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The variational approach to Yang-Mills theory in Coulomb gauge is extended to full QCD. For the quark

sector we use a trial wave functional, which goes beyond the previously used BCS-type state and which

explicitly contains the coupling of the quarks to transverse gluons. This quark wave functional contains

two variational kernels: one is related to the quark condensate and occurs already in the BCS-type states;

the other represents the form factor of the coupling of the quarks to the transverse gluons. Minimization of

the energy density with respect to these kernels results in two coupled integral (gap) equations. These

equations are solved numerically using the confining part of the non-Abelian color Coulomb potential and

the lattice static gluon propagator as input. With the additional coupling of quarks to transverse gluons

included, the low energy chiral properties increase substantially towards their phenomenological values.

We obtain a reasonable description of the chiral condensate, which for a vanishing current quark mass is

obtained in the range of 190–235 MeV. The coupling of the quarks to the transverse gluons enhances the

constituent quark mass by about 60% in comparison to the pure BCS Ansatz.
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I. INTRODUCTION

Understanding the low energy sector of QCD is one of
the major challenges of particle physics. This sector is
characterized by two nonperturbative phenomena: confine-
ment and chiral symmetry breaking. Color confinement is
assumed to be essentially due to the gluon sector. In recent
years, substantial progress in understanding the low energy
sector of Yang-Mills theory has been achieved within
nonperturbative continuum approaches. Among these is a
variational approach to Yang-Mills theory in Coulomb
gauge, Ref. [1]. There is a long history of the variational
treatment of the Yang-Mills vacuum sector in Coulomb
gauge; see, for example, Refs. [2,3]. Our approach differs
from previous work in the choice of the trial wave func-
tional and, more importantly, in the full inclusion of the
Faddeev-Popov determinant and in the renormalization
procedure; see Ref. [4] for more details. Our variational
approach has given a quite decent description of the infra-
red sector of Yang-Mills theory as, for example, a linearly
rising non-Abelian Coulomb potential [5], an infrared
diverging gluon energy (expressing confinement) [1,5] in
accord with lattice data [6], an infrared finite running
coupling constant [7], a perimeter law for the ’t Hooft
loop [8], an area law for the Wilson loop [9], and a
dielectric function of the Yang-Mills vacuum in accord
with the bag model picture [10]. The obtained infrared
behaviors of ghost and gluon propagators were also found
in a functional renormalization group approach [11] and
supported by lattice calculation [6,12]. Furthermore, re-
cently the variational approach of Ref. [1] was extended to

finite temperatures [13,14]. A critical temperature in the
range of TC ¼ 270–290 MeV was obtained [14], which is
in the range of the lattice data [15–17]. A similar transition
temperature of TC � 270 MeV was also found from the
effective potential of the Polyakov loop [18,19].
In the present paper we extend the variational approach

in Coulomb gauge to full QCD. The low energy quark
sector of QCD is dominated by chiral symmetry and its
spontaneous breaking. For Nf massless quark flavors QCD

is invariant under separate global flavor rotations of the
left- and right-handed quarks. In the vacuum, the
ULðNfÞ �URðNfÞ symmetry group is spontaneously

broken to the diagonal vector group UVðNfÞ by quark

condensation h �qqi � 0, resulting in the appearance of N2
f

pseudoscalar massless Goldstone bosons corresponding to
the generators of the coset UAðNfÞ ¼ ULðNfÞ �URðNfÞ=
UVðNfÞ. Chiral symmetry is a good starting point for Nf ¼
3 quark flavors u, d, s. When the small current quark
masses of the light flavors are included, chiral symmetry
is explicitly broken and the (would-be) Goldstone bosons
acquire a finite mass. Finally, the chiral anomaly breaks the
UAðNfÞ down to SUAðNfÞ, thereby providing an extra mass

to the Goldstone boson of the UAð1Þ generator, which
corresponds to the �0 meson.
The mechanism of spontaneous breaking of chiral

symmetry was first investigated in effective models of
the Nambu–Jona-Lasinio type, Refs. [20,21], which could
explain the quark condensation in analogy to the
emergence of Cooper pairs in superconductors. The
Nambu–Jona-Lasinio model has been successful not only
in explaining the mechanism of spontaneous breaking of
chiral symmetry but also in describing the low energy data
of the light pseudoscalar mesons. For this purpose, the*markus.pak@uni-graz.at
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Nambu–Jona-Lasinio model was bosonized and the result-
ing effective meson theory was worked out in a gradient
expansion [22]. Inspired by these model studies, the quark
sector of QCD was treated in the variational approach in
Coulomb gauge, assuming BCS-type trial quark wave
functionals and a purely confining static quark potential,
Refs. [23–25]. Equivalent to the use of the BCS-type trial
wave function is to carry out a Bogoliubov-Valatin trans-
formation (see also Ref. [26]). In these calculations, the
coupling of the transverse gluons to the quarks was ne-
glected, resulting in substantially too small values of the
quark condensate, the constituent mass, and pion decay
constant. To improve these results in Refs. [27,28], an
additional four-quark interaction mediated by static trans-
verse gluons was introduced; see also Ref. [29]. Of course,
an additional attractive interaction will enhance the amount
of chiral symmetry breaking. However, such a four-
fermion interaction mediated by transverse gluons is not
in the QCD Hamiltonian in Coulomb gauge in the first
place. Neither does this Hamiltonian contain an explicit
coupling of the quarks to the transverse gluons and it is
a priori not clear to which extent this coupling can be
simulated by a static four-quark interaction. The quark-
gluon coupling of the QCD Hamiltonian escapes the varia-
tional approach when a BCS-type trial wave functional is
used. In the present paper, we go beyond the BCS type of
approximations considered previously and use a quark
wave functional, which explicitly includes the coupling
to the transverse gluons. The form factor of this coupling
is treated as a variational kernel determined from the
minimization of the energy. First results obtained with
this wave functional have been already reported in
Ref. [30]. Here we give a more detailed and complete
account of the variational approach to QCD in Coulomb
gauge with the trial wave functional proposed in Ref. [30].

We will find that the coupling of the quarks to the
transversal gluon field substantially increases the amount
of chiral symmetry breaking. At the same time, we show
that when neglecting the four-quark interaction of the
gauge-fixed QCD Hamiltonian, the coupling of the quarks
to the transversal gluons alone does not trigger spontane-
ous breaking of chiral symmetry.

Though the variational approach can, in principle, be
carried out in a fully self-consistent manner, minimizing
simultaneously the energy with respect to all kernels of the
trial wave functional, in order to keep the formal exposition
sufficiently transparent in the present paper, we will focus
on the quark sector and do mainly a quenched calculation,
ignoring the backreaction of the quarks on the gluon sector;
i.e., we will use the results obtained in the variational
approach to Yang-Mills theory, in particular the gluon
dispersion relation, as an input. However, in Sec. XI we
will study the effect of the quarks on the gluon propagator.

Let us also mention that an alternative approach
to including the quark-gluon coupling along with the

confining non-Abelian Coulomb interaction is to use
Dyson-Schwinger equations in Coulomb gauge [31–33].
The organization of the paper is as follows: in Sec. II we

review the Hamiltonian approach to QCD in Coulomb
gauge. In Sec. III we briefly collect results gained in the
pure Yang-Mills sector of QCD, which are needed as input
for the present work. In Sec. IV we present our quark
vacuum wave functional, which includes the interaction
of quarks with transverse gluon fields and which was
originally proposed in Ref. [30]. The Dirac and color
structure of the variational kernels are specified. In
Sec. V we set up the QCD generating functional in order
to compute the various n-point functions of the theory. In
Sec. VI the quark propagator and related chiral quantities
are expressed in terms of the variational functions. In
Sec. VII we start our variational analysis by computing
the energy density of the quarks and carry out the variation
of the latter with respect to the two kernels of the wave
functional, resulting in two coupled gap equations. These
equations are studied in Sec. VIII in the IR and UV regime.
In a first variational analysis, we demonstrate in Sec. IX
that within the present approach, the coupling of the quarks
to the transverse gluons alone cannot induce spontaneous
breaking of chiral symmetry. The full variational calcula-
tion with the color Coulomb potential included is carried
out in Sec. X. Here we solve the corresponding coupled
gap equation numerically and calculate the chiral proper-
ties of the quarks. In Sec. XI we give an estimate of the
unquenching effects on the gluon propagator. In the last
section, Sec. XII, we summarize our findings, present our
conclusions, and give an outlook on future studies.

II. HAMILTONIAN APPROACH TO QCD
IN COULOMB GAUGE

The Hamiltonian approach to QCD is based on the
canonical quantization in Weyl gauge A0 ¼ 0, which
leaves the spatial components of the gauge field AðxÞ as
independent coordinates and results in the Hamiltonian

HQCD ¼ HYM þHF; (1)

where

HYM ¼ 1

2

Z
d3xð�2ðxÞ þ B2ðxÞÞ (2)

is the Yang-Mills Hamiltonian, with

Ba
kðxÞ ¼ "klmðrlA

a
mðxÞ þ fabcAb

l ðxÞAc
mðxÞÞ

being the non-Abelian magnetic field (fabc-structure con-
stant of the gauge group) and

�aðxÞ ¼ �

i�AaðxÞ (3)

being the conjugate momentum operator. Furthermore,

M. PAK AND H. REINHARDT PHYSICAL REVIEW D 88, 125021 (2013)

125021-2



HF ¼
Z

d3xc yðxÞð�i� �Dþ �m0Þc ðxÞ (4)

is the Hamilton operator of the quark field c ðxÞ, which
satisfies the anticommutation relation

fc ðxÞ; c yðyÞg ¼ �ðx� yÞ: (5)

Here �, � are the usual Dirac matrices satisfying
f�i; �jg ¼ �ij and f�;�ig ¼ 0, m0 is the current quark

mass, and

D ¼ @� igTaAa (6)

is the covariant derivative with Ta being the (Hermitian)
generators of the gauge group SUðNÞ in the fundamental
representation. We have suppressed here the Lorentz,
color, and flavor indices of the quarks. For the present
consideration, it is sufficient to consider a single flavor so
that flavor becomes irrelevant. Due to the use of Weyl
gauge, Gauss’s law escapes the equation of motion and
has to be imposed as a constraint to the wave functional
�½A; c �

ðD̂ab�bÞðxÞ�½A; c � ¼ �a
FðxÞ�½A; c �: (7)

Here

D̂ab ¼ �ab þ gfacbAc (8)

is the covariant derivative in the adjoint representation, and

�a
FðxÞ ¼ c yðxÞTac ðxÞ (9)

are the color charge densities of the quarks. The operator

D̂ab�b in Gauss’s law is the generator of time-independent
gauge transformations, which are not fixed by Weyl gauge.
We fix this residual gauge freedom by choosing the
Coulomb gauge

@A ¼ 0: (10)

In this gauge Gauss’s law can be explicitly resolved, which
results in the gauge-fixed Hamiltonian [34]

�HQCD ¼ �HYM þ �HF þ �HC; (11)

where �HF is the same as HF in (4) except that the gauge
field is now transversal:

A?a
i ðxÞ ¼ tijðxÞAa

j ðxÞ; (12)

with

tijðxÞ ¼
Z d3p

ð2�Þ3 ð�ij � p̂ip̂jÞeip�x; p̂i ¼ pi

jpj : (13)

Furthermore,

�HYM ¼ 1

2

Z
d3xðJ�1½A?��?a

i ðxÞJ½A?��?a
i ðxÞ þBa

i ðxÞ2Þ
(14)

is the Hamiltonian of the transverse gluons, where

�?a
i ðxÞ ¼ �

i�A?a
i ðxÞ ¼ tijðxÞ�a

j ðxÞ; (15)

and

J½A?� ¼ Detð�D̂@Þ (16)

is the Faddeev-Popov determinant. The Coulomb term

�HC ¼ g2

2

Z
d3x

Z
d3yJ�1½A?��aðxÞFabðx; yÞ

� J½A?��bðyÞ (17)

arises from the kinetic energy of the longitudinal modes
after resolving Gauss’s law. Here

Fabðx; yÞ ¼ hxajð�D̂@Þ�1ð�@2Þð�D̂@Þ�1jybi (18)

is the so-called Coulomb kernel and

�aðxÞ ¼ �a
YMðxÞ þ �a

FðxÞ (19)

is the total color charge density, which contains besides the
charge of the quarks, �a

FðxÞ [Eq. (9)], also the color charge
of the gauge field

�a
YMðxÞ ¼ �fabcA?bðxÞ�?cðxÞ: (20)

In the rest of the paper, we work exclusively in Coulomb
gauge and from now on we will omit the transversality sign
attached to the gauge field.
We are interested here in the groundstate wave func-

tional of QCD, which we approximate from a variational
calculation. Without loss of generality, we can choose the
trial wave functional in the coordinate representation of the
gauge field in the form

j�ðAÞi ¼ �YMðAÞj�FðAÞi: (21)

Here j�FðAÞi is the wave functional of the Dirac vacuum
of the quarks in the presence of the gauge field and
�YMðAÞ ¼ hAj�YMi is the wave functional of the Yang-
Mills sector. We have chosen here the coordinate repre-
sentation for the Yang-Mills part of the wave functional
�YMðAÞ, while the fermion wave functional j�FðAÞi is
chosen as ket vector in Fock space. Note j�FðAÞi, depend-
ing on the gauge field, contains the full coupling of the
quarks to gluons.
The expectation value of an observable O½A; c � in the

state (21) is given by

hO½A; c �i ¼
Z

DAJðAÞ��
YMðAÞ

� h�FðAÞjO½A; c �j�FðAÞi�YMðAÞ: (22)

Note the presence of the Faddeev-Popov determinant
J½A� [Eq. (16)] in the integration measure. In principle,
the fermion wave functional j�FðAÞi could also be ex-
pressed in a ‘‘coordinate’’ representation, i.e., in terms of
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Grassmann variables. Then the scalar product (22) would
also contain the integration over Grassmann fields. In the
present case it is, however, more convenient to represent
the fermionic wave functional in second quantized form as
a vector in Fock space; see Sec. IV.

With the color charge density �aðxÞ [Eq. (19)] being a
sum of a gluonic and a quark part, the Coulomb
Hamiltonian �HC [Eq. (17)] can be split up as

�HC ¼ �HYM
C þ �Hcoupl

C þ �HF
C; (23)

where �HYM
C and �HF

C depend exclusively on the charges of

the gauge fieldA and the quark field c , respectively, while

H
coupl
C contains the coupling between both charges. With

this splitting we can write the full gauge-fixed QCD
Hamiltonian (11) in the form

�HQCD ¼ ~HYMðAÞ þ ~HFðA; c Þ; (24)

where

~HYMðAÞ ¼ �HYM þ �HYM
C (25)

contains exclusively the gauge field and is the Coulomb
gauge-fixed Hamiltonian of pure Yang-Mills theory (which
was treated variationally in Ref. [1]), while

~HFðA; c Þ ¼ �HF þ �HF
C þ �Hcoupl

C (26)

contains all terms which depend on the quark field. In
particular, it contains the coupling of the quarks to the
gluons; see Eq. (4).

In a full variational calculation one would minimize the
full energy

h �HQCDi ! min (27)

in the state (21). Here we work in a quenched calculation,
varying the fermionic part of the energy only,

h ~HFi ! min ; (28)

thereby keeping the Yang-Mills part �YMðAÞ of the wave
functional (21) fixed to the Yang-Mills vacuum state
determined previously in Ref. [5] from

h�YMj ~HYMj�YMi ! min : (29)

In the next section, we will briefly summarize the essential
results obtained within the variational approach to Yang-
Mills theory (29), which we use as input for the variational
treatment of the fermionic sector, Eq. (28).

III. VARIATIONAL RESULTS FOR THE PURE
YANG-MILLS SECTOR OF QCD

In Refs. [1,5], pure Yang-Mills theory has been treated
in a variational approach in Coulomb gauge using the
following trial Ansatz for the vacuum wave functional:

�YMðAÞ ¼ hAj�YMi

¼ N Gffiffiffiffiffiffiffiffiffiffiffiffi
J ½A�p exp

�
� 1

2

Z
d3x

Z
d3yAa

i ðxÞtijðxÞ

�!ðx; yÞAa
j ðyÞ

�
: (30)

Here J ½A� is the Faddeev-Popov determinant [Eq. (16)],
N G is a normalization factor fixed by requiring
h�YMj�YMi ¼ 1, and !ðx; yÞ is the variational kernel.
The advantage of this Ansatz is that the Faddeev-Popov
determinant J½A� [Eq. (16)] drops out from the integration
measure (22). As a consequence, the (static or equal
time) gluon propagator is just given by the inverse of the
kernel !:

Dab
ij ðx; yÞ :¼ hAa

i ðxÞAb
j ðyÞiG ¼ �abtijðxÞDðx� yÞ;

Dðx� yÞ ¼ 1

2
!�1ðx; yÞ; (31)

where

h. . .iG ¼ h�YMj . . . j�YMi (32)

denotes the expectation value in the pure Yang-Mills
vacuum state j�YMi [Eq. (30)].
Variation of the pure gluonic energy density h �HC

YMiG
[Eq. (25)] with respect to the kernel ! yields a coupled
system of integral equations; see, e.g., Refs. [1,5]. These
equations were solved analytically in the IR and UV
asymptotic momentum regions (Ref. [7]), as well as nu-
merically in the whole momentum regime (Refs. [1,5]).
The gluon energy !ðpÞ is found to be IR divergent, ex-
pressing gluon confinement, while it approaches for large
momenta the photon energy, in accord with asymptotic
freedom. Lattice calculations (Ref. [6]) confirm this
behavior and show that over the whole momentum range,
the gluon kernel !ðpÞ can be nicely fitted by Gribov’s
formula [35]

!ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM4

G

p2

s
; (33)

whereMG is a mass scale referred to as the Gribov mass. It
was determined on the lattice in Ref. [6] and found to be
given by

MG � 880 MeV ¼ 2
ffiffiffiffiffiffiffiffi
�W

p
; (34)

where �W (
ffiffiffiffiffiffiffiffi
�W

p ¼ 440 MeV) is the Wilsonian string

tension. Figure 1 shows the gluon propagator obtained in
the variational approach together with lattice data. The
results obtained with the Gaussian wave functional (30)
agree well with the lattice results in the IR and also in the
UV, but there are deviations in the mid-momentum regime.
These deviations substantially decrease when a non-
Gaussian wave functional is used, which includes up to
quartic terms in the exponent; see Ref. [36].
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In later calculations, we also need the vacuum expecta-
tion value of the Coulomb kernel Fðx; yÞ [Eq. (18)], which
represents the static potential between (infinitely heavy)
color point charges separated by a distance r ¼ jx� yj:

g2hFðx; yÞiG :¼ VCðjx� yjÞ: (35)

In the variational approach [5], one finds a potential which
at large distances increases linearly:

VCðrÞ ¼ �Cr; r ! 1: (36)

The same behavior is found on the lattice, Refs. [37–39],
with a Coulomb string tension �C of

�C � ð2 . . . 3Þ�W; (37)

where �W is the Wilsonian string tension. In our approach,
the Coulomb string tension �C is used to fix the scale.
When we use the gluon propagator (33) as input there is a
second dimensionful input quantity: the Gribov mass MG.
These two quantities are, however, not independent of each
other. In the approximation

hð�D̂@Þ�1ð�@2Þð�D̂@Þ�1iG
’ hð�D̂@Þ�1iGð�@2Þhð�D̂@Þ�1iG (38)

to the Coulomb potential [Eqs. (35) and (18)], one finds
from the IR analysis of the equations of motion of the pure
Yang-Mills sector (see, e.g., Ref. [14]) the following
relation:

�C ¼ �

NC

M2: (39)

For NC ¼ 3 we can put �=NC ’ 1 and obtain the
approximate relation

�C ’ M2
G: (40)

With the lattice resultMG ’ 2
ffiffiffiffiffiffiffiffi
�W

p
, this yields �C ’ 4�W,

which shows that �C is larger than �W, in agreement with
Ref. [40].

IV. THE QUARK VACUUM WAVE FUNCTIONAL

In this section we define our trial state for the quark
vacuum j�FðAÞi. For this purpose we decompose the
fermion field c ðxÞ into positive and negative energy
components

c ðxÞ ¼ cþðxÞ þ c�ðxÞ; (41)

given by

c�ðxÞ ¼
Z

d3y��ðx; yÞc ðyÞ; (42)

c y
�ðxÞ ¼

Z
d3yc yðyÞ��ðy; xÞ; (43)

where

��ðx; yÞ ¼
Z d3p

ð2�Þ3 e
ip�ðx�yÞ��ðpÞ; (44)

with

��ðpÞ ¼ 1

2

�
1� hðpÞ

EðpÞ
�
; (45)

are the projectors onto positive (negative) energy eigen-
states. Here hðpÞ is the free Dirac Hamiltonian in
momentum space

hðpÞ ¼ �pþ �m0; (46)

whose eigenvalues are �EðpÞ with EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

0

q
.

The orthogonal projectors fulfill the relations

�2� ¼ ��; ���� ¼ 0; �� þ�� ¼ 1: (47)

From the anticommutation relation, Eq. (5), the nonvanish-
ing anticommutation relations for the positive (negative)
energy spinors follow:

fc�ðxÞ;c y
�ðyÞg¼��ðx;yÞ; fc�ðxÞ;c y

�ðyÞg¼0: (48)

The free (bare) fermion vacuum j0i is defined by

cþðxÞj0i ¼ 0; c y�ðxÞj0i ¼ 0: (49)

We choose our trial state j�Fi of the quark vacuum as the
most general Slater determinant which is not orthogonal to
the bare vacuum j0i. By the Thouless theorem,1 such a
state has the form

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  2  4  6  8  10
p

D
 (

p)
lattice

Gaussian functional

Non-Gaussian functional

FIG. 1. Gluon propagator DðpÞ. Data points are the lattice
results obtained in Ref. [6]. The dashed curve shows the results
from the variational approach when a Gaussian vacuum is used.
The full curve is the extension to non-Gaussian wave functionals
including up to quartic terms in the gauge field. The plot is from
Ref. [36].

1For a detailed proof, see Ref. [41].
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j�Fi ¼ N F exp

�
�
Z

d3x
Z

d3yc y
þðxÞKðx; yÞc�ðyÞ

�
j0i;
(50)

where N F is a normalization constant to be determined
later. The use of a Slater determinant has the advantage that
Wick’s theorem applies, which facilitates the evaluation of
expectation values of products of fermion operators. Since
the wave functional (50) has to embody the coupling of the
quarks to the gluons, the kernel Kðx; yÞ can in principle be
any functional of the gauge field. We will assume here that
Kðx; yÞ can be Taylor expanded in powers of the gauge
field and that this expansion can be truncated in leading
order:

Kðx; yÞ ¼ K0ðx; yÞ þ
Z

d3zKðx; y; zÞAðzÞ
	 K0ðx; yÞ þ K1ðx; yÞ: (51)

From the definition of the wave functional (50) and the
projection properties (47), it follows that the variational
kernel can be chosen to satisfyZ

d3z
Z

d3z0�þðx; zÞKijðz; z0Þ��ðz0; yÞ ¼ Kijðx; yÞ:
(52)

Incorporating this property, we choose the variational ker-
nels in the form

K0ðx; yÞ ¼
Z

d3x0
Z

d3y0�þðx; x0Þ�Sðx0 � y0Þ��ðy0; yÞ
(53)

Kaðx; y; zÞ ¼
Z

d3x0
Z

d3y0�þðx; x0Þ�Ta

� Vðx0 � y0; z� y0Þ��ðy0; yÞ; (54)

where the form factors SðxÞ and Vðx; yÞ are the variational
functions to be determined by minimizing the energy
density. The choice of the position arguments in the varia-
tional functions is dictated by translational invariance.
Furthermore, the Lorentz and color structure of the varia-
tional kernel (54) is basically dictated by Lorentz and color
symmetry since the vacuumwave function has to be a color
and Lorentz scalar. Of course, more complicated (tensor
structures and) Ansätze in the exponent are possible, but
the present one can be considered as the leading nontrivial
order of the expansion of the exponent of the wave func-
tional in powers of the gauge field.

For Vðx; yÞ ¼ 0, the wave functional j�Fi [Eq. (50)],
with the kernel K [Eqs. (51), (53), and (54)], reduces to the
BCS state considered in Refs. [23–25]. The new element is
the vector coupling Kðx; yÞ 
 Vðx; yÞ [Eq. (54)].

For the explicit calculation, it is convenient to express
the variational kernel Kabðx; yÞ in Eq. (50) in momentum

space (}3p ¼ d3p
ð2�Þ3 ):

K0ðx; yÞ ¼
Z

}
3peip�ðx�yÞ�þðpÞ�SðpÞ��ðpÞ; (55)

Kaðx; y; zÞ ¼
Z

}
3p}3qeip�ðx�yÞeiq�ðz�yÞ

��þðpÞ�TaVðp;pþ qÞ��ðpþ qÞ: (56)

The adjoint kernels read

Ky
0 ðx; yÞ ¼

Z
}
3peip�ðx�yÞ��ðpÞ�S�ðpÞ�þðpÞ; (57)

Kyaðx;y;zÞ¼
Z
}
3p}3qeip�ðx�yÞe�iq�ðz�xÞ

���ðpþqÞ�TaV�ðpþq;pÞ�þðpÞ; (58)

where � means complex conjugation. The scalar varia-
tional function SðpÞ is dimensionless while the vector
kernel Vðp; qÞ has dimension of inverse momentum.

V. THE QUARK GENERATING FUNCTIONAL

For the evaluation of the expectation values of quark
observables, it is convenient to introduce the fermionic
generating functional

ZF½�� ¼ h�Fj exp
�Z

ð��þcþ þ ��c y�Þ
�

� exp

�Z
ðc y

þ�þ þ c����Þ
�
j�Fi; (59)

where j�Fi is the quark vacuum state (50) and �þ, �� are
the quark sources, which are Grassmann valued Dirac
spinors. Since j�Fi is a Slater determinant, the generating
functional can be evaluated in closed form. One finds after
straightforward calculation

ZF½�� ¼ jN Fj2Det½�� exp ½�y��1��; (60)

where we have introduced the bispinor notation

� ¼ �þ
���

� �
; (61)

with the matrix � defined by

� ¼ 1 K

Ky �1

 !
: (62)

Here 1 denotes the unit kernel in the þ
ð�Þ subspace of

positive (negative) energy eigenstates. For vanishing
source �, we find from Eq. (60)

ZF½� ¼ 0� 	 h�Fj�Fi ¼ jN Fj2Det½��: (63)

Note the norm of j�Fi is in principle a functional of
the transverse gauge field A through the kernel K
[Eq. (51)]. In a fully unquenched calculation, only the total
QCD wave functional (21) can be normalized. However, in
the quenched calculation, the Yang-Mills part and the
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fermionic part can be separately normalized. For a
quenched calculation, we choose the normalization
h�Fj�Fi ¼ 1, which removes the fermion determinant
Det½�� from the generating functional (60):

ZF½�� ¼ exp ½�y��1��: (64)

This equation is a compact form of Wick’s theorem and
allows us to express all fermionic expectation values in
terms of the matrix ��1. Its gluonic expectation value
h��1iG is closely related to the quark propagator; see
Eq. (77) below.

The matrix � [Eq. (62)] can be explicitly inverted,
yielding

��1 ¼ ½1þ KKy��1 ½1þ KKy��1K

½1þ KyK��1Ky �½1þ KyK��1

 !
: (65)

Resolving the bispinor structure (61) the fermion generat-
ing functional (64) becomes

ZF ¼ exp ð��þ½1þ KKy��1�þ � ���½1þ KyK��1Ky�þ
� ��þ½1þ KKy��1K�� � ���½1þ KyK��1��Þ:

(66)

Note that the matrix � [Eq. (62)], and hence also ��1

[Eq. (65)], is overall Hermitian.
With the explicit form of ��1 at hand from Eq. (64) or

(66), all fermionic correlation functions can be evaluated.
From the form of the generating functional (64), it follows
that all fermionic correlation functions can be expressed in
terms of the two-point functions, which is a manifestation
of Wick’s theorem. For later use we list the nonvanishing
two-point functions

hc iþðxÞc yj
þ ðyÞiF ¼ � �2Z½��

���iþðxÞ��j
þðyÞ

���������¼0
¼ ð�þ½1þ KKy��1�þÞijðx; yÞ; (67a)

hc yi�ðxÞc j�ðyÞiF ¼ � �2Z½��
��i�ðxÞ���j�ðyÞ

���������¼0
¼ ð��½1þ KyK��1��Þjiðy; xÞ; (67b)

hc i�ðxÞc yj
þ ðyÞiF ¼ �2Z½��

���i�ðxÞ��j
þðyÞ

���������¼0
¼ ð��½1þ KyK��1Ky�þÞijðx; yÞ; (67c)

hc iþðxÞc yj� ðyÞiF ¼ �2Z½��
���iþðxÞ��j�ðyÞ

���������¼0
¼ ð�þ½1þ KKy��1K��Þijðx; yÞ; (67d)

where the subscript F denotes the fermion expectation value in the state j�Fi [Eq. (50)]. Using the anticommutation
relations (48), we obtain from Eqs. (67a) and (67b)

hc yi
þðxÞc j

þðyÞiF ¼ ð�þ½1þ KKy��1KKy�þÞjiðy; xÞ; (68a)

hc i�ðxÞc yj� ðyÞiF ¼ ð��½1þ KyK��1KyK��Þijðx; yÞ: (68b)

Through the kernel K, the fermionic expectation values
h. . .iF are still functionals of the transverse gauge field. To
find the true correlation functions, we still have to take the
gluonic vacuum expectation value of the fermionic aver-
ages h. . .iF. Fortunately, for the Yang-Mills wave func-
tional (30), Wick’s theorem applies. Nevertheless due to
the presence of the inverse kernels ð1þ KyKÞ�1 in the
fermionic correlation functions, the gluonic expectation
values h. . .iG defined by Eq. (32) cannot be taken in closed
form. To simplify the calculation, wewill use the following
approximation for inverse fermionic kernels:

h� � � ð1þKyKÞ�1 . . .iG ’ h. . . ð1þ hKyKiGÞ�1 . . .iG; (69)

i.e., replacing in the inverse operators the kernels KyK and
KKy by their expectation values hKyKiG and hKKyiG,
respectively. For the Yang-Mills wave functional (30),
one finds with the explicit form of K [Eq. (51)]

hKyKiG ¼ Ky
0K0 þ hKy

1K1iG;
hKKyiG ¼ K0K

y
0 þ hK1K

y
1 iG;

(70)

with

hðKy
1K1Þmnðx; yÞiG ¼

Z
d3z

Z
d3z0ðKya

i Þmlðx; x0; zÞðKb
j Þln

� ðx0; y; z0ÞDab
ij ðz; z0Þ; (71)

hðK1K
y
1 Þmnðx; yÞiG ¼

Z
d3z

Z
d3z0ðKa

i Þmlðx; x0; zÞðKyb
j Þln

� ðx0; y; z0ÞDab
ij ðz; z0Þ; (72)

where Dab
ij ðz;z0Þ is the gluon propagator (31). Here we

have used that hKy
0K1iG ¼ 0 ¼ hK1K

y
0 iG, since expecta-

tion values of an odd number of gluon fields vanish in the
Gaussian vacuum, Eq. (30).
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For the study of spontaneous breaking of chiral sym-
metry, the small current quark mass is irrelevant.
Therefore from now on we will put m0 ¼ 0, which will
simplify the explicit calculations and, in particular, the

form of the projectors (44), which then satisfy the relation
���ðpÞ ¼ �þðpÞ�. With the explicit form of the kernels
K0 [Eq. (55)] and K [Eq. (56)], one finds after straightfor-
ward calculation

ðKy
0K0Þðx; yÞ ¼

Z
}
3peip�ðx�yÞS�ðpÞSðpÞ�þðpÞ; (73a)

ðK0K
y
0 Þðx; yÞ ¼

Z
}
3peip�ðx�yÞSðpÞS�ðpÞ��ðpÞ; (73b)

hðKy
1K1Þmnðx; yÞiG ¼ �mn

Z
}3peip�ðx�yÞRðpÞ�þðpÞ; (73c)

hðK1K
y
1 Þmnðx; yÞiG ¼ �mn

Z
}3peip�ðx�yÞRðpÞ��ðpÞ: (73d)

Here we have introduced the loop integral

RðpÞ ¼ CF

Z
}3qVðp; qÞV�ðq;pÞDð‘Þ

� ½1þ ðp̂ � ‘̂Þðq̂ � ‘̂Þ�; (74)

where ‘ ¼ p� q. Furthermore,

Dð‘Þ ¼ 1=ð2!ð‘ÞÞ (75)

is the Fourier transform of the spatial gluon propagator,
Eq. (31), and CF ¼ ðN2

C � 1Þ=ð2NCÞ arises from the
quadratic Casimir.

VI. THE QUARK PROPAGATOR

To investigate the properties of the quarks in the corre-
lated QCD vacuum, the quantity of central interest is the
(static or equal time) quark propagator

Grsðx; yÞ ¼ h�j 1
2
½c rðxÞ; c y

s ðyÞ�j�i: (76)

Working out the fermionic expectation value by means of
the generating functional (59) and (64), one finds in the
bispinor representation

G ¼ h��1iG � 1

2

1 0

0 �1

 !
: (77)

To resolve the bispinor structure, it is more convenient to
split the quark fields in Eq. (76) into their positive and
negative energy components [see Eqs. (41)–(43)] and use
Eqs. (67a)–(67d). This yields the alternative representation

G ¼ h�þð1þ KKyÞ�1ð1� KKyÞ�þ
þ��ðKyK � 1Þð1þ KyKÞ�1��
þ��ð1þ KyKÞ�1Ky�þ
þ�þð1þ KKyÞ�1K��iG: (78)

Taking now the expectation value in the gluonic Gaussian
vacuum, Eq. (30), thereby using the approximation (69)
and the explicit form of hKyKiG; hKKyiG [Eq. (70)], we

eventually obtain for the Fourier transform of the quark
propagator

GðpÞ ¼ 1

2

�
SðpÞ þ S�ðpÞ

1þ S�ðpÞSðpÞ þ RðpÞ�

þ 1� S�ðpÞSðpÞ � RðpÞ
1þ S�ðpÞSðpÞ þ RðpÞ�p̂

�
: (79)

It is interesting to note that the vectorial variational kernel
Vðp; qÞ enters the static quark propagator only via the loop
integral RðpÞ [Eq. (74)]. Setting the vector kernel Vðp; qÞ to
zero, this loop integral vanishes. Due to the approximation
(69), the quantityRðpÞ [Eq. (74)] contains thewhole effect of
the coupling of the quarks to the transverse spatial gluons.
The quark propagator (79) has the expected Dirac

structure

G�1ðpÞ ¼ AðpÞ�pþBðpÞ�¼ AðpÞð�pþ�MðpÞÞ; (80)

where

MðpÞ ¼ BðpÞ
AðpÞ (81)

is the effective quark mass. Inversion of Eq. (80) yields

GðpÞ ¼ � � pAðpÞ þ �BðpÞ
p2A2ðpÞ þ B2ðpÞ : (82)

Comparing this representation with the explicit form (79)
we obtain the following identifications:

1

2

SðpÞ þ S�ðpÞ
1þ S�ðpÞSðpÞ þ RðpÞ ¼

BðpÞ
B2ðpÞ þ p2A2ðpÞ ; (83)

1

2

1� S�ðpÞSðpÞ � RðpÞ
1þ S�ðpÞSðpÞ þ RðpÞ ¼

AðpÞjpj
B2ðpÞ þ p2A2ðpÞ : (84)

Dividing Eq. (83) by Eq. (84), we find for the effective
quark mass (81)

MðpÞ ¼ jpj SðpÞ þ S�ðpÞ
1� S�ðpÞSðpÞ � RðpÞ : (85)
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For a nonvanishing scalar form factor SðpÞ [i.e., for non-
vanishing quark-antiquark correlations, see Eqs. (50), (51),
and (54)], a quark mass is dynamically generated. This
dynamical mass generation is a consequence of the sponta-
neous breaking of chiral symmetry, which is signaled by a
nonvanishing quark condensate:

h �c iðxÞc iðxÞi ¼ �
Z

}
3p tr½�GðpÞ�: (86)

Inserting here the explicit form of the quark propagator
(79), we find

h �c iðxÞc iðxÞi¼�NC2
Z
}3p

SðpÞþS�ðpÞ
1þS�ðpÞSðpÞþRðpÞ : (87)

Obviously, a nonvanishing quark condensate requires
SðpÞ � 0. Thus, a wave functional (50) with vector cou-
pling only ½SðpÞ ¼ 0� cannot yield spontaneous breaking
of chiral symmetry. Whether chiral symmetry is sponta-
neously broken is a dynamical question and requires the
determination of the kernels SðpÞ and Vðp; qÞ in the quark

wave functional (50). This will be done in the following
sections by means of the variational approach.

VII. ENERGY DENSITIES AND GAP EQUATIONS

We are now in a position to explicitly calculate the
expectation value of the QCDHamiltonian. For a quenched
calculation, the pure gluonic part ~HYM [Eq. (25)] can be
ignored. We begin with the Dirac Hamiltonian �HF ¼ HF

[Eq. (4)], whose expectation value reads

hHFi ¼
Z

d3x
Z

d3yð�i�DÞrshc y
r ðxÞc sðyÞi; (88)

where the covariant derivative is given in Eq. (6). Splitting
the fermion field c ðxÞ into its positive and negative energy
components, Eq. (41), one observes that only the expecta-

tion values hc ya
þ ðxÞc bþðyÞi and hc ya� ðxÞc b�ðyÞi contribute

to the kinetic energy of the quarks 
�p, while the cou-
pling to the transverse gluons receives contributions from

hc ya
þ ðxÞc b�ðyÞi and hc ya� ðxÞc bþðyÞi. One finds

hHFi
�3ð0Þ ¼ 2NC

Z
d3pjpj S

�ðpÞSðpÞ þ RðpÞ � 1

1þ S�ðpÞSðpÞ þ RðpÞ þ 2gNCCFð2�Þ3

�
Z

}
3p
Z

}
3q

V�ðp; qÞ þ Vðp; qÞ
1þ S�ðpÞSðpÞ þ RðpÞDð‘Þ½1þ ðp̂ � ‘̂Þðq̂ � ‘̂Þ�; (89)

where we have set ‘¼p�q. Furthermore, CF¼
ðN2

C�1Þ=ð2NCÞ is the value of the quadratic Casimir in
the fundamental representation and DðpÞ ¼ 1=ð2!ðpÞÞ is
the Fourier transform of the gluon propagator (31). As is
clear from the form of the Dirac Hamiltonian HF (4), up to
a constant the last term gives the condensate

hc yðxÞ� � TaA
aðxÞc ðxÞi:

To evaluate the energy density of �HF
C [Eq. (26)], we replace

the Coulomb kernel F̂abðx; yÞ [Eq. (18)] by its gluonic
expectation value, Eq. (35). This approximation is consistent
with the quenched approximation and with the approxima-
tion (69) used for the kernels in the denominator of the quark
propagator. One can easily convince oneself that within our
approximation the coupling term �H

coupl
C 
 �YM�F does not

contribute, h �Hcoupl
C i ¼ 0. For this we notice that for a color

diagonal gluon propagator, h�YMiG ¼ 0. Furthermore,

h�FiF contains within our approximation (69) at most terms
linear in the gauge field A. Since �YM is quadratic in the
gauge field for the Gaussian Yang-Mills wave functional, it
follows that h�YMh�FiFiG ¼ 0.
The expectation value of the Coulomb Hamiltonian �HF

C,

given by �HC [Eq. (17)], with total color charge �a replaced
by the quark part �a

F [Eq. (9)], is straightforwardly eval-
uated by splitting the fermion fields c , c y into their
positive and negative energy components, Eqs. (42) and
(43), and applying Wick’s theorem. The final form of the
Coulomb energy density is

h �HF
Ci

�3ð0Þ ¼
1

2
NCCFð2�Þ3

Z
}3p}3qVCðp� qÞ½Yðp; qÞ

þ Zðp; qÞp̂ � q̂�; (90)

where we have introduced the abbreviations

Yðp;qÞ¼1�S�ðpÞSðqÞþSðpÞS�ðqÞþSðpÞSðqÞþS�ðpÞS�ðqÞ
ð1þS�ðpÞSðpÞþRðpÞÞð1þS�ðqÞSðqÞþRðqÞÞ ; (91a)

Zðp;qÞ¼�ð1�S�ðpÞSðpÞ�RðpÞÞð1�S�ðqÞSðqÞ�RðqÞÞ
ð1þS�ðpÞSðpÞþRðpÞÞð1þS�ðqÞSðqÞþRðqÞÞþ

�S�ðpÞSðqÞ�SðpÞS�ðqÞþSðpÞSðqÞþS�ðpÞS�ðqÞ
ð1þS�ðpÞSðpÞþRðpÞÞð1þS�ðqÞSðqÞþRðqÞÞ : (91b)
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Note that Yðp; qÞ and Zðp; qÞ are both real. The vector
kernel V enters the Coulomb energy density only through
the loop integral RðpÞ [Eq. (74)]. Putting Vðp; qÞ ¼ 0, the
loop integral RðpÞ vanishes and the energy density (90)
reduces to the expression obtained in Ref. [25] for the
BCS-wave functional. Since the energy density given by
Eqs. (89) and (90) is real, the variations with respect to S
and S� (or V and V�) lead to complex conjugate equations,
which can be shown to allow for real solutions. In the
following, we therefore set SðpÞ ¼ S�ðpÞ, Vðp; qÞ ¼
V�ðp; qÞ. The second term in Zðp; qÞ [Eq. (91b)] then
vanishes.

Minimizing the energy densities h �HFi [Eq. (89)] and
h �HF

Ci [Eq. (90)] with respect to the variational kernels

SðkÞ and Vðk;k0Þ, we obtain the following system of
coupled integral equations:

SðkÞ ¼
1
2CFI

ð1Þ
C ðkÞ

jkj � g
2CFI!ðkÞ ; (92)

Vðk;k0Þ ¼ �g
1þ S2ðkÞ þ RðkÞ

2jkj � gCFI!ðkÞ þ CFI
ð2Þ
C ðkÞ ; (93)

where we have introduced the loop integrals (‘ ¼ k� q)

I!ðkÞ ¼ 2
Z

}3qVðk; qÞDð‘Þ½1þ ðk̂ � ‘̂Þðq̂ � ‘̂Þ�; (94)

Ið1ÞC ðkÞ ¼
Z

}3q
VCðk� qÞ

1þ S2ðqÞ þRðqÞ ½SðqÞð1� S2ðkÞ
þRðkÞÞ � ðk̂ � q̂ÞSðkÞð1� S2ðqÞ �RðqÞÞ�; (95a)

Ið2ÞC ðkÞ ¼
Z

}
3q

VCðk� qÞ
1þ S2ðqÞ þRðqÞ ½2SðkÞSðqÞ

þ ðk̂ � q̂Þð1� S2ðqÞ �RðqÞÞ�: (95b)

Let us explain the notation of the loop integrals. The
integrals with subscript C are the contributions from the
color-Coulomb interaction, whereas I! refers to the trans-
verse gluon interaction.

The gap equation (93) determines that the variational
function Vðk; k0Þ depends on its first momentum argument
only, i.e.,2

Vðk; k0Þ ¼ VðkÞ: (96)

With this form of the vector kernel, the loop integrals I!ðkÞ
[Eq. (94)] and RðkÞ [Eq. (74)] simplify to

I!ðkÞ ¼ 2VðkÞIðkÞ; RðkÞ ¼ CFV
2ðkÞIðkÞ; (97)

with

IðkÞ¼
Z
}
3qDð‘Þ½1þðk̂ � ‘̂Þðq̂ � ‘̂Þ�; ‘¼k�q; (98)

being the gluon loop. Then the system of coupled
equations (92) and (93) becomes after the replacement
VðkÞ ! ð�VðkÞÞ,3

SðkÞ ¼
1
2CFI

ð1Þ
C ðkÞ

jkj þ gCFVðkÞIðkÞ ; (99)

VðkÞ ¼ g

2

1þ S2ðkÞ þ RðkÞ
jkj þ gCFVðkÞIðkÞ þ 1

2CFI
ð2Þ
C ðkÞ : (100)

Once these equations are solved, the quark part of the
vacuum wave functional of QCD is known and all quark
observables can, in principle, be evaluated. These
equations need the gluon propagator (31) and the non-
Abelian Coulomb potential (35) as input. For the gluon
propagator, wewill use the Gribov formula (33). Following
Ref. [25] for the Coulomb potential, we use the confining
form (36), which in momentum space reads

VCðkÞ ¼ 8��C

k4
: (101)

With this potential, the Coulomb loop integrals Ið1ÞC ðkÞ
[Eq. (95a)] and Ið2ÞC ðkÞ [Eq. (95b)] are UV finite. Then

the only UV-divergent quantity occurring in the gap
equations is the gluon loop integral IðkÞ [Eq. (98)].
The gluon energy (33) contains a mass scale (Gribov

mass) MG which separates the UV and IR regions of the
gluon propagator. To isolate the divergencies of IðkÞ, we
replace the gluon propagator in the momentum regime
q >MG by its UV part

DUVðkÞ ¼ 1=ð2jkjÞ; (102)

and define the UV part of the gluon loop integral as

IUVðkÞ ¼
Z d3q

ð2�Þ3 DUVðk� qÞ�ðjqj �MGÞ

� ½1þ ðk̂ � ‘̂Þðq̂ � ‘̂Þ�; ‘ ¼ k� q: (103)

The � function ensures that only loop momenta q larger
than the Gribov mass scale MG contribute. Introducing a
momentum cutoff �, this integral is readily evaluated.
Separating divergent and finite pieces

IUVðk;�Þ ¼ IfinUVðkÞ þ IdivUVðk;�Þ; (104)

we find

IdivUVðk;�Þ ¼ 1

8�2

�
�2 � 2

3
�k

�
; (105)

2In an unquenched calculation, taking the variation of the pure
Yang-Mills part �HC

YM [Eq. (25)] into account, this statement no
longer holds true.

3By the definition of V [see Eqs. (50), (51), and (54)], this
replacement is equivalent to changing the sign of the gauge field
AðxÞ or of the coupling constant g, which leaves the theory
invariant.
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and

IfinUVðkÞ ¼
1

8�2

��
�M2

Gþ
2

3
kMG

�
�ðMG� kÞ

þ
�
�2

3

M3
G

k
þ 1

6

M4
G

k2
þ 1

6
k2
�
�ðk�MGÞ

�
: (106)

Note that the UV-divergent part IdivUVðkÞ [Eq. (105)] is

independent of the Gribov mass scale MG, which was
used to define the UV regime. A comment is here in order:
a shift of the integration variable q ! l would make the
integral a (diverging) constant independent of k. However,
as is well known, shifting the integration variable before
regularization changes the value of the regularized integral.
It is important to keep the rooting as in Eq. (103) for which
the UV-finite part of the gluon loop integral, IfinUVðkÞ
[Eq. (106)] has the asymptotic behavior

IfinUVðk ! 1Þ ¼ k2

48�2
; (107)

which ensures that the dressing function VðkÞ has the
correct UV-perturbative behavior, as we will see in the
next section.

We now define the regularized part of the gluon loop
integral (98) by subtracting its UV-divergent piece
IdivUVðk;�Þ

IregðkÞ ¼ lim
�!1

½Iðk;�Þ � IdivUVðk;�Þ� þ C; (108)

where C is an arbitrary finite renormalization constant. In
principle, this constant could be determined by minimizing
the energy density. This would, however, require us to
renormalize not only the gap equations (99) and (100),
but also the energy density itself, which is quite involved
and which we have not done yet. However, we can circum-
vent this problem by noticing that the quark condensation
occurs in order to lower the energy of the system. (The
superconducting groundstate has a lower energy than the
normal state.) We can therefore assume to minimize
the energy density by maximizing the quark condensate.

Hence, we will choose C so as to maximize the magnitude
of the quark condensate. We have found that the optimal
value is C ¼ M2

G=ð8�2Þ. The regularized gluon loop inte-

gral (108) is plotted in Fig. 2.

VIII. ASYMPTOTIC ANALYSIS

Below we analyze the coupled equations (99) and (100)
in the IR and UV. For this purpose we analyze first the loop

integrals Ið1ÞC (k) [Eq. (95a)], Ið2ÞC (k) [Eq. (95b)], and IðkÞ
[Eq. (98)].

The angular parts of the Coulomb integrals Ið1ÞC ðkÞ and
Ið2ÞC ðkÞ can be reduced to the following two types of angular
integrals:Z

d�qVCðk� qÞ;
Z

d�qVCðk� qÞk̂ � q̂; (109)

where
R
d�q ¼

R
�
0 sin 	d	

R
2�
0 d’ and k̂ � q̂ ¼ cos	. The

’ integral is trivial. For the Coulomb potential (101), the
integrals over z ¼ cos	 can also be taken analytically,
using

Lðk; qÞ 	
Z 1

�1
dz

1

ðk2 � 2kqzþ q2Þ2 ¼
2

ðk2 � q2Þ2 ; (110a)

Mðk; qÞ 	
Z 1

�1
dz

z

ðk2 � 2kqzþ q2Þ2 ¼
k2 þ q2

kqðk2 � q2Þ2 þ
1

2

1

k2q2
ln

��������k� q

kþ q

��������: (110b)

A. IR analysis

We first study the IR behavior by expanding the kernels
Lðk; qÞ [Eq. (110a)] and Kðk; qÞ [Eq. (110b)] in powers of
k, yielding

Lðk; qÞ ¼ 2

q4
þ 4k2

q6
þOðk4Þ; (111)

Mðk; qÞ ¼ 8

3

k

q5
þOðk3Þ: (112)

For k ! 0 the leading contribution comes from the kernel
Lðk; qÞ, while the kernel Mðk; qÞ vanishes at this order.
For vanishing momenta, the (regularized) integral IðkÞ
[Eq. (108)] is IR finite. Assuming the variational functions
SðkÞ, VðkÞ to be analytic in the IR region, the gap equation
(99) for SðkÞ reduces for k ! 0 to
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gCFVð0ÞIð0ÞSð0Þ ¼ ~Ið1ÞC ð0Þ; (113)

where

~I ð1Þ
C ð0Þ ¼ ½1� S2ð0Þ þ CFV

2ð0ÞIð0Þ�IIRC ð0Þ (114)

and we have introduced the abbreviation4

IIRC ð0Þ ¼ G
Z

dqq2Lðk ¼ 0; qÞ SðqÞ
1þ S2ðqÞ þ RðqÞ ; (115)

with Lðk; qÞ given in Eq. (111) and G ¼ �C=�. Equation
(113) is a quadratic equation and can be solved as

Sð0Þ ¼ �gCFVð0ÞIð0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgCFVð0ÞIð0ÞÞ2 þ 4ðIIRC ð0ÞÞ2ð1þ CFV

2ð0ÞIð0ÞÞ
q

2IIRC ð0Þ : (116)

For the BCS type of wave functional, defined by Eq. (50)
with vanishing vector kernel VðkÞ, Eq. (113) simplifies to

0 ¼ ½1� S2ð0Þ�IIRC ð0Þ (117)

and is solved for Sðk ! 0Þ ¼ �1. This solution is of
course also obtained from Eq. (116) with Vð0Þ ¼ 0. With
the coupling of the quarks to the transverse gluons included
½VðkÞ � 0�, all parts of the QCD energy contribute to the
infrared value Sð0Þ of the scalar gap function SðkÞ, which is
then no longer constrained to �1.5 To find the infrared

value of VðkÞ, we take the k ! 0 limit of Eq. (100), which
yields

½gCFVð0ÞIð0Þ þ ~Ið2ÞC ð0Þ�Vð0Þ
¼ g

2
½1þ S2ð0Þ þ CFV

2ð0ÞIð0Þ�; (118)

with ~Ið2ÞC ð0Þ ¼ 2Sð0ÞIIRC ð0Þ and IIRC ð0Þ defined by Eq. (115).
Equation (118) can be solved for Vð0Þ, yielding

Vð0Þ ¼ �2Sð0ÞIIRC �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Sð0ÞIIRC Þ2 þ ðgCFIð0ÞÞðgð1þ S2ð0ÞÞÞ

q
gCFIð0Þ : (119)

Like SðkÞ, the vector kernel VðkÞ is IR finite. Since
Vðk ¼ 0Þ � 0, we can expect that the coupling of the
quarks to the transverse gluons is indeed relevant for the
infrared physics.

B. UV analysis

Due to asymptotic freedom, we expect the coupling
kernels SðkÞ and VðkÞ to vanish for k ! 1. Therefore,
we make the following power-law Ansätze

Sðk ! 1Þ ¼ A

k�
; Vðk ! 1Þ ¼ B

k�
: (120)

Since the integralsLðk; qÞ,Mðk; qÞ [Eqs. (110a) and (110b)]
are symmetric in the two entries k and q, the UV behavior of
these integrals for large k ! 1 can be obtained from the IR
expressions for k ! 0 [Eqs. (111) and (112)] by interchang-
ing the momenta k $ q, yielding

Lðk; qÞ ¼ 2

k4
þO

�
1

k6

�
; (121)

Mðk; qÞ ¼ 8q

3k5
þO

�
1

k7

�
: (122)

With these expressions one finds for the UV behavior of the
Coulomb integrals (94) and (95a)

Ið1ÞC ðk ! 1Þ ¼
�
2

k4
þO

�
1

k6

��
½1� SðkÞ

þ CFV
2ðkÞIðkÞ�IUVC (123a)

Ið2ÞC ðk ! 1Þ ¼
�
2

k4
þO

�
1

k6

��
2SðkÞIUVC ; (123b)

with

IUVC ¼ G
Z

dqq2
SðqÞ

1þ S2ðqÞ þ RðqÞ : (124)

Furthermore, the finite UV leading term of the gluon
loop integral IðkÞ [Eq. (94)] is given by IfinUVðkÞ 
 k2; see
Eq. (107).
With the UV behavior of the loop integrals at hand, it is

now straightforward to carry out the UVanalysis of the gap
equations (98) and (99). One finds the following behavior:

4We note that the integral IIRC ð0Þ is finite when the infrared
regulator " [Eq. (133)] is introduced, which is done in the
numerical evaluation.

5However, using a perturbative gluon propagator, i.e.,
!UVðkÞ ¼ jkj, the infrared value of S is, as for the BCS case,
constrained to be unity [since the loop integral IðkÞ [Eq. (98)]
then vanishes like k2 for small momenta].
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SðkÞ 
 1=k5; VðkÞ 
 1=k; k ! 1: (125)

The same UV behavior of SðkÞ was found in Ref. [25].
The results obtained in this chapter in the IR and UV

analysis are all confirmed in the numerical solution of the
gap equations (99) and (100). The variational functions
show a perfect power-law behavior for large momenta;
see Fig. 4.

IX. CHIRAL SYMMETRY BREAKING WITH
SPATIAL GLUONS ONLY?

We first explore whether, neglecting the Coulomb
potential VCðkÞ [Eq. (101)], the coupling of the quarks to
the transverse gluons alone can generate spontaneous
breaking of chiral symmetry.

Neglecting the Coulomb potential implies Ið1;2ÞC ðkÞ ¼ 0
[Eqs. (95a) and (95b)] and simplifies the equations of
motion (99) and (100) to

SðkÞðkþ gCFVðkÞIðkÞÞ ¼ 0 (126)

VðkÞ ¼ g

2

1þ S2ðkÞ þ CFV
2ðkÞIðkÞ

kþ gCFVðkÞIðkÞ : (127)

A nonvanishing quark condensate (87) requires SðkÞ � 0,
for which Eq. (126) reduces to

kþ gCFVðkÞIðkÞ ¼ 0: (128)

This equation has no solution, in particular for k ¼ 0, since
Iðk ¼ 0Þ � 0. Hence, with the neglect of the color
Coulomb potential VCðkÞ [Eq. (101)], only the trivial so-
lution SðkÞ ¼ 0 exists; i.e., spontaneous breaking of chiral
symmetry does not occur.

For the trivial solution SðkÞ ¼ 0 of the gap equation (99),
the equation (100) for the vector kernel reduces to

VðkÞ ¼ g

2

1þ CFV
2ðkÞIðkÞ

jkj þ gCFVðkÞIðkÞ ; (129)

which can be easily solved, yielding

VðkÞ ¼ k

gCFIðkÞ
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2CFIðkÞ

k2

s
� 1

�
: (130)

Only the upper sign corresponds to the physical solution,
since the vector kernel VðkÞ has to vanish in the limit
g ! 0. Indeed for the upper sign we find, for small g
with the UV behavior of the gluon loop IðkÞ [Eq. (107)],

VðkÞ ¼ g

2k
þO

��
g

k

�
2
�
: (131)

We also observe from the solution (130) that the limit of
small g is equivalent to the limit of large k, which is, of
course, a consequence of asymptotic freedom. Thus,
Eq. (131) already gives the UV behavior of VðkÞ. The
solution (130) provides also an IR constant behavior as
found in the previous section:

Vðk ¼ 0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CFIð0Þ

p ¼ const: (132)

The solution VðkÞ [Eq. (130)] is plotted in Fig. 3. All
dimensionful quantities are given in units of the
Wilsonian string tension�W ¼ ð440 MeVÞ2. In the present
calculation, the physical scale is set by the Gribov mass
MG (34), which enters the gluon energy (33). For the
Casimir invariant CF, the SUð3Þ value CF ¼ 4=3 is taken.
Moreover, the (running) coupling g (which was calculated
in the Hamiltonian approach in Ref. [5] from the ghost-
gluon vertex) is replaced by its infrared value g 	 gðk ¼
0Þ ¼ 8�=

ffiffiffiffiffiffiffiffiffi
3NC

p
.

The investigations of the present section show that the
coupling of the quarks to the transverse (spatial) gluons
alone is incapable of inducing spontaneous breaking of
chiral symmetry. On the other hand, we know from
Ref. [25] that the color Coulomb interaction VCðkÞ
[Eq. (101)] alone does generate spontaneous breaking of
chiral symmetry but not the sufficient amount, as we will
see in the next section.

X. NUMERICAL RESULTS

When the Coulomb potential VCðkÞ [Eq. (101)] is
included, the equations of motion (99) and (100) contain
two dimensionful quantities: the Coulomb string tension
�C [Eq. (37)] and the Gribov mass MG [Eq. (33)] of the
transverse gluon propagator. As discussed at the end of
Sec. III, these two quantities are not independent of each
other. The Gribov mass MG can be rather accurately de-
termined on the lattice and wewill use its lattice value (34).
The Coulomb string tension is much less accurately deter-
mined; see Eq. (37).
For the numerical solution of the coupled equations (99)

and (100), all dimensionful quantities are expressed in
terms of the Coulomb string tension �C. Furthermore, to
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FIG. 3. The vector kernel VðkÞ resulting from the solution of
the gap equation (131).
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avoid problems due to the divergence of the Coulomb
potential VCðkÞ at k ! 0, we introduce an IR regulator "

VCðkÞ ! VCðk; "Þ ¼ 8��C

k2ðk2 þ "2Þ : (133)

Then our solutions SðkÞ and VðkÞ will depend on ".
However, we have tested that the solutions Sðk; "Þ and
Vðk; "Þ both converge for " ! 0. The resulting numerical
solutions for SðkÞ and VðkÞ are shown in Fig. 4. These
solutions confirm the asymptotic behavior obtained in
Sec. VIII. From these solutions one finds the dynamical
quark mass MðkÞ [Eq. (85)], shown in Fig. 5. It reaches a
plateau value at small momenta and vanishes for k ! 1, in
accordance with asymptotic freedom. The plateau value
Mðk ¼ 0Þ defines the constituent mass, which is obtained as

Mð0Þ ¼ 132 MeV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C=�W

q
: (134)

For the quark condensate, Eq. (87), we find

h �c c i ’ ð�135 MeV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C=�W

q
Þ3: (135)

Using �C ¼ ð2 . . . 3Þ�W, we obtain

Mð0Þ ’ ð186 . . . 230Þ MeV

h �c c i ’ �ð191 . . . 234 MeVÞ3:
(136)

While the obtained mass is somewhat smaller than the
constituent mass of the light quark flavors, which is about
300 MeV, the obtained chiral condensate compares more
favorably with the phenomenological value of h �c c i ¼
ð�230 MeVÞ3.
Let us now compare our results with those obtained

when the coupling of the quarks to the transverse gluons
is neglected, VðkÞ ¼ 0, i.e., when the BCS-type quark
wave functional is used, Ref. [25]. Figures 5 and 6 show
the dynamical mass MðkÞ and the scalar form factor SðkÞ,
respectively, for both cases. When the coupling to the
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transverse gluons is neglected, both MðkÞ and SðkÞ are
substantially reduced. One finds then

Mð0Þ ’ 84 MeV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C=�W

q
h �c c i ’ �ð113 MeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C=�W

q
Þ3:

(137)

Compared to these results, the inclusion of the coupling of
the quarks to the transverse gluons, i.e., of the vector kernel
VðkÞ, increases the quark condensate h �c c i [Eq. (135)] by
20% and the constituent mass [Eq. (134)] by 60%.

In Fig. 7 we compare our results for the dynamical mass
to the lattice data obtained recently in Ref. [42]. As one
observes the shape of the momentum, dependence is re-
produced but the absolute values are still too small.

XI. UNQUENCHING THE GLUON PROPAGATOR

So far all calculations were done in the quenched ap-
proximation; i.e., the gluon propagator and the Coulomb
kernel were taken from the pure Yang-Mills sector and
used as input for the treatment of the quark sector. In a fully
unquenched calculation, the variation would be carried out
at the same time with respect to all variational kernels
and the resulting equations of motion had to be solved
self-consistently. Below we give an estimate of the

unquenching effects by calculating the corrections to the
gluon propagator but using in these corrections the
quenched gluon propagator as input.
The unquenching arises from two sources: first, from

those fermionic contributions to the energy density, which
depend on the gluon propagator [see Eqs. (89) and (90)],
and second, from the norm of the fermionic wave func-
tional (the fermion determinant) [see Eq. (63)], which does
depend on the gauge field. In a fully unquenched calcu-
lation, the fermionic wave functional must not be normal-
ized separately from the gluonic one, as we did in the
present calculation given above. We will investigate both
effects separately.

A. Quark energy contributions

In Ref. [14] it was shown that the gluonic Coulomb term
is irrelevant for the Yang-Mills sector. We expect that this
is also true for the contribution of the quark Coulomb
energy (90) to the unquenching of the gluon propagator.
This is because the Coulomb potential (35) depends only
implicitly on the gluon propagator, and variation of
Eq. (90) with respect to the gluon propagator gives rise
to more than two loops. We are then left with the quark
energy hHFi [Eq. (89)]. Variation of this quantity with
respect to the gluon propagator !�1ðkÞ yields

�

�!�1ðkÞ
� hHFi
�3ð0Þ

�
	 �ðkÞ

¼ NCCF

Z
}
3p

1

1þ S�ðpÞSðpÞ þ RðpÞ
�
gðV�ðp; ‘Þ þ Vðp; ‘ÞÞ þ 2

Vðp; ‘ÞV�ð‘;pÞ
1þ S�ðpÞSðpÞ þ RðpÞ

�
� ½1þ ðp̂ � k̂Þð‘̂ � k̂Þ�; (138)

with ‘ ¼ p� k. This gives an extra contribution to the
gluonic gap equation, Ref. [1], which then reads

!2ðkÞ ¼ !2
YMðkÞ þ �ðkÞ; (139)

where !YMðkÞ is the gluon energy in the pure Yang-Mills
case [in the previous section this quantity was called!ðkÞ].
Obviously, the unquenching correction �ðkÞ [Eq. (138)]
disappears when the coupling of the quarks to the trans-
verse gluons is neglected, Vðp; ‘Þ ¼ 0.

The quark contribution �ðkÞ [Eq. (138)] is UV diver-
gent. It is straightforward to extract its divergence structure

�DIVðk;�Þ ¼ 
�2 þ
�þ
k2 ln�; (140)

where � is the 3-momentum cutoff. The quadratic and
linear divergence disappear when the gap equation is re-
normalized by subtracting it at a renormalization scale.
More elegantly these terms, as well as the logarithmic
divergence, are eliminated by adding appropriate counter-
terms to HF [Eq. (4)], analogous to the renormalization
in the gluon sector; see Refs. [8,43]. Here we will just

consider the finite part of �ðkÞ [Eq. (138)], use the
renormalization condition

!2ð
;�Þ

2

¼ !2
YMð
Þ

2

; (141)

and fix the renormalization point 
 in the ultraviolet, which
is justified since for large momenta the quark vacuum
becomes bare.
To estimate the unquenching effect due to the quark

energy contribution we assume for !YMðkÞ the Gribov
formula (33) with the same Gribov mass MG¼880MeV
as used above. The resulting gluon propagator DðkÞ ¼
1=ð2!ðkÞÞ is shown in Fig. 8 together with the quenched
result. It is seen that the unquenching decreases the gluon
propagator in the mid-momentum regime but leaves the
UVand IR asymptotic behavior unchanged. Unfortunately,
it is the mid-momentum regime which is relevant for the
hadron physics and also for the deconfinement phase tran-
sition. Therefore, unquenching seems to be important for a
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realistic description of hadrons and the deconfinement
transition.

B. The fermion determinant

As already discussed above, in a fully unquenched cal-
culation only the total wave functional of QCD can be
normalized while the norm of the quark wave functional
becomes a dynamical object due to its dependence on the
gauge field. The norm of our quark wave functional (50) is
given by Eq. (63):

h�Fj�Fi ¼ Det� ¼ exp ðTr ln�Þ; (142)

where the matrix � is defined by Eq. (62) and is a func-
tional of the gauge field A. By Wick’s theorem, this
quantity arises as a factor in all fermionic expectation
values. In the scalar product of the QCD wave functionals
(22), Det� can be considered as part of the Yang-Mills
wave functional j�YMðAÞj2. To keep the gluonic functional
integral Gaussian, we expand Tr ln� up to second order in
the gauge field. With [see Eqs. (51) and (62)]

� ¼ �0 þ�1 � A; (143)

this yields

Tr ln� ¼ Tr ln�0 þ Trð��1
0 � � AÞ

� 1

2
Trð��1

0 �1 � A��1
0 �1 � AÞ

¼ constþ 1

2

Z
A�A: (144)

The zeroth order term is an irrelevant constant which can
be absorbed into the overall normalization of the QCD
wave functional. The linear term vanishes due to the color
trace, while the quadratic term gives the quark loop con-
tribution � to the gluon self-energy. Due to the transver-
sality of the gauge field and the absence of external color
fields, we have

�ab
ij ðkÞ ¼ �abtijðkÞ�ðkÞ: (145)

The explicit calculation yields

�ðkÞ ¼ � 1

2

Z
}3p

V2ðp;pþ kÞ
ð1þ S2ðpþ kÞÞð1þ S2ðpÞÞ

� ð1þ SðpÞSðpþ kÞÞð1þ ðk̂ � p̂Þ
� ðk̂ � ð dpþ kÞÞÞ: (146)

Taking into account the unquenching effects from the
quark loop, the gluon propagator is then given by

!ðkÞ ¼ !YMðkÞ þ �ðkÞ: (147)

Again the unquenching disappears, �ðkÞ ¼ 0, when the
coupling of the quarks to the spatial gluons is switched off
in the wave functional, VðkÞ ¼ 0. The integral �ðkÞ
[Eq. (146)] is linearly divergent. Carrying out the renor-
malization as in the previous subsection, we find for the
(partially) quenched gluon propagator the result shown in
Fig. 8. Again, the gluon propagator is affected by the
quarks only in the intermediate momentum region.
However, now the propagator is increased, although the
amount of increase is much less than the decrease found in
the previous subsection from the quark-gluon coupling
energy hHFi [Eq. (138)]. From this we can conclude that
the unquenching reduces the gluon propagator in the mid-
momentum regime. In a self-consistent solution, both of
these unquenching effects combine nontrivially in the gap
equations. Due to the net reduction of the gluon propagator
by the unquenching, we expect that in a fully self-
consistent calculation, the unquenching effects are less
dramatic than found above but may still be essential.

XII. SUMMARYAND CONCLUSIONS

The variational approach to Yang-Mills theory in
Coulomb gauge developed previously in Ref. [1] has
been extended to full QCD. The QCD Schrödinger
equation has been variationally solved in the quenched
approximation using an Ansatz for the quark wave func-
tional, which explicitly includes the coupling of the quarks
to the spatial gluons and thus goes beyond previously used
BCS-type quark wave functionals. For the Yang-Mills
sector, we have used the vacuum wave functional deter-
mined previously in [1,5] as input.
Our quark wave functional contains two variational

kernels: one scalar kernel SðkÞ, which is related to the
quark condensate and occurs already in the BCS-type
wave functionals, and a vector kernel VðkÞ, which repre-
sents the form factor of the quark gluon coupling. The
equations of motion following from the variational princi-
ple for these kernels have been solved analytically in the
infrared, in the ultraviolet, and numerically in the whole
momentum regime. Both kernels are infrared finite and
vanish at large momenta in accordance with asymptotic
freedom. We have shown that neglecting the color
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FIG. 8. The full curve is the Gribov form. The dash-dotted
curve is the unquenching effect considered in Eq. (139).
The dashed line shows the result (147).
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Coulomb potential, the coupling of the quarks to the spatial
gluons is not capable of triggering spontaneous breaking of
chiral symmetry and always produces a vanishing scalar
kernel SðkÞ ¼ 0. When the confining color Coulomb po-
tential is included, the coupling of the quarks to the gluons
substantially enhances the amount of chiral symmetry
breaking towards the phenomenological findings. The
quark condensate is increased by about 20% and compares
favorably with the phenomenological values. Although the
constituent quark mass is increased by about 60% due to
the coupling of the quarks to the spatial gluons, the value
found is still somewhat small.

One may speculate where the missing chiral strength is
lost in the present approach. Certainly we have used a
couple of approximations but given the success of the
present approach in the pure Yang-Mills sector, one would
perhaps expect a better agreement with the phenomeno-
logical data. First one should remark that the lattice calcu-
lations done in Coulomb gauge, Ref. [42], show that the
running quark mass MðkÞ is smaller in the quenched cal-
culation compared to the dynamical one. But this effect is
only of the order of a few percent. Next one may question
the additional approximation 1=ð1þ K �KÞ ! 1=ð1þ
hK �KiGÞ we have used in the quark sector when calculating
the gluonic expectation values of fermionic operators. We
do not expect that this approximation makes big quantita-
tive changes, since this replacement is exact for the scalar
kernel K0 
 SðkÞ, which dominates the chiral properties.
One may then ponder on our Ansatz for the quark wave
functional, Eq. (50). This wave functional, being given by
an exponent which is bilinear in the quark field, represents
the most general Slater determinant. One certainly does not
want to abandon the determinantal states in order not to
lose Wick’s theorem. However, we have assumed for the
kernel K in the exponent of the quark wave functional an
expansion in powers of the gauge field and restricted this
expansion in linear order. This is certainly a rather crude
approximation. It is straightforward to extend the present
approach by keeping in the kernel K (51) higher powers of
the spatial gluon field. Then the fermionic part of the

present calculation does not change at all. What changes
is the gluonic expectation value, which, however, can be
done by using Wick’s theorem since the employed gluonic
wave functional is Gaussian. We expect a substantial im-
provement by including terms in the kernel K, which are
second order in the gauge field. This will introduce further
variational kernels, which can only improve the results
towards the exact ones. Let us also mention that one may
also include a quark-gluon coupling term of the type used
in the present paper [see Eq. (54)] with the Dirac matrix �
replaced by the Nabla operator.
In principle, one can go beyond the determinantal quark

wave functional (50) and include in its exponent, e.g., four-
fermion operators. Such a wave functional can be handled
by means of the approach based on Dyson-Schwinger
equation techniques and developed in Ref. [36] for the
treatment of non-Gaussian wave functionals in the Yang-
Mills sector. An extension of this approach to full QCD is
in progress [44].
Finally in the last part of our paper we have considered a

partial unquenching by including the change of the gluonic
energy due to the presence of the quarks. Our results show
that unquenching reduces the static gluon propagator in the
mid-momentum regime. The unquenching effects disap-
pear when the coupling of the quarks to the spatial gluons
is neglected.
Some results of the present paper were used in Ref. [45]

to study the influence of spatial gluons on the chiral
symmetry patterns of the high-spin meson spectrum.
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