional colliders

with this energy reach are very hard to imagine.
Furthermore, even the production of e.g. 100 Higgs bosons
is energetically much more expensive than the equivalent
amount of electrical energy would suggest. But the question
remains whether this is just due to our insufficient ingenuity
or the limited technological progress made so far by man-
kind, or whether there exists some fundamental limitation.
Unfortunately, the present paper fails by a large margin

to answer this extremely interesting question. However, it

will at least outline a somewhat unusual (AdS/CFT-based
[1]) way to think about problems of this type. In this con-
text, a suggestion for a perfect energy conversion machine
can be made. It will turn out that the reach of this type of
machine is limited (at least in the simplest, pure-gravity
models to be specified below). This range becomes small
as the underlying four-dimensional (4D) quantum field
theory (QFT) becomes weakly coupled. One may interpret
this as a hint at the existence of a fundamental no-go theo-
rem for a prefect machine in 4D weakly coupled QFT
(which is what we are apparently stuck with in this part
of the multiverse).
The paper is organized as follows: Sec. II shows that if

our world were described by a Randall-Sundrum (RS)
model [2], a five-dimensional (5D) tower built on the IR
brane (and ideally reaching the UV brane) can be thought
of as a perfect (Planck scale) collider. This is almost
obvious since a simple 5D elevator, using electrical energy
with an energy conversion efficiency near unity, could
now be employed to “UV-shift” massive particles. Thus,
as a first step, a very simple “toy-tower” (a horizontal mir-
ror supported by radiation pressure) is considered. It turns
out that, at least if one ignores all 5D field VEVs except the
metric, only a limited height can be reached. Making use of
specific, nonmetric 5D VEVs (as suggested e.g. by stringy
settings), possibilities for avoiding this maximal height
restriction exist. It remains open whether this loophole
can actually be turned into a toy-model perfect collider
of arbitrary energy reach.
Section III discusses an actual tower (made from some
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“atoms”) and its maximal height. The result turns out to be
similar to that of the previous section (assuming again only
metric VEVs in 5D). Thus, both models suggest that only a
certain maximal energy can be reached by our ideal collider.
The maximal height of the tower (and hence the ‘collider’
energy) falls with growing 5D curvature. As mentioned
above, this conclusion may be avoided in certain supersym-
metric models with flat directions. Nevertheless, we believe
that our findings suggests that at least in large classes of
weakly coupled 4d QFTs (where the AdS dual is strongly
curved), no ‘perfect collider’ can be built even in principle.
The final section is devoted to a brief summary and dis-

cussion of open questions.
Previous ideas concerning ‘Planck scale colliders’ have

appeared e.g. in [3–5]. In particular, Ref. [3] deals with pos-
sible fundamental limitations due to 4-dimensional gravity.

II. COLLIDERS VS ELEVATORS IN THE
RANDALL-SUNDRUM MODEL

A. How towers in RS models can be used
to produce heavy particles

Our use of the AdS/CFT proposal will be limited to its
simple yet very concrete and intuitive implementation in
RS type models. To be very specific, we take the AdS
metric in the form

ds2 ¼ e2kydx2 þ dy2; (1)

where k sets the AdS curvature scale. Our discussion is
based on the action [2]

S ¼
Z

yUV

0

d4xdy
ffiffiffiffiffiffiffiffi−g5p �

1

2
M2

5R − L5d

�

þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffi−gIRp

LIR þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffi−gUV

p
LUV: (2)

Here the compact space is the interval y ∈ ½0; yUV �, with
gravity and some 5D field theory in the bulk and two
4D theories at the boundaries (coupled to the induced met-
rics gIR and gUV). Appropriate 5D and 4D cosmological
constants have been absorbed in the Lagrangians for brev-
ity. As in the celebrated proposal for the solution of the
hierarchy problem [2], we take “our” QFT to be IR brane
localized. Furthermore, and this is the crucial and nontrivial
step, we imagine that future technology will allow us to
penetrate the bulk and construct “5D robots” capable of
manipulating structures in 5D, at least near the IR brane
(cf. Fig. 1).
To be very clear, the point here is not that an RS model

will actually be discovered at the LHC. Neither dowe really
hope that we will learn to manipulate structures at length
scales of TeV−1 (which is equivalent to manipulating struc-
tures in the bulk). We are here considering a “model uni-
verse,” not too dissimilar from our own, where the question

of probing the Planck scale appears with an interesting
twist (as we will presently explain).
Before doing so, we recall some familiar facts about the

setting described above (so far without any robots) and its
AdS/CFT interpretation (see e.g. [6,7]): First, we dimension-
ally reduce to 4D andWeyl-rescale the 4Dmetric g4 to ensure
that g4 ¼ gIR. The resulting 4D effective theory of this com-
pactification includes 4D gravity (with a Planck scale set by
M2

4 ∼ kM3
5 expð2kyUVÞ) and a strongly coupled sector (the

KKmodesof5DgravityandL5d).Thissectorisapproximately
conformal in the energy range k ≪ E ≪ k expðkyUVÞ.
Furthermore, the 4D effective theory also includes the two
(by assumption weakly coupled) 4D field theories governed
by LIR and LUV . If these two Lagrangians, as they appear
in (2), are governed by mass parameters M1 and M2, then
the two corresponding sectors of the resulting 4D effective
theory will be governed by mass parameters M1 and
M2 expðkyUVÞ respectively. This is the due to the different
inducedmetricsat thetwoboundariesofoursliceofAdSspace.
For simplicity, we setM1 ¼ M2 ¼ M from now on.
From the 4D perspective, this setting looks rather

conventional: one may think of it as the “Standard
Model” (LIR with mass scale M ∼ TeV), some form of
technicolor, 4D gravity, and a weakly coupled sector with
very heavy particles (LUV with mass scale M expðkyUVÞ).
The point is that, if we can build a 5D tower (in the AdS
interpretation of this model, cf. Fig. 1), then this corre-
sponds to a perfect collider (in the sense of a machine
for producing very heavy pointlike particles) on the 4D
side. We will shortly estimate the maximal height our
5D tower can reach, but before doing so let us argue in
some detail that such a tower would be able to do the
job of a conventional particle collider: Indeed, let us assume
that L5d contains some fundamental field of mass m
(m ∼M for simplicity). Corresponding particles can hence
be produced by a conventional (i.e. IR-brane-bound) col-
lider. This 5D field may also couple to a set of UV-brane
fields, allowing e.g. its decay to two UV-brane particles of
mass ϵm and ð1 − ϵÞm. Thus, if a 5D tower reaching the
UV brane could be build, this would be equivalent to a per-
fect Planck scale collider: One would just have to create our

x

y

FIG. 1. A tower standing on the IR brane of the Randall-Sun-
drum model, built by a “5D robot,” which is able to manipulate
5D (i.e. sub-TeV−1-sized) structures.
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5D particles with a TeV-scale machine, transport them up
the tower using conventional mechanical energy (e.g. in an
elevator) and eventually let them decay to UV-brane par-
ticles of mass almost equal to m. From a 4D perspective,
this corresponds to producing heavy, pointlike particles
(since LUV is supposed to be a weakly coupled local
Lagrangian) of mass m expðkyUVÞ with energy conversion
efficiency ηcoll ∼ 1. (Here we ignore the (in)efficiency of
our original 4D collider taking us up to the TeV domain.)

B. Toy model of a suspended mirror

Now it is unfortunately clear that a tower of some par-
ticular desired height (e.g. reaching the UV brane) can not
be built in general. To understand the limitations, let us first
focus on an (at least calculationally) simpler device which
is sufficient for suspending an elevator: We add 5D photons
to our list of assumptions and let a mirror float above the IR
brane, supported by the pressure of photons bouncing back
and forth between brane and mirror (cf. Fig. 2). Obviously,
to construct the mirror and the elevator, we also have to
assume that some form of structured, stable matter exists
in 5D.1 Governed by our 4D experience, we take this matter
to consist of some small units (‘atoms’). To simplify our
analysis, we assume these “atoms” to have mass and
inverse size M.2 We are interested in the lightest possible
mirror, which will nevertheless have a thickness of at least a
few ‘atoms’. The (hyper)surface density of this object will
hence be ρs ∼M4. [Note that this mirror extends in three
spatial dimensions, and hence the corresponding surface
density has units of mass=ðlengthÞ3]

To determine the force required to support such a mirror,
consider first a particle with mass m that is stationary at
some height y. We assume that no nongravitational field
VEVs are present or are at least not relevant in the present
context. (This assumption will be removed in Sec. II. C.)
The relevant action is

Sy ¼ −m
Z
y¼const:

dτ ¼ −meky
Z

dt; (3)

where τ and t are the eigentime and the time at the IR brane,
respectively. It is apparent that the same particle, if station-
ary at height yþ δy, has an action enhanced by a factor
expðkδyÞ. Thus, “lifting” a particle a distance δy costs
an energy

δE ¼ mekðyþδyÞ −meky ≃mekykδy (4)

from the perspective of the IR brane. Here the factor eky

appears as a blueshift because we took the IR-brane point
of view. For a local observer at height y, lifting the same
particle by δy costs an energy δE≃mkδy. The force
required to support a particle m, and now we use the local
perspective, is hence km.
Our mirror is supported by the vertically directed (both

up and down) photon stream with energy momentum tensor

TMN ∼ diagðρ; p; p; p; pÞ ¼ diagðρ; 0; 0; 0; ρÞ;
where M;N ∈ f0; 1; 2; 3; 5g; (5)

which is here given in a coordinate system with Minkowski
metric in the vicinity of the mirror. To keep the mirror
stationary, we need

p ¼ F
A
¼ ρsAk

A
¼ ρsk ∼M4k; (6)

in self-explanatory notation. This is the pressure (and hence
energy density) at the position y of the mirror. Since each
photon travels vertically (at constant x⃗), the number of pho-
tons per unit brane surface (in the vicinity of the IR brane)
is enhanced by expð3kyÞ. Furthermore, due to the gravita-
tional redshift, each photon has an energy enhanced by
expðkyÞ when it is reflected by the IR brane. Thus, the
energy density of our beam near the brane is

ρIR ∼M4ke4ky: (7)

Assuming that the reflection of photons both at the IR
brane and at our mirror is perfect, we can imagine that this
configuration is stationary, without the need of continuous
energy input. Nevertheless, the mirror had to be raised to its
position y, which required the input of energy into the pho-
ton beam near the IR brane. Since we assume that such an
energy input can be realized maximally at a scale M, we

x

y

FIG. 2. Mirror supported by a “5D photon” beam above the IR
brane.

1This is nontrivial since all structures we manipulate every day
in 4D rely microscopically on renormalizable gauge theories,
which are not available in 5D. In particular, it is well known that
the Schrödinger atom is unstable if d > 4 (see e.g. [8]). Let us
nevertheless assume that some form of structured matter can exist
at d ¼ 5 (e.g. because a full QFT treatment cures the nonrelativ-
istic instability problem) and press ahead.

2Obviously, our familiar 4D atoms have a mass and size which
are parametrically different since the former is governed by the
mass of the nucleus while the latter depends on electron mass and
gauge coupling. In this language, our 5D model of matter corre-
sponds to taking mN ∼me and αe ∼ 1 in 4D.
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have the constraint ρIR < M5. Comparing this with (7), we
see that the maximal height ymax which can be achieved is
set by

ekymax ∼
�
M
k

�
1=4

: (8)

In fact, there is an additional constraint arising from the
danger of black hole formation (or, more generally, strong
deformation of the 5D metric) in the region of high beam
density. To see this, note that we actually have a layer of
thickness ∼1=k of an approximate energy density ρIR
directly above the IR brane. We now estimate how large
ρIR can become before black holes are formed in this
region. To do so, recall that the mass of a d-dimensional
black hole of radius R is (see e.g. [8,9])

MBH ∼Md−2
P;d R

d−3: (9)

This has to be compared to the relation between mass and
radius of the corresponding smooth energy distribution,

MBH ∼ Rd−1ρ: (10)

Eliminating MBH from (9) and (10) and specifying d ¼ 5,
we determine the critical radius for black hole formation,

Rc ∼

ffiffiffiffiffiffiffi
M3

5

ρ

s
; (11)

where M5 is the 5D Planck mass. Now we substitute
Rc ∼ 1=k and ρ≡ ρIR (cf. (7)), in (11)and solve for
expðkyÞ. This gives us another bound on the achievable
height y,

eky ∼
M3=4

5 k1=4

M
; (12)

supplementing (8).
One possible interpretation is that (8) remains our basic

formula for the maximal height but, due to (12), we in addi-
tion need to demand

M3
5 >

M5

k2
; (13)

i.e., 5D gravity has to be sufficiently weak. As outlined ear-
lier, we assume that our mirror has been lifted together with
an attached 5D elevator, such that we are now in possession
of a collider with “energy reach” ðM=kÞ1=4. In other words,
we can use e.g. photons at energy M to produce particles
with mass MðM=kÞ1=4, with 100% energy efficiency
(at least in principle). Obviously, we here do not include

the one-time energy investment required for the construc-
tion of this “collider.”
For example, the UV brane or “Planck brane” of [2]

could be located at the height ymax given by (8), in which
case we could “lift” energy to the Planck brane. Note that,
due to the constraint (13), the 4D Planck mass (M2

4 ∼M3
5=k

using the UV-brane-induced metric) remains higher than
M, such that we can never actually reach the 4D Planck
scale using this type of “perfect collider.”
It is obvious that our construction with a horizontal

mirror and a vertical photon beam is far from optimal. It
can be improved by making the floating mirror as small
(in brane-parallel direction) as possible, curving it appro-
priately, and supporting it by a tapering photon beam
arrangement. This clearly requires an appropriate mirror
array at the IR brane. We do not pursue this analysis here
but turn, in Sec. III, to the construction of an (also tapering)
“real” tower made from solid material.

C. Including bulk fields beyond the metric

A natural objection is that, in ‘proper’ string-theoretic
AdS/CFT [1], a D3-brane can, due to the Bogomol'nyi-
Prasad-Sommerfield (BPS) condition, be stationary at
any point in the radial direction of Ads5. Thus, in models
with such BPS objects, it appears to be easy to avoid the
height restrictions found in the last subsection.
For simplicity, we implement the key ingredients directly

in our 5D RS setting: Let us assume that the 5D action
contains a 5-form field strength F5 ¼ dC4 and 3-branes
charged under C4. Furthermore, let us supplement the
gravitational background of (1) by an F5 VEV proportional
to the volume form. For an appropriately tuned value of this
field strength (our RS-model analogue of the type IIB BPS
condition), such a brane can rest, in parallel to the IR brane,
at any value of y: the gravitional force is precisely compen-
sated by the force of the field strength permeating the bulk.
Before continuing, we note that, from the perspective of

“generic” strongly coupled 4D models with 5D gravity dual,
the above are rather special requirements: If no such, infi-
nitely extended, brane is present in a given 4D vacuum, it
cannot be created by any means (unlike a mirror, which
can be assembled from “atoms”). Second, if no 5-form
VEV is present or it is not appropriately tuned, it is impos-
sible for any potential experimentalist to create one. Equally,
the charge of the 3-brane cannot be adjusted, as the charge of
the electron cannot be adjusted in our 4D world.
In principle, one may consider theories in which 3-branes

are allowed to have boundaries (this clearly requires further
types of charges and gauge fields, etc., but let us assume this
can be engineered). Such a finite brane could then be created,
but it would not be BPS: it has a finite tension which will in
general lead to the shrinking of its area. A detailed technical
analysis of whether one could stabilize such a brane and
what the energetic cost of “lifting” this stabilized configura-
tion would be goes beyond the goals of this paper.
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Let us instead continue with the arguably more “natural”
case of an infinitely extended BPS 3-brane, assuming one
was present. Indeed, one might imagine ‘lifting’ such a
brane in the (necessarily finite) spatial region accessible
to an experimentalist (cf. Fig. 3). In 4D language, this
amounts to living in a vacuum with a modulus (the 3-brane
position in y direction) and shifting this modulus within a
finite spatial domain. It might in principle be interesting to
follow this route and see whether one can attach some
structure (presumably non-BPS) to this “partially lifted”
brane. We do not want to pursue this in the present paper
since we already have a clear understanding how this set-
ting avoids the proposed “no-go theorem” in 4D language:
one needs a modulus, which can then be displaced through
some experimental effort. Clearly, this allows one to
explore totally new physics. Whether it can lead to the
Planck scale and to a reversible process for transforming
macroscopic work to the mass of Planck scale particles
remains open at the moment.
Inspired by the above, one may however consider other

bulk fields with VEVs in analogy to the 5-form field
strength naturally suggested by type IIB string theory.
Insisting on 4D Poincare symmetry, the only options are
a 4-form or, equivalently, the Hodge-dual 1-form field
strength. The latter is just the gradient of a scalar, which
anyway has to be present in a complete model because
of Goldberger-Wise stabilization [10]. One is now allowed
particles (clearly simpler than a 3-brane) coupling to this
background scalar field. Thus, one may hope to compen-
sate the gravitational force on those particles through this
coupling.
Let us be slightly more specific by considering a 5D

fermion ψ ,

L−iψ̄γMDMψ−ψ̄ψfðϕÞ;
5 (14)

where f is some function of the Goldberger-Wise scalar ϕ.
In analogy to the discussion at the beginning of Sec. II. B,
one can convince oneself that the 4D energy of such a ψ
particle (at rest in xμ) is

Eψ ðyÞ ¼ m5ðyÞeky ¼ fðϕðyÞÞeky: (15)

Assuming that the scalar background ϕðyÞ is a monotonic
function, we can without loss of generality [through a

field redefinition ϕ → ϕ0ðϕÞÞ] work with the specific
background ϕðyÞ ¼ cy. If we furthermore take fðϕÞ ¼
expð−kϕ=cÞ, we obviously obtain EψðyÞ ¼ const. As a
result, ψ particles can be easily moved to the Planck brane,
in analogy to the BPS 3-brane discussed earlier. Equally
obviously, however, a machine doing this is not a perfect
collider since the particles do not become extremely mas-
sive (in 4D language) when moved to the UV.
Nevertheless, it is interesting to consider the 4D

analogue of the above situation: In 4D, the ψ particles
are composites characterized my some mass m4 and size
l4. Given the right choice of f, they possess a flat a direc-
tion (the analogue of the y-position of the elementary 5D
particle ψ ) on which l4 (but not m4) depends. As y
increases, l4 becomes tiny, making the particle pointlike
in 4D language. To ensure that this particle in addition
has a Planck-scale mass, m4 would need to be ∼M4 from
the start. In other words, we need a theory with very heavy,
extended objects (e.g. some type of soliton) which can be
‘manufactured’ using macroscopic work. These objects
would also need to possess a flat direction along which
their size changes. Clearly, this is rather exotic (even more
so than the rest of the paper) and we choose not to pursue
this line of thinking for now.

III. MAXIMAL-HEIGHT 5D TOWERS

We return to the simplest possible setting without any
nonmetric VEVs in 5D. An optimal tower will use the
strongest 5D material available, i.e., that with the largest
ratio p=ρ.3 We will henceforth assume that this ratio is
maximized for one particular substance, which we will
use to build our tower. Most naively, one would try to adapt
Weisskopf’s famous argument [11] for the maximal height
of mountains (expressed in terms of fundamental constants)
to our situation. While his argument is energetic (sinking of
the mountain vs. melting of the rock at the bottom of the
mountain), we make the following essentially equivalent
force-based estimate:
First, as awarmup, letky ≪ 1 such that expðkyÞ≃ 1þ ky.

A rectangular 5D mountain with (constant) cross section
A and height y has mass Ayρ and exerts a force Ayρk on its
base. The base can provide a force Ap. Hence, for a given
constant p=ρ the maximal height is

ymax ¼
1

k
·
p
ρ
: (16)

While self-consistentwith our linearization (sincep=ρ < 1),
this is clearly not interesting. The crucial energy reach ofx

y

FIG. 3. Infinitely extended 3-brane lifted in a finite spatial re-
gion. Note that the “photon beam” in the figure is only meant to
symbolize some mechanism for displacing the brane. It is unclear
whether such a fundamental 3-brane can play the role of an actual
mirror for some form of radiation.

3Presumably p=ρ ≪ 1 holds even for the strongest available
material, at least if this material is made from pointlike weakly
interacting particles, as in our 4D world. Note, however, that our
world is not weakly coupled throughout and that much stronger
materials, such as the neutron star crust, appear to exist [12].
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our “collider” is expðkymaxÞ, which can hence not become
large in our toy model with constant cross section.
An optimal tower will taper towards its tip, such that

each cross section is just large enough (assuming maximal
vertical pressure at each point of the cross section) to sup-
port the part of the tower above. This clearly can be cast in
the form of a differential equation for the cross section
AðyÞ, and we will do so shortly. The solution then deter-
mines the shape of the tower and, as we will see, its
maximal height.
Naively, one might expect to find a complete solution

of this simple and fundamental problem in engineering
textbooks or papers. However, in real-world towers, wind
pressure is the most important issue and (unlike our case)
the gravitational field can be treated either as linear
(expðkyÞ → gy) or, if one considers extremely high towers,
according to the 1=r2 force-law. The closest related ideas
and calculations in the literature appear to be related to
either the Tsiolkovsky tower or the space elevator [13]
suspended from a point in geostationary orbit (in the latter
case, the tapering is towards the bottom for obvious rea-
sons). In any case, we were not able to find a treatment
of a situation exactly equivalent to ours.
Fortunately, the corresponding equations are simple even

in our exotic case. Everything can be derived from an equa-
tion relating the vertical forces at heights y and yþ δy,

FðyÞ ¼ Fðyþ δyÞ · ð1þ kδyÞ þ kρAðyÞδy: (17)

Except for the factor ð1þ kδyÞ, this is self-evident: going
down the tower by a distance δy, the force grows by the
weight of an additional layer of material. The factor ð1þ
kδyÞ comes from the warping. As explained earlier, raising
amass from y to yþ δy costs an energymkδy expðkyÞ from
the perspective of y ¼ 0. This means that this mass exerts a
forcemk expðkyÞ at any support at y ¼ 0, while it obviously
only exerts a force mk at any support at its own height. In
otherwords, vertical forces are subject towarping in the very
same way as energies. Thus, the weight of all the tower
material above yþ δy exerts a force on the surface at height
ywhich is enhanced by a factor expðkδyÞ≃ ð1þ kδyÞ. This
is the content of the first term on the rhs of (17).
With FðyÞ ¼ pAðyÞ and p ¼ const (an optimal tower

will have maximal pressure at any layer), one then immedi-
ately derives a differential equation for A,

−A0ðyÞ ¼ AðyÞkð1þ ρ=pÞ; (18)

where ρ is constant by assumption. The solution is

AðyÞ ¼ A0e−ð1þρ=pÞky: (19)

Just to prevent any possible confusion: as should be clear
from the derivation, this function AðyÞ characterizes the y
dependence of the cross section of our tower as a locally
well-defined 5D physical quantity. For example, it could

be the cross section in 5D Planck units. It is very different
from the cross section as measured in the coordinates xμ

of (1).
In our analysis of the shape of the tower, we have

neglected any horizontal force components. This is only
justified as long as the tower is a “thin object,” i.e.,
AðyÞ does not change too rapidly with y. Quantitatively,
this will certainly hold if the angle between the tower sur-
face and the vertical axis is small. Most naively, one would
estimate this angle as (minus) the derivative of the tower
radius with respect to the height, −½A1=3ðyÞ�0. However,
due to warping, this derivative is nonzero even for a vertical
tower, i.e. for a tower the surface of which is made from
lines at x⃗ ¼ const In fact, the cross section of such a vertical
tower is given by AvðyÞ ¼ A0 expð3kyÞ. Thus, when esti-
mating the angle at the base of the tower and requiring it to
be parametrically small, we have to do so relative to vertical
tower,

−f½A1=3ðyÞ�0 − ½A1=3
v ðyÞ�0g ¼

�ð1þ ρ=pÞk
3

þ k

�
A0 ≪ 1:

(20)

This translates into an estimate of the maximal A0 allowed,

A1=3
0 ∼

3

ð4þ ρ=pÞk : (21)

At its tip, our tower can certainly not become thinner
than 1=M. Thus, substituting A1=3

0 from (21) and AðyÞ1=3 ∼
1=M in (19), we eventually find that the maximal height
ymax is determined by

ekymax ∼
�

3M
ð4þ ρ=pÞk

� 3
1þρ=p

: (22)

Note that this is rather similar to our “floating mirror” result
of (8). Since we did not keep track ofOð1Þ factors, the pre-
factor 3=ð4þ ρ=pÞ accompanying the ratio M=k is most
probably irrelevant. The only difference is then in the expo-
nent. For an isotropic 5D radiation gas, which is presum-
ably close to the stiffest possible matter, we have p ¼ ρ=4
and hence an exponent 3=5. This is better than the 1=4 of
(8), although we have to remember that we did not try to
optimize the shape of the beam in Sec. II. Thus, the com-
petition between the two “perfect collider technologies” of
Secs. II and II cannot be decided at this level of precision.
It is interesting to note that the approximate agreement

arises in spite of the two configurations being distinctly dif-
ferent: the tower we are presently constructing becomes
wider towards its base. By contrast, the region of the IR
brane from which the photon beam of Sec. II is reflected
is much smaller than the floating mirror.
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Finally, we expect a bound on M5 arising from the
danger of black hole formation at the base of the tower.
It is easy to obtain by requiring that the critical radius
of (11) is smaller than the width of the tower at its base,
given by (21). One finds

M3
5 >

9ρ

ð4þ ρ=pÞ2k2 ; (23)

which, for the natural value ρ ∼M5, once again becomes
extremely similar to the analogous bound of (13).
To sum up, we have now seen in a second, independent

way that a perfect collider with energy reach ðM=kÞα (with
α ∼Oð1Þ) can be built in principle. Since we are using a
weak-coupling analysis on the gravity side, the correspond-
ing 4D theory has to be strongly coupled. This can be seen
most explicitly in “proper” AdS/CFT [1], i.e. in the duality
between 4D N ¼ 4 super Yang Mills theory with gauge
group SUðNÞ and type IIB string theory on AdS5 × S5.
In this setting, one has

λ ∼ g2YMN ∼
�
Ms

k

�
4

; (24)

where λ is the ‘t Hooft coupling, i.e. the actual control
parameter of perturbation theory on the 4D side, and
Ms ∼ 1=ls is the string scale. We see that λ becomes large
as k → 0. This is believed to be a more general feature of
AdS/CFT: small k corresponds to large 4D coupling. Small
k also corresponds to a large energy reach ðM=kÞα of our
“perfect collider,” which indeed scales very similarly to the
coupling λ of (24). In other words, this type of perfect col-
lider exists precisely because the 4D theory is strongly
coupled. Clearly, this does not exclude the existence of
perfect colliders of some totally different type in the weak
coupling domain, but it is a hint to the contrary.

IV. CONCLUSIONS

We have presented some, admittedly rather speculative,
ideas concerning the (im)pos-sibility of a perfect collider.
Our main technical point was very simple: for theories hav-
ing a 5D gravity dual, reaching for UV energy scales cor-
responds to building 5D towers based on the IR brane and
pointing to the UV brane. In many theories, the height of
such towers appears to be limited at a rather fundamental
level (quite analogously to the limited height of mountains,
given the limited strength of granite). We estimated this
maximal height and conjectured (given the parametric
behavior of our result) that at least in generic 4D weakly
coupled theories, it is completely impossible to build a per-
fect machine (i.e. a machine with energetic efficiency near
unity) which transforms energy, starting from the “structure
scale” of our theory, towards the UV.
Clearly, in our holographic approach, accelerator

physicists are “tower builders,” struggling with the 5D

gravitational potential.4 The 4D weak-coupling analogue
of their problem is apparent: the tendency of massive
objects to fall translates into the tendency of energy to
transfer from the UV to the IR in conventional QFT.
In specific models, perfect or near-perfect “colliders”

might nevertheless exist. Two classes of potential examples
are discussed in Sec. II C: these are theories with completely
flat directions (moduli) in field space and theories with soli-
tonic objects possessing such flat directions. The naive intu-
ition about the overwhelming force of 5D gravity fails in
such settings and it is conceivable that a perfect machine
transforming energy from IR to UV can be built. Another
class of examples can be constructed as follows: if scale
invariance in the energy regime between the TeV and
Planck scale is strongly broken by many intermediate branes
[15],5 reaching the Planck scale is at least much easier (e.g.
by a cascade of smaller towers). The weak-coupling dual of
this class of examples is obvious: assume that many stable
charged particle species with masses spread throughout this
energy range exist. One can then imagine a cascade of con-
ventional storage-ring colliders, each filled with one type of
particles and producing the next-heavier species, working
their way up to the Planck scale.
Thus, we cannot expect a fundamental no-go theorem

that is completely general. The assumptions of such a pos-
sible theorem have to include details of the relevant model
(i.e. of the concrete 4D QFT). Obviously, counterexamples
which are as close to the real world as possible would be
much more exciting than the proof of a no-go theorem.
Many interestingquestionsare still open.Forexample, it has

to be clarified whether a tower is really the only or at least the
best way to transfer energy reversibly (with efficiency near
unity) from the IR brane to an arbitrarily high position above
it.Furthermore, itwouldbecrucial tounderstandpossiblelimits
directly in weakly coupled 4D theories. Indeed, while there
appear to be no fundamental obstructions6 to building an
efficient linear accelerator reaching some very high energy
scale MUV , its efficiency in transforming energy into mass
of heavy particles might be limited in principle. This is sug-
gested by the scaling of cross sections as 1=M2

UV and possible
fundamental limitations on the quality of beam focusing.
We have to leave these questions to further research.
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4If an entropic understandingofgravity [14] couldbe established,
one might thus hope that the efficiency limitations discussed in the
presentpaperarerelatedto theCarnotefficiencylimit.Unfortunately,
we are unable to make this more precise at present.

5To be stabilized by the Goldberger-Wise mechanism [10] at
certain 5D positions yi.

6Here we ignore 4D gravity, i.e. we work in the limit
MP;4 → ∞. Possible fundamental obstructions involving gravita-
tional effects are discussed in [3].
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