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Based on the truncated Dyson–Schwinger equation, we first study the influence of the vertex correction
on the staggered spin susceptibility χs. The numerical results show that the vertex correction plays an
important role in the study of the staggered spin susceptibility. We then generalize the above work to
the case of finite temperature. It is found for the first time that, as the temperature increases, the chiral
condensate vanishes at the phase transition point where χs reveals an obvious skip, and therefore as a
physical observable, the staggered spin susceptibility could be regarded as the order parameter of chiral
phase transition in QED3.
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I. INTRODUCTION

Quantum electrodynamics in (2þ 1) dimensions
(QED3) is a well-studied field-theoretical model. This
Abelian system exhibits several interesting features, similar
to QCD, for instance, dynamical chiral symmetry breaking
(DCSB) [1–15] and confinement [16–18]. Moreover, it
is super-renormalizable so that it is not plagued with
ultraviolet divergences. Thus, QED3 is an ideal model to
study nonperturbative phenomena. Although some discus-
sion concerning the origins of confinement and DCSB in
QED3 is needed, the mechanism of confinement and DCSB
of QED3 is quite different from that in QCD. Nevertheless,
it is generally believed that QED3 provides a very useful
playground within which to identify unambiguous signals
of these phenomena. The fact that the theory exists in three
dimensions obscures nothing of the essence of these
fundamentally important questions.
In addition, QED3 can be applied in condensed matter

physics to unpuzzle some realistic microscopic mechanisms.
Especially, since the discovery of the high-Tc superconduc-
tivity, QED3 has attracted more attention. It is generally
believed that QED3 with N flavors can be regarded as a
possible effective theory for high-Tc superconductivity
in underdoped cuprates [19–21] and graphene [22–24].
Because of these features, QED3 has been extensively
studied in recent years.
A breakthrough in the research of chiral phase transition

(CPT) in QED3 was achieved in a paper of Appelquist et al.
[3], who found that CPT happens when the number of
flavors of a massless fermion reaches a critical number
Nc ≈ 3.24. They arrived at this conclusion by analytically
and numerically solving the Dyson–Schwinger equation
(DSE) for the fermion self-energy. Later, some groups

adopted improved schemes for the DSE and obtained
qualitatively similar results [25–27]. It is generally believed
that as the temperature increases the original chiral sym-
metry broken phase undergoes CPT into a chiral symmetric
phase at a critical temperature Tc. Recently, based on the
truncated DSE for the fermion propagator in QED3, it was
found that the fermion number susceptibility shows a
continuous behavior at high temperature, which exhibits
a typical characteristic of the second-order phase transition
around Tc [28]. Moreover, the entropy shows a continuous
behavior, while the specific heat jumps at the critical tem-
perature, which indicates that the above susceptibilities are
suitable for investigating the characteristic of chiral phase
transition at finite temperature [29].
Because of its crucial role in the pseudogap phase in

effective QED3 theory of the insulating parent compound
of the copper oxide superconductors, the staggered spin
susceptibility (χs) is widely studied in condensate matter
physics [30–32]. Since this physical observable contains
some basilic correlative properties of the system and, espe-
cially, since it can be easily measured, it provides an ideal
tool to learn the characteristics of those strongly correlated
systems [33–35]. In a recent work [36], based on functional
analysis, the general expression for the susceptibility was
obtained, and so the value of χs can be obtained via the
truncated DSE for fermion and boson propagators.
However, in this work, the vertex correction for χs is
ignored. One motivation of this work is to investigate
the influence of the vertex correction on the staggered spin
susceptibility. Another motivation of this work is to gener-
alize the study in Ref. [36] to the case of finite temperature
and investigate the influence of the temperature effect on
the staggered spin susceptibility. Just as mentioned above,
the staggered spin susceptibility reflects some basilic cor-
relative properties of the system. It is interesting to study
the behavior of the staggered spin susceptibility at the chiral
phase transition point.

*fenght@seu.edu.cn
†zonghs@chenwang.nju.edu.cn

PHYSICAL REVIEW D 88, 125022 (2013)

1550-7998=2013=88(12)=125022(6) 125022-1 © 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.125022
http://dx.doi.org/10.1103/PhysRevD.88.125022
http://dx.doi.org/10.1103/PhysRevD.88.125022
http://dx.doi.org/10.1103/PhysRevD.88.125022


In this paper, we shall adopt the truncated DSE to
investigate the staggered spin susceptibility and the chiral
condensate and try to say something about the relation
between the staggered spin susceptibility and chiral phase
transition in thermal QED3.

II. FORMALISM OF STAGGERED
SPIN SUSCEPTIBILITY

In Euclidean space, the Lagrangian of QED3 with N
fermion flavors in the chiral limit reads

L ¼
XN

j¼1

ψ̄ jð∂ ̸ þ ieA ̸ Þψ j þ
1

4
F2
σν; (1)

where the four-component spinors are employed. At zero
temperature and density, this Lagrangian is chiral symmet-
ric, but DCSB occurs because of nonperturbative effects.
The order parameter of CPT is defined by

hψ̄ψi ¼ Tr½Sðx≡ 0Þ� ¼
Z

d3p
ð2πÞ3

4Bðp2Þ
Gðp2Þ ; (2)

with Gðp2Þ ¼ A2ðp2Þp2 þ B2ðp2Þ. The two functions
Aðp2Þ and Bðp2Þ in the above equation are related to
the inverse fermion propagator

S−1ðpÞ ¼ iγ · pAðp2Þ þ Bðp2Þ: (3)

To obtain the fermion propagator and also the fermion
chiral condensate, it is theoretically valuable to give a
general recipe for calculating this function in the frame-
work of the truncated DSE approach,

S−1ðpÞ ¼ iγ · pþ α

Z
d3k
ð2πÞ3 γσSðkÞγνDσνðqÞ; (4)

with q ¼ p − k. The coupling constant α ¼ e2 has dimen-
sion 1 and provides us with a mass scale. For simplicity, in
this paper, the momentum, temperature, and fermion self-
energy are all measured in units of α; namely, we choose a
kind of natural unit in which α ¼ 1.
The general expression for the low-energy behavior of

the regularized staggered spin susceptibility was given
by Ref. [36],

χs ¼ hSzð0ÞSzð0Þi

¼
Z

d3p
ð2πÞ3 Tr½SðpÞΓðpÞSðpÞ − S0ðpÞ1S0ðpÞ�

¼ 4

Z
d3p
ð2πÞ3

�
Fðp2Þ
Gðp2Þ −

1

p2

�
; (5)

where Lorentz structure analysis gives ΓðpÞ ¼
iγ5γ · pHðp2Þ þ γ5Fðp2Þ and

Fðp2Þ ¼ 1þ 2

Z
d3k
ð2πÞ3

Fðk2Þ
Gðk2Þ½q2 þ Πðq2Þ� : (6)

The next task is to calculate Aðp2Þ, Bðp2Þ, and Fðp2Þ.
From Eqs. (3) and (4), we obtain the equation satisfied
by Aðp2Þ and Bðp2Þ,

Aðp2Þ ¼ 1 − 1

4p2

Z
d3k
ð2πÞ3 Tr½iðγpÞγσSðkÞγνDσνðqÞ�; (7)

Bðp2Þ ¼ 1

4

Z
d3k
ð2πÞ3 Tr½γσSðkÞγνDσνðqÞ�: (8)

Another involved function DσνðqÞ is the full gauge
boson propagator, which in the Landau gauge can be
written as

DσνðqÞ ¼
δσν − qσqν=q2

q2 þ Πðq2Þ ; (9)

where Πðq2Þ is the vacuum polarization for the gauge
boson, which is satisfied by the polarization tensor

Πσνðq2Þ ¼ −N
Z

d3k
ð2πÞ3 Tr½SðkÞγσSðqþ kÞγν�: (10)

Using the relation between the vacuum polarization Πðq2Þ
and Πσνðq2Þ,

Πσνðq2Þ ¼
�
δσν − qσqν

q2

�
Πðq2Þ; (11)

we can obtain an equation for Πðq2Þ that has an ultraviolet
divergence. Fortunately, it is present only in the longi-
tudinal part and is proportional to δσν. This divergence
can be removed by the projection operator

Pσν ¼ δσν − 3
qσqν
q2

; (12)

and then we obtain a finite vacuum polarization [17].
Finally, the three coupled functions Aðp2Þ, Bðp2Þ, and
Πðq2Þ associated with the DSE of the fermion propagator
reduce

Aðp2Þ ¼ 1þ
Z

d3k
ð2πÞ3

2Aðk2ÞðpqÞðkqÞ=q2
p2Gðk2Þ½q2 þ Πðq2Þ� ; (13)

Bðp2Þ ¼
Z

d3k
ð2πÞ3

2Bðk2Þ
Gðk2Þ½q2 þ Πðq2Þ� ; (14)
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Πðq2Þ ¼ N
Z

d3k
ð2πÞ3

2Aðk2ÞAðp2Þ
Gðk2ÞGðp2Þ

× ½2k2 − 4ðk · qÞ − 6ðk · qÞ2=q2�: (15)

By application of iterative methods for the truncated DSE
of the fermion propagator in Eqs. (13–15) and (6), we can
obtain A, B, Π, and F. The typical behavior of the vertex
function Fðp2Þ is shown in Fig. 1. From Fig. 1, it is seen
that the vertex function deceases and tends to 1 in the large
momentum limit (this results in what one expects in
advance; this is because in the large momentum limit
the dressed vertex should approach the corresponding bare
vertex), while it reduces to a constant in the low-energy
region and the infrared value increases with the rise of N.
Then, substituting the obtained fermion propagator and

the vertex function into Eq. (5), we obtain the susceptibility
with several N, and they are plotted in Fig. 2. To give an
insight of the effect of vertex function Fðp2Þ, in Fig. 2 we
also illustrate the susceptibility (χsb) under a bare vertex
approximation, which is obtained by putting Fðp2Þ ¼ 1
into Eq. (5). One sees that χs is apparently larger than
χsb for any N. Moreover, χs decreases with the rise of N,
while χsb increases. This result indicates that the vertex

function Fðp2Þ must be taken into account when one cal-
culates the staggered spin susceptibility.

III. SUSCEPTIBILITY AT FINITE TEMPERATURE

Apart from zero temperature, the O(3) symmetry of the
system reduces to O(2), and the fermion propagator can be
written as

S−1ðT; PÞ ¼ iγ⃗ · P⃗A∥ðP2Þ þ iϖnγ3A3ðP2Þ þ BðP2Þ; (16)

where ϖn ¼ ð2nþ 1ÞπT. As a general discussion, we
only investigate the spin susceptibility in the case of
N ¼ 1. Adopting the DSE for the fermion propagator
and techniques of the temperature field theory, we can
resolve the above three unknown functions to analyze
the chiral transitions of QED3 at finite temperature.
Nevertheless, following the lowest-order DSE for the fer-
mion propagator, Dorey investigated the DCSB of QED3

and showed that QED3 at N ¼ 1 undergoes CPT into a
chiral symmetric phase when the temperature reaches a
critical value Tc. Later, the authors of Refs. [37,38]
adopted an improved truncated scheme for the DSE to
study the CPT and found that the correctional contribution
to the factor only slightly changes the results qualitatively.
These conclusions suggest that the lowest-order DSE for
the fermion propagator is a suitable approximation for
studying CPT in thermal QED3.
To obtain a qualitative picture of the susceptibility,

we employ a familiar framework to obtain the scalar
part of the inverse fermion propagator for which the zero
frequency approximation of boson polarization is widely
adopted [37–39]. In addition, the conclusions in Ref. [40]
illustrated that, by summing over the frequency modes
and taking suitable simplifications, the qualitative aspects
of the result obtained under the zero-frequency approxi-
mation for the wave-function renormalization A and the
fermion mass function B do not undergo significant
changes. From this, we also ignore the frequency depend-
ence of fermion self-energy, and then the corresponding
DSE for the scalar part of inverse fermion propagator
reads [38]

BðP2Þ ¼ 2

Z
d2K
ð2πÞ2

X

n

BðK2Þ=½Q2 þ ΠðQÞ�
ϖ2

n þ K2 þ B2ðK2Þ

¼
Z

d2K
ð2πÞ2

BðK2Þ tanh Ek
2T

Ek½Q2 þ ΠðQÞ� ; (17)

where Q ¼ P − K, Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ B2ðK2Þ

p
, and ΠðQÞ

denotes the boson polarization in the chiral limit[41,28],
FIG. 2. The value of the susceptibility obtained using bare ver-
tex approximation and the improved vertex in Nambu phase.

FIG. 1. The typical behaviors of the vertex function of the
susceptibility with several N.
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ΠðQÞ ¼ T
π

Z
1

0

dx ln

�
4cosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞQ2

p

2T

�

≈
Q
8
þ T

2 ln 2
π

exp

�
− πQ
16T ln 2

�
: (18)

Here, the identity

X

n

1

ϖ2
n þ x2

¼ 1

2

tanh x
2T

x
(19)

is used. By the same way, the renormalized susceptibility
(5) at finite temperature in the framework of the lowest-
order approximation of the DSE reduces to

χsðT; μÞ ¼ 4T
X

n

Z
d2P
ð2πÞ2

�
FðP2Þ

ϖ2
n þ E2

p
−

1

ϖ2
n þ P2

�

¼ 2

Z
d2P
ð2πÞ2

�
FðP2Þ tanh Ep

2T

Ep
− tanh

ffiffiffiffi
P2

p
2Tffiffiffiffiffiffi

P2
p

�
; (20)

and the corresponding vertex function F is written as

FðP2Þ ¼ 1þ 2T
X

n

Z
d2K
ð2πÞ2

FðK2Þ=½Q2 þ ΠðQÞ�
ϖ2

n þ K2 þ B2ðK2Þ

¼ 1þ
Z

d2K
ð2πÞ2

FðK2Þ tanh Ek
2T

Ek½Q2 þ ΠðQÞ� : (21)

It can be easily seen that the above fermion self-energy
and vertex functions reduce to the case of lowest-order
approximation for Eqs. (14) and (6) at T → 0. Then, from
the above equations (17–21), we can obtain the suscep-
tibility and chiral fermion condensate at finite T and try
to say something about the staggered spin susceptibility
around the critical point of the CPT.

IV. NUMERICAL RESULTS

By solving the DSE for the fermion propagator using
the numerical iteration method, we can obtain the fermion
self-energy function BðP2Þ. From it, we can calculate the
vertex function, and its typical behaviors can be seen in
Fig. 3. For any value of temperature, the vertex function
is almost constant in the infrared region, while it falls with
the increasing momentum and reduces to 1 in the high-
energy limit. From the infrared value of FðP2Þ, it is seen
that with increasing temperature, its infrared value falls
slowly in the low- and high-temperature region but falls
rapidly near T ¼ 2.5 × 10−2.
Finally, based on the fermion self-energy and the vertex

function, we immediately obtain the fermion chiral con-
densate and the staggered spin susceptibility with a range
of temperature, and the results are plotted in Fig. 4. The
upper line of Fig. 4 gives the behavior of staggered spin
susceptibility, while the lower line in this figure shows the

behavior of the fermion chiral condensate. As can be seen
in Fig. 4, χs almost keeps a constant at small temperature
(where, in fact, the susceptibility increases tardily with the
rise of T), while it shows an apparent skip at some critical
temperature. From Fig. 4, it can also be seen that the fer-
mion chiral condensate decreases as the temperature rises
and vanishes at the critical point Tc ≈ 2.5 × 10−2 where
the CPT occurs. Comparing these two lines, it is found
that the point of skip for the staggered spin susceptibility
corresponds to Tc. This could be regarded as a prediction

FIG. 3. The typical behaviors of FðP2Þ (top) and the infrared
value of FðP2Þ and BðP2Þ (bottom) with a range of T.

FIG. 4. The temperature dependence of hψ̄ψi and χs.
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of our study. Here, it should be noted that the fermion chi-
ral condensate is not a physical observable, whereas the
staggered spin susceptibility is. Therefore, it is more rea-
sonable to regard the staggered spin susceptibility as the
order parameter for chiral phase transition in QED3.

V. CONCLUSIONS

In this paper, based on the suitable truncated Dyson–
Schwinger equation, we aim to analyze the staggered
spin susceptibility at finite temperature to give an insight
for the relation between the susceptibility and chiral phase
transition. We first study the staggered spin susceptibility
in QED3 by including the correction of the vertex function.
Our numerical results show that the calculated value of the
staggered spin susceptibility is apparently different from
that obtained using bare vertex approximation, and hence
the vertex correction plays an important role in the study of
staggered spin susceptibility. Then, we generalize this study
to the case of finite temperature and find that the staggered
spin susceptibility shows an apparent skip at a temperature
corresponding to the critical point of the chiral phase
transition. The appearance of the skip of staggered spin

susceptibility at the critical temperature for chiral phase
transition suggests that the staggered spin susceptibility
can be regarded as the order parameter of chiral phase tran-
sition in QED3 and could be competent to study the chiral
phase transition in strongly correlated condensed matter
physics.
Just as mentioned in Refs. [42,43], the lowest-order

DSE for the fermion propagator and the zero-frequency
approximation adopted in the present work are inaccurate.
To further confirm the conclusion obtained in our work,
we need to go beyond the lowest-order DSE and the
zero-frequency approximation to study this problem in
the future.
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