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By incorporating renormalization procedure into bold diagrammatic Monte Carlo, we propose a method
for studying quantum field theories in the strong coupling regime. Bold diagrammatic Monte Carlo
essentially samples Feynman diagrams using local Metropolis-type updates. Applying the method to
three-dimensional φ4 theory, we analyze the strong coupling limit of the theory and confirm the existence
of a nontrivial IR fixed point in agreement with prior studies. Interestingly, we find that working with bold
correlation functions as building blocks of the Monte Carlo procedure renders the scheme convergent, and
no further resummation method is needed.
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Lattice field theory is a well-established approach for
nonperturbative studies in quantum field theories. This is
based on the Euclidean path integral formulation of quan-
tum field theory and a stochastic sampling of the partition
function. This method has played a central role in develop-
ing our understanding of strongly coupled systems includ-
ing quantum chromodynamics in particle physics and
quantum many-body systems in condensed matter physics.
However, the severe sign problem is a main obstacle in
applying lattice methods to systems at finite chemical
potential or calculating transport coefficients in the thermo-
dynamic limit.
A different method based on diagrammatic formulation

of field theory has been developed in the last few years,
called diagrammatic Monte Carlo [1–3]. The basic idea
is to perform a Monte Carlo process in the space of
Feynman diagrams using local Metropolis-type updates.
Unlike lattice field theory, the diagrammatic Monte
Carlo samples physical quantities in the thermodynamic
limit, which washes out systematic errors produced by
finite size effects. However, because of the divergence of
the perturbation series, one usually needs a resummation
technique to make the scheme convergent. This method
has been applied successfully to several systems including
the polaron problem [2] and the Fermi–Hubbard model [4].
In particular, using the Borel resummation technique, the
triviality of the φ4 theory in four and five dimensions as
well as the instability of the trivial fixed point in three
dimensions were established in Ref. [5].
One way of improving the convergence of the diagram-

matic Monte Carlo scheme is to expand physical quantities
in terms of full screened (bold) correlation functions,
instead of free correlators, as is usually done in field theory.
This method, known as bold diagrammatic Monte Carlo
(BDMC), is shown to have a broader range of convergence

[6]. Interestingly, using BDMC, the sign problem becomes
an advantage for the convergence of the scheme. A recent
BDMC implementation for a strongly interacting fermionic
system, namely, unitary Fermi gas, shows an excellent
agreement with experimental results on trapped ultracold
atoms [7]. In particular, the equation of state of the system
at finite chemical potential has been studied, which is hard
to achieve by lattice methods due to the sign problem.
In this paper, by incorporating the renormalization pro-

cedure into the BDMC scheme, we propose a method for
studying relativistic quantum field theories in the strong
coupling regime. The method is generic and applicable to
any renormalizable quantum field theory. We apply the
method toφ4 theory in three dimensions with the bare action

Sb ¼
Z

d3x

�
1

2
φbðxÞð−∂2 þm2

0ÞφbðxÞ þ
g0
4!

φ4
bðxÞ

�
;

where m0 and g0 are the bare mass and coupling, respec-
tively. It is more economical to use the notation of
Ref. [12] and rewrite the action as

Sb ¼
1

2

Z
12

G−1
12 φ1φ2 þ

1

4!

Z
1234

V1234φ1φ2φ3φ4;

where the spatial arguments are indicated by number indi-
ces. The kernel G−1 and potential V are given by

G−1
12 ≡G−1ðx1; x2Þ ¼ ð−∂2

x1 þm2Þδðx1 − x2Þ;
V1234 ≡ δðx1 − x2Þδðx1 − x3Þδðx1 − x4Þ:

This model has a nontrivial IR fixed point, first shown
by Wilson and Fisher [8], using the ϵ expansion and
renormalization group techniques.According to the renorm-
alization group (RG) arguments [9–11], renormalized cou-
pling, gr, tends to a fixed value, g�r , when bare coupling
becomes very large, g0 → ∞. Therefore, any nonperturba-
tive numerical approach to quantum field theory (QFT)
should be able to demonstrate this feature of the theory.*davody@ipm.ir
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We show that the renormalized BDMC technique allows us
to go beyond perturbative regime and find the fixed point.
Interestingly, we find that working with bold correlation
functions as building blocks of theMonte Carlo scheme ren-
ders the scheme convergent, and no further resummation
method is needed.
Our starting point is a set of Schwinger–Dyson equations

for bare self-energy, Σb, and bare one-particle irreducible
four-point functions, Γð4Þ

b , derived in Ref. [12]. The basic
idea is to consider a Feynman diagram as a functional of its
elements, like propagator lines. Differentiation with respect
to the free propagator, Gb, leads to a set of Schwinger–
Dyson equations for correlation functions. Using this
method, one finds [12]

Σb;12 ¼ − 1

2

Z
34

Vb;1234Gb;34

þ 1

6

Z
345678

Vb;1345Gb;36Gb;47Gb;58Γb;6782 (1)

Γb;1234 ¼ Vb;1234 þ ~Ab;1234 þ ~Bb;1234 þ Cb;1234; (2)

in which a tilde means a partial permutation on indices

~Ab;1234 ¼ Ab;1234 þAb;1324 þAb;1423;

~Bb;1234 ¼ Bb;1234 þ Bb;1324 þ Bb;1423;

with

Ab;1234 ¼ − 1

2
Vb;1256Gb;57Gb;68Γb;7834;

Bb;1234 ¼ þ 1

6
Vb;5167Gb;69Gb;70Γb;9021̄Gb;1̄ 2̄Γb;2̄348Gb;85;

Cb;1234 ¼ −
1

3
Vb;1567Gb;58Gb;69Gb;70

δΓb;8234

δGb;90
:

From now on, integration over repeated indices is under-
stood. The advantage of this set of equations is that all
terms on the right-hand sides of Eqs. (1) and (2) are
one-particle irreducible, and therefore no irrelevant dia-
gram will be produced during the Monte Carlo simulation.
Also, all terms are expressed in terms of bold (exact) cor-
relation functions except the derivative term, Cb, in Eq. (2).
To increase the efficiency of the method, we rewrite this
term using the functional chain rule and the identity

Gc
1234 ¼ −2 δG12

δG−1
34

− G13G24 − G14G23; (3)

where Gc
1234 is the connected four-point function. We end

up with the following bold representation of the derivative
term

Cb;1234 ¼ Db;1234 þ D̄b;1234; (4)

with

Db;1234 ¼ − 1

3
Vb;1567Gb;58Gb;69Gb;70

δΓb;8234

δG90

;

D̄b;1234 ¼ þ 1

6
Vb;1567Gb;58Gb;61̄Gb;72̄Gb;93̄

:Gb;04̄Γb;1̄ 2̄ 3̄ 4̄
δΓb;8234

δG90

:

A diagrammatic representation of Eqs. (1) and (2) is
illustrated in Fig. 1.
By differentiating the one-particle irreducible (1PI)

vertex function, Eq. (2), with respect to the full propagator,
G, we find series expansions in terms of bold correlation
functions for the self-energy and vertex function, in a recur-
sive way. In particular, for the first derivative, we have

δΓb;1234

δGb;αβ
¼ − 1

2
Vb;12α6Gb;68Γb;8β34 þ α↔β þ � � � ;

where dots stand for higher-order terms (higher order in
terms of the number of bold propagators). We find that
approximating the derivative term by the first term is suf-
ficient for finding the fixed point.To study the behavior of
the renormalized coupling constant, we translate the

FIG. 1 (color online). Bold diagrammatic expansions for the
self-energy and one-particle irreducible vertex function in φ4

theory. All diagrams on the right-hand sides are individually
one-particle irreducible and expressed in terms of exact
propagators.
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Schwinger–Dyson equations into equations for renormal-
ized correlation functions and impose renormalization
conditions

Γð2Þ
r ðp2 ¼ 0Þ ¼ m2 (5)

∂
∂p2

Γð2Þ
r ðp2Þjp2¼0 ¼ 1 (6)

Γð4Þ
r ð0; 0; 0; 0Þ ¼ m4−dgr: (7)

The renormalized proper two-point function, which satis-
fies Eqs. (5) and (6), can be written as

Γð2Þ
r ðp2Þ≡ G−1

r ðp2Þ ¼ Zðp2 þ Yðp2ÞÞ þm2; (8)

where Yðp2Þ ¼ Σbðp2 ¼ 0Þ − Σbðp2Þ and the field
renormalization constant is given by

Z ¼ 1

1þ ∂Yðp2Þ
∂p2

����
p2¼0

: (9)

Using Eq. (1), one may rewrite Yðp2Þ in terms of renormal-
ized quantities as

Yðp2Þ ¼ g0Z
6

Z
d3k
ð2πÞ3

d3q
ð2πÞ3GrðkÞGrðqÞ

× ½GrðQÞΓð4Þ
r ð0; k⃗; q⃗; Q⃗Þ−GrðQÞΓð4Þ

r ðp⃗; k⃗; q⃗; Q⃗Þ�;
(10)

where in each term the momentum Q⃗ is determined by the
conservation of momenta that appear in the vertex function
argument. The φ4 theory in three dimensions is super-
renormalizable and has only three superficially divergent
diagrams, all eliminated by the mass counterterm. In
addition Yðp2Þ is finite in any order of perturbation.
Furthermore, all vertex diagrams are superficially finite,
and we find that it is useful to work with the bare form
of the Schwinger–Dyson equation (2) in this case; however,
we have to replace bare two-point functions with the renor-
malized ones.
Our strategy for computing the renormalized coupling

constant corresponding to a given bare coupling is to solve
coupled Schwinger–Dyson equations (2) and (10) by
means of general BDMC rules, starting with the tree-level
approximation for correlation functions. After reaching
convergence, the renormalized coupling constant can be
read off from Eq. (7) by recalling that Γð4Þ

r ¼ Z2Γð4Þ
b .

To increase the efficiency of the algorithm, inspired by
the idea of the worm algorithm [13] and following
Ref. [14], instead of sampling the YðpÞ and Γð4Þ

b directly,

we introduce two auxiliary normalization constant terms
and sample the quantities

I2 ¼ α2 þ
Z

Yðp2ÞΩðpÞ2dp (11)

I4 ¼ α4 þ
Z

Γð4Þ
b ðp1; p2; p3; χ12; χ13; χ23ÞdX; (12)

with dX ¼ dp1dp2dp3dχ12dχ13dχ23, where χij is the
cosine of the angle between p⃗i and p⃗j and ΩðpÞ is the nor-
malized probability density that we use to generate new
momenta in Monte Carlo updates. We skip the details of
the Monte Carlo procedure and report the results here.
Figure 2 depicts the renormalized coupling constant as a

function of the bare coupling. As is evident from this plot,
gr tends to an asymptotic value in accordance with the
renormalization group prediction. Also, the value of the
fixed point, ~g�r ¼ 3

16π g
�
r ¼ 1.40� 0.05, agrees, within error,

with the high-temperature series expansion and resummed
ϵ expansion [10,11]. It is worth noticing that Fig. 2 provides
a nonperturbative calculation of φ4 theory based on sum-
ming up Feynman diagrams. This plot interpolates between
weak and strong coupling regimes, and indeed it is not pos-
sible to produce such a result by using just perturabtive
methods or RG techniques.
It is also interesting to calculate critical exponents by

using the BDMC method. Since critical exponents are
related to the scaling behavior of composite operators,
we construct a new set of Schwinger–Dyson equations
for diagrammatic expansion of composite operators in

g0
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FIG. 2 (color online). Result of bold diagrammatic Monte
carlo simulation for dimensionless renormalized coupling con-
stant, gr, as a function of bare coupling. The asymptotic behavior
of renormalized coupling is in agreement with the existence
of an IR fixed point.
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terms of bold correlators. For example, the critical exponent
ν, which controls the growth of correlation length near the
phase transition, is related to the IR behavior of the
composite operator with one φ2 insertion, Γð1;2Þ. It is
straightforward to derive coupled equations for Γð1;2Þ and
Γð1;4Þ from Eqs. (1) and (2) by using the mass derivative
trick for generating correlation functions with φ2 insertions

Γð1;2Þ
b ð0; pÞ ¼ 1 − ∂

∂m2
ΣbðpÞ

Γð1;4Þ
b ð0; pÞ ¼ ∂

∂m2
Γð4Þ
b ðpÞ:

Turning on BDMCmachinery, it is straightforward to solve
this new set of equations in a similar way as discussed for
Eqs. (1) and (2). We postpone the numerical implementa-
tion to future works.
In summary, we described a nonperturbative simulation

of a relativistic QFT, φ4 theory in three dimensions, based
on sampling bold Feynman diagrams. We used a set of
coupled Schwinger–Dyson equations to expand physical
quantities in terms of exact correlation functions. The sys-
tematic method of deriving such bold expansions in quan-
tum field theories was proposed in Ref. [15] and used to
construct connected Feynman diagrams and to calculate
their corresponding weights in φ4 theory [12] and quantum
electrodynamics [16]. It is based on this fact that a complete
knowledge of vacuum energy implies the knowledge of all
scattering amplitudes; “vacuum is the world” [17].
In addition, in renormalizable QFTs, it is always possible

to formulate such Schwinger–Dyson equations in terms of
renormalized correlation functions and finite integrals.

Combining with the BDMC technique to sample unknown
functions in terms of them, this offers a universal scheme
for nonperturbative calculations in QFTs.
Applying this approach to non-Abelian gauge theories is

under progress, however, one may need more complicated
resummation methods to recover the correct physical val-
ues from truncated bold expansions. In the case of φ4

theory, interestingly, we observed that without using any
resummation technique truncating the series at lowest order
leads to convergent results.
One way to reduce systematic errors produced by the

truncation of bold series is introducing a complete basis
of functions and expanding correlation functions in terms
of them, G12 ¼

P
n;mcn;mψn;1ψm;2. By considering Γð4Þ as

a function of cn;m coefficients, the functional derivative
term takes the following form:

δΓð4Þ
1234

δG56

¼
X
n;m

∂Γ8234

∂cn;m ψn;5ψm;6: (13)

Performing aMonte Carlo process in the space of cn;m coef-
ficients to sample the derivative term increases the accuracy
of the algorithm drastically.
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