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We investigate the dynamical breaking of local supersymmetry (supergravity), including the Deser-

Zumino super-Higgs effect, via the corresponding one-loop effective potential for the simple but quite

representative cases ofN ¼ 1, D ¼ 4 simple supergravity and a (simplified) conformal version of it. We

find solutions to the effective equations which indicate dynamical generation of a gravitino mass, thus

breaking supergravity. In the case of conformal supergravity models, the gravitino mass can be much

lower than the Planck scale, for global supersymmetry breaking scales below the grand unification scale.

The absence of instabilities in the effective potential arising from the quantum fluctuations of the metric

field is emphasized, contrary to previous claims in the literature.
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I. INTRODUCTION AND SUMMARY

Supersymmetry is an important theoretical and phe-
nomenological subject that has dominated theoretical
physics for decades, despite the lack (so far) of evidence
that it actually exists in nature. It assists us in understand-
ing several aspects of low energy physics, from the stability
of the Higgs vacuum to the unification of forces, and even
the low scale of inflation (relative to the Planck mass), in a
way that is much clearer than in nonsupersymmetric
frameworks. The embedding of supersymmetry into a
gravitational framework by promoting global supersym-
metry into a local (gauged) symmetry, termed supergravity
[1], has initiated many interesting avenues of research
toward understanding both the unification of gravity with
the remaining three fundamental forces of nature, and to
some extent quantization of the gravitational field. In par-
ticular, it is well known that supergravity theories consti-
tute consistent low-energy limits of superstring theories,
which are thought to provide plausible paths to the quan-
tization of gravity in concert with other fundamental
interactions.

However, supersymmetry is not phenomenologically
observed in nature, and thus if it exists, it must be broken
in the low energy world. It is therefore desirable to under-
stand the spontaneous or dynamical breaking of super-
symmetry under various possible circumstances, of which,
thanks to the profusion of gauge and matter sectors that
may be consistently coupled into supersymmetry, there are
many [2]. It would be preferable however, to seek a way of
breaking local supersymmetry (supergravity) directly in a
dynamical manner, without the need to couple it to a gauge
sector.

One such approach would be to leverage the fermionic
(gravitino) torsion terms that are generically present in

supergravity theories, which consist of four-gravitino
self-interaction terms. The latter could conceivably con-
dense under certain circumstances, thereby producing con-
densates of the gravitino field, which in this way would
dynamically acquire a nonzero mass whilst leaving the
graviton massless. In this way supergravity would be bro-
ken dynamically, in the same spirit as the breaking of chiral
symmetry in the Nambu-Jona-Lasinio model [3].
It was conjectured in [4,5] that such a dynamical breaking

of supergravity could occur via the formation of condensates
of the gravitino field, with analyses based on the one-loop
effective potential of a simpleN ¼ 1 supergravitymodel in
a flat Minkowski space-time (necessary to allow an unam-
biguous definition of the gravitino mass via the condensate
field). The effective potential of the gravitino condensate
field, dependent on positive powers of the ultraviolet (UV)
cutoff scale due to the well-known nonrenormalizability of
quantum gravity in four space-time dimensions, acquires a
nontrivial minimum for some values of the cutoff relative to
the gravitational constant (reduced Planck mass). In the
analyses of [4,5] the gravitino thereby acquires a dynamical
mass of the order of the Planck scale.
It was important for their analyses that the one-loop

value of the effective potential vanishes at the nontrivial
minimum, which implies the vanishing of the effective
vacuum energy of the resulting low-energy theory. This
arguably justifies a posteriori the Minkowski space-time
analysis of the effective potential. It was also important for
both the entire approach and the double-well shape of the
effective potential, appropriate for supergravity breaking,
that the Deser-Zumino super-Higgs effect [6] was incorpo-
rated self-consistently by coupling the supergravity action
with the nonlinear Volkov-Akulov action [7] of the
Goldstone particle associated with the (assumed F-type)
spontaneous global supersymmetry breaking. The latter is
a Majorana spin-1=2 fermion, the Goldstino.
This formalism was essential for two reasons. Firstly, the

Goldstino could be absorbed by the gravitino, under an
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appropriate field redefinition to make the latter massive,
and thus disappear from the physical spectrum Secondly,
the only subsequent trace of the Goldstino would be a
(negative) cosmological constant �f2 in the effective
action, which is associated with the scale of global super-
symmetry breaking; namely, the vacuum expectation value
of the appropriate F-term of the chiral scalar superfield
responsible for spontaneous supersymmetry breaking. This
is the super-Higgs effect [6] which is essential in keeping
track of the right degrees of freedom in the problem of
dynamical acquisition of a mass by the gravitino field, and
the consequent breaking of local supersymmetry.

From the point of view of the effective potential, this
would correspond to a positive term at the origin in field
space of order of f2, which is responsible for the double-
well shape of the potential at the broken symmetry phase.
These considerations are consistent with the generic fea-
tures of dynamical supersymmetry breaking outlined by
Witten [8], according to which the vacuum energy of
broken global supersymmetry is necessarily positive,
here f2 > 0, whilst a broken local supersymmetry (super-
gravity) can still be characterized by zero vacuum energy.

Although physically appealing, the flat Minkowski
space-time approach of [4,5] was criticized in [9] due to
the fact that it ignored the quantum fluctuations of the
metric field. Following the generic approach of Fradkin
and Tseytlin [10] of calculating the one-loop effective
potential in four-dimensional supergravity theories by
means of expanding about a generic (anti)de Sitter, rather
than Minkowski, background, the authors of [9] have
argued that integrating over metric fluctuations introduces
imaginary parts in the effective potential, for any nontrivial
value of the gravitino condensate field, and irrespective
of the value of the background cosmological constant
� (whose role is to effectively replace [10] the flat-space
UV cutoff of [4,5]).

The presence of imaginary parts would of course be
an indication that the nontrivial-gravitino-condensate
(broken supergravity) vacuum is unstable, and thus there
would be no possibility of breaking N ¼ 1 supergravity
dynamically in this simple and direct way. Of course, the
traditional way of breaking supergravity via dynamical
global supersymmetry breaking through, say, gaugino con-
densation [2], which would then be communicated to the
(super)gravity sector, evades the arguments of [9] and thus
has appeared to be the only consistent way of dynamically
breaking supergravity, carrying the price of necessarily
coupling the theory to matter fields.

In this paper we shall revisit the arguments and the
analysis of [9], with a view to incorporating the super-
Higgs effect that was not included in their analyses. We
have been motivated to do so by the compelling nature
and simplicity of the possibility of direct dynamical break-
ing of supergravity by means of its gravitino-torsion
self-interactions.

As it turns out, and as is demonstrated below in great

detail, the proper incorporation of the super-Higgs effect in

such a framework enables the dynamical breaking of

supergravity (prior to its coupling to matter or gauge

fields), in the sense that a one-loop effective potential

analysis considering fully metric fluctuations about

(anti)de Sitter backgrounds, and thereby fully incorporat-

ing any (weak) quantum gravitational effects, reveals the

existence of nontrivial vacua with no imaginary parts,

contrary to the claims of [9].
It should be firstly noted that the analyses therein were

performed in a different gauge to ours, which, given the

gauge dependence of the supergravity effective action

(a feature the authors were certainly aware of [9,11]),

complicates direct comparison. However, we may also

note that, independent of gauge considerations, in order

to obtain the correct number of degrees of freedom for a

massive particle an appropriate ‘‘eating’’ mechanism must

be in place for the gravitino, which in the case examined in

[9], was absent. We shall elaborate on these important

points later on.
The double-well shape of the effective potential we find,

and its vanishing at the nontrivial minima, fully justifies the
flat-space approximate analysis of [4,5] and demonstrates
that the presence of the cosmological constant f2 due to the
super-Higgs effect is responsible for the vanishing of the
effective vacuum energy of the low-energy effective action
of supergravity at the one-loop level.
The structure of the article is as follows:
(i) In Sec. II we briefly review the super-Higgs effect in

the context of simpleN ¼ 1,D ¼ 4 supergravity, in
order to outline to the reader its important features,
and the underlying physics that will be used in our
analysis of the resultant one-loop effective potential.

(ii) In Sec. III we set up the basic formalism and nota-
tions underlying the model of N ¼ 1 supergravity
that we shall consider for concreteness in this work.
Our formalism of course applies in general to more
complicated theories of supergravity.

(iii) In Sec. IV we discuss the quadratic action obtained
from the previous section by incorporating weak
metric fluctuations about a given (anti)de Sitter
background, in conjunction with the linearization
of four-gravitino terms by means of appropriate
auxiliary fields. This is the first step towards the
construction of a ‘‘proper’’ [i.e. incorporating
(weak) quantum gravitational effects] one-loop ef-
fective potential. We discuss bosonic and fermionic
sectors separately as well as their respective gauge
fixing procedures.

(iv) In Sec. V we construct the effective potential and
discuss the shape that we require in order to obtain
nontrivial local supersymmetry (supergravity)
breaking, via dynamical condensation of the grav-
itino field. We discuss carefully the absence of
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imaginary parts in certain nontrivial vacua, contrary
to the claims of [9], and explain carefully how this
may be achieved. As we also show in Sec. VC,
phenomenologically realistic values for the gravi-
tino mass and the associated breaking scale of
global supersymmetry can be achieved only in
appropriate conformal extensions of the N ¼ 1
supergravity, which may also be relevant for
inflation.

(v) Conclusions and outlook are then given in Sec. VI,
and some technical aspects of our approach of
constructing the one-loop effective potential are
discussed in an Appendix.

II. SUPER-HIGGS EFFECTAND GOLDSTINO
COUPLING TO SUPERGRAVITY

The Goldstino is a Majorana fermion with a Volkov-
Akulov Lagrangian [7] that arises from some spontaneous
or dynamical breaking of global supersymmetry, as a result
of the appropriate extension of Goldstone’s theorem to
supersymmetry.1 Here we consider the case where the
breaking of global supersymmetry is of the so-called
F-type, in which the F-term of some chiral superfield �
acquires a vacuum expectation value:

hFi ¼ f: (1)

In the original works of [7], the Goldstino Lagrangian is
written in terms of a four-component Majorana spin-1=2
Goldstino field (denoted �), with L� ¼ �ðf2Þ det ð��

� þ
i ����@��=2f

2Þ. The constant f expresses the strength of

global supersymmetry breaking and the Lagrangian is
characterized by a nonlinear realization of global super-
symmetry with infinitesimal parameter �:

�� ¼ f�þ i
1

f
�����@��: (2)

The coupling of the Goldstino to supergravity may then
generate a mass for the gravitino through the absorption of
the Goldstino, via the super-Higgs effect envisaged in [6].

According to this model, the N ¼ 1 supergravity the-
ory is coupled to the Goldstino field �. Thus, we consider a
spontaneously broken supersymmetric theory with a
Majorana Goldstino �, whose action takes the nonlinear
form considered by Volkov and Akulov [6,7]:

L� ¼ �f2 det

�
��
� þ i

1

2f2
����@��

�

¼ �f2 � 1

2
i ����@��þ � � � ; (3)

where we used a weak field expansion expansion of the
determinant.2 Here we keep the discussion general by
allowing for an arbitrary value of the parameter f.
As discussed in [6], one can promote the global super-

symmetry to a local one, by allowing the parameter �ðxÞ to
depend on space-time coordinates, and coupling the action
(3) to that of N ¼ 1 supergravity in such a way that the
combined action is invariant under the following super-
gravity transformations:

�� ¼ f�ðxÞ þ � � � ; �ea� ¼ �i� ��ðxÞ�ac �;

�c � ¼ �2��1@��ðxÞ þ � � � ; (4)

where the � � � in the � transformation denote nonlinear
�-dependent terms [cf. the variation (2)]. The action that
changes by a divergence under these transformations is the
standard N ¼ 1 supergravity action plus

L� ¼ �f2e� i

2
����@��� ifffiffiffi

2
p ����c � þ � � � ; (5)

which contains the coupling of the Goldstino to the
gravitino. In the above notation, e denotes the vierbein
determinant.
The Goldstino can then be gauged away [6] by a suitable

redefinition of the gravitino field and the tetrad. One may
impose the gauge condition,

c ��
� ¼ 0; (6)

but this leaves behind a negative cosmological constant
term, �f2e, so the total Lagrangian after these redefini-
tions reads

Leff ¼ �f2eþ ðN ¼ 1 supergravityÞ; (7)

where the Lagrangian of N ¼ 1 supergravity is the
subject of the next section.

1The reader is reminded that the generator Q� of global
supersymmetry transformations is a space-time spinor, and
hence if ! denotes the Goldstone field, then the commutator
that is not annihilating the vacuum (�� is an infinitesimal
global-supersymmetry-transformation parameter) h0j�"!j0i ¼
�"�h0j½Q�;!�j0i � �" _�h0j½ðQ�Þy; !�j0i � 0 must be a scalar
for reasons of Lorentz invariance, and hence ! must be a
fermionic field, to be identified with a spin-1=2 four-component
Majorana Goldstone fermion (Goldstino), �.

2It is worth noticing that, on using a two-component (Weyl)

representation of the Majorana Goldstino field, � ¼ Gc

G

� �
,

where G is a two-component Weyl spinor, employing fermionic
spinor truncation, the Volkov-Akulov Lagrangian acquires the
exact form:

L VA�2comp ¼ �f2 þ i@� �G �	�Gþ 1

2f2
�G2@2G2

� 1

4f4
G2 �G2@2G2@2 �G2:

For our purposes here, truncation to terms of first order in
derivatives suffices in the weak field approximation we utilize
herein.
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III. N ¼ 1, D ¼ 4 SIMPLE SUPERGRAVITY:
PRELIMINARIES

Working in the 1.5 order formalism of the Einstein-
Cartan formulation of supergravity, we have the
Lagrangian [1]

LSG ¼ � e

2�2
Rðe; c Þ � 1

2
����
c ��5��D�c 


þ e

3
ðA2

� � S2 � P2Þ; �2 ¼ 8�G; (8)

Rðe; c Þ ¼ e�ae
�
bR

ab
��ðe; c Þ

¼ RðeÞ þ 11

4
�4ðc ��

��c �Þ2 þ � � � ;

��� ¼ 1

4
�½����; (9)

Rab
��ðe;c Þ¼@�!

ab
�ðe;c Þ�@�!

ab
�ðe;c Þ

þ!�
ac!�c

bðe;c Þ�!�
ac!�c

bðe;c Þ; (10)

!�
abðe; c Þ ¼ !�

abðeÞ þ �2

4
ð �c ��

ac b � �c ��
bc a

þ �c a��c
bÞ;

D� ¼ @� þ 1

2
!�

abðeÞ	ab; (11)

where R½e� is the scalar curvature in the absence of torsion,
ðA�; S; PÞ is the minimal set of auxiliary fields required for

closure of the algebra and � � � indicates interaction terms
between the gravitino and graviton fields, and four-
gravitino interactions involving �5. As we are in the 1.5
order formalism our spin connection !ðeÞ is determined
entirely by the associated field equation, so that we may
neglect the variation �!.

The action is also invariant under the local super-
symmetry transformations,

�ea� ¼ �

2
��ac �;

�c � ¼ 1

�

�
D� þ i�

2
A��

5

�
�� 1

2
����;

�S ¼ 1

4
�� � �R;

�P ¼ � i

4
��5� � �R;

�A� ¼ 3i

4
��5

�
�R� � 1

3
��� � �R

�
;

� ¼ � 1

3
ðS� i�5P� i 6A�5Þ;

(12)

where �R is the ‘‘supercovariantized’’ gravitino field
equation,

�R�¼���
	�5��

�
D
c 	� i

2
A	�5c 
þ1

2
�	�c 


�
: (13)

The gauge condition (6) is understood from now as having
been imposed in the fermionic sector of the supergravity
action. As mentioned previously, it is in this gauge that the
decoupling of the Goldstino from the supergravity action,
uponan appropriate redefinition of thegravitinofield, occurs.
To investigate the possibility of dynamical mass genera-

tion for the gravitino we first introduce an auxiliary scalar
field 	 to linearize the four-gravitino interaction term in
Eq. (9) via the equivalence

e

2�2
Rðe;c Þ ¼ e

2�2

�
RðeÞ þ 11

4
�4ðc ��

��c �Þ2 þ �� �
�

� e

2�2
RðeÞ � e	2 � e

ffiffiffiffiffiffi
11

p

2
ffiffiffi
2

p �	ðc �c
�Þ þ � � � ;

(14)

which follows as a simple consequence of the subsequent
Euler-Lagrange equation for 	. Taking into account the
Goldstino-induced negative cosmological constant term
arising from Eq. (5), the relevant terms in Eq. (7) are then

Leff ¼ � e

2�2
ðRðeÞ þ 2�2ðf2 � 	2ÞÞ

� 1

2
����
c ��5��D�c 


þ
ffiffiffiffiffiffi
11

p

2
ffiffiffi
2

p e�	ðc �c
�Þ þ � � � : (15)

Following the normalization for the gravitino mass of [10],

1

2
����
c ��5��D�c 
 þmðc ��

��c �Þ; (16)

we note that, if 	 acquires a nonzero vacuum expectation
value (vev) through the process of quantization so that
	c � h	i � 0, then we have dynamically generated an
effective mass of

m ¼
ffiffiffiffiffiffi
11

2

s
�	c; (17)

for the gravitino, thus breaking local supersymmetry.
The other four-gravitino terms (which involve �5) can be
neglected in this regard as they are not of canonical form
for mass terms, as can the (subleading at one-loop order)
gravitino-graviton interaction terms.
Furthermore, we may then define

�0 � �2ð�f2 þ 	2
cÞ

) Leff ¼ � e

2�2
ðRðeÞ � 2�0Þ þ � � � ;

(18)

so that we may identify �0 with a tree-level cosmological
constant.3

3We may also consider contributions of S and P to give a tree-
level cosmological constant which we can tune in such a way
that such contributions are absorbed in f2 in (18), so that �0 is
understood to contain such contributions.
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Upon quantization this bare cosmological constant is
then dressed by quantum corrections to yield a renormal-
ized cosmological constant �. In this sense, although de
Sitter space-time may not be a solution of the bare
equations of motion stemming from N ¼ 1 supergravity
Lagrangian (8) in its broken symmetry phase, it may be the
solution of a quantum effective action, after the fluctuations
of the metric and other (gravitino and ghost) fields are
taken into account.

For the purposes of our analysis here, and following
[10], we assume that one may expand the one-loop effec-
tive action about a de Sitter background with a positive
renormalized cosmological constant, �> 0, whose value
will be determined by minimization of the one-loop effec-
tive action. It is however known that in supergravity an
apparent (but not actual) gravitino mass term is required in
the presence of a nonzero cosmological constant [12] for
the closure of the supersymmetry algebra, mandating that
we consider the limit � ! 0 to ensure that any such
gravitino mass generated is indeed physical.

It is important to stress at this point that since � is
equivalently the overall energy density at the level of
the one-loop effective potential Veff , we then furthermore
require as a self-consistency condition that f	c � 0;
Veffð	cÞ ¼ 0g: i.e. that the energy density (and thus �) is
indeed zero at whatever nontrivial minima we find. This is
achieved in practice by tuning f2, which is contained within
the bare cosmological constant (18).

Our algorithm is therefore to find the one-loop effective
action for this theory in d ¼ 4 (Euclidean) de Sitter space
(R�� ¼ �g��), before solving the corresponding effective

equations in the limit that the effective cosmological con-
stant � vanishes, enabling a straightforward interpretation
of any resultant gravitino mass.

Some technical but important remarks are in order at
this stage. One may consider the excursion of our theory
through de Sitter space purely in the spirit of Euclidean
continuation, as appropriate for path integrals in a
consistent quantization of (super)gravity, allowing us to
arrive back at a physical theory only in the limit � ! 0.
We may also note a tension here in that whilst the grav-
itinos in (8) are Majorana, there are in fact no Majorana
representations on S4 [or equivalently, in SOð5Þ]. As how-
ever we are treating this continuation as a purely technical
step, we will proceed with the understanding that we will
arrive at a physical result only after completing these
manipulations.

IV. ONE-LOOP PARTITION FUNCTIONS

To compute the one-loop effective action for a given
theory there are a number of operations that we must first
take account of. Firstly, we must expand about a classical
background to compute fluctuations of the action to qua-
dratic order, via decompositions of the type ~g�� ! g�� þ
h��, where for our purposes g�� is the standard Euclidean

dS4 metric. Working to one-loop order in this instance has
the advantage of decoupling the gravitino and graviton
sectors, as all gravitino terms in (8) are already quadratic,
and Lorentz invariance forbids any fermionic background
terms.
Since we are interested in the one-loop effective poten-

tial for the auxiliary field 	, it is sufficient to identify the
latter with its vev 	 ! 	c. Indeed, the auxiliary field does
not propagate at tree level, and its kinetic term (obtained
from the integration over other degrees of freedom, for a
nonuniform configuration 	) would therefore be purely
one-loop. Hence, its influence on the effective potential,
which is already of one-loop order, would be at least of
two-loop order. We therefore replace from now on	 by	c.
Note that the effective potential obtained in this way would
be exact if one integrated over N ! 1 fermions (which is
excluded here because of the matching of bosonic and
fermionic degrees of freedom).
We must also decompose all fields present (including

ghosts) into those that are ‘‘natural’’ to our background
geometry; more precisely, to those corresponding to irre-
ducible representations of the underlying isometry group.
It is the spectra of these operators that can be reliably found
through knowledge of the underlying representation
theory, which will then allow us to compute the effective
action.

A. Bosonic sector

Starting with the gravitational Lagrangian in (18), we
first vary to quadratic order in h��, yielding (in the metric

formalism) [10]

1

4�2

Z
d4x

ffiffiffi
g

p �
1

2
�h��

�
�r2 þ 8

3
�� 2�0

�
�h��

� 1

8
hð�r2 � 2�0Þh�

�
r� �h�� � 1

4
r�h

�
2
�
; (19)

where we have followed the convention that D and r
are the spin and Christoffel connections respectively,
and have also made the standard decomposition h�� ¼
�h�� þ g��h=4.

It is important to also note that given the presence
of fermions we must work in the vierbein formalism, which
leads to extra terms (which vanish on shell) in the quadratic
action relative to the metric formalism [13]. This can
be understood as arising from the first variation of the
gravitational action, which takes the form

ðG�� þ g���0Þ�g�� ¼ ðG�� þ g���0Þ�eð�a�jabje�Þ
b:

(20)

We can then see that the second variation in the vierbein
formalism will coincide with the metric formalism, along
with the additional term
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1

4�2

Z
d4x

ffiffiffi
g

p ðG�� þ g���0Þ�eð�a�jabj�e�Þ
b

¼ 1

16�2

Z
d4x

ffiffiffi
g

p
g��ðGþ 4�0Þ�eð�a�e�Þa

¼ 1

16�2

Z
d4x

ffiffiffi
g

p ð�0 ��Þh2��

¼ 1

4�2

Z
d4x

ffiffiffi
g

p �
�0 ��

2

��
1

2
�h2�� þ 1

8
h2
�
; (21)

where we have used that h�� ¼ 2eð�
a�e�Þa and that

g�� ¼ eð�a�
jabje�Þb.

We therefore reexpress (19) as

1

4�2

Z
d4x

ffiffiffi
g

p �
1

2
�h��ð�r2 þ X1Þ �h�� � 1

8
hð�r2 � X2Þh

�
�
r� �h�� � 1

4
r�h

�
2
�
; (22)

X1 ¼ 8

3
�� 2�0 þ�0 ��

2
¼ 13

6
�� 3

2
�0;

X2 ¼ 2�0 þ�0 ��

2
¼ 5

2
�0 � 1

2
�:

(23)

To further decompose into the ‘‘irreducible action’’
we will make use of the standard ‘‘transverse traceless’’
decomposition

V� ¼ V?
� þr�; r�V?

� ¼ 0;

DV ¼ DV?D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det�0ð0Þ

q
; (24)

�h�� ¼ �h?�� þr��
?
� þr��

?
� þr2

���� 1

4
g��r2�;

g�� �h�� ¼ 0; (25)

r� �h?��¼0;

D �h��¼D �h?D�?
�D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det�1ð��Þ��0

�
�4

3
�

�
��0ð0Þ

s
;

(26)

where V� is some vector field and we have also defined a

class of bosonic operators for constant X:

�0ðXÞ ¼ ð�r2 þ XÞ; (27)

�
��
1 ðXÞ�?

� ¼ ð�r2�� þ g��XÞ�?
� ; (28)

���
2��ðXÞ �h?�� ¼ ð�r2��

�� þ ��
���

�XÞ �h?��: (29)

It is these operators whose spectra we shall ultimately
compute. There is however an important caveat that we
must bear in mind in that are extra zero modes present in
these decomposed operators, which must be correctly ac-
counted for [10]. We will take account of these later, where

we will note that in the limit � ! 0 their contributions are
of subleading order.
To streamline the process of computation we will make

use of the following (S4) identities:

V�ðð�r2þXÞ���þcr��ÞV�

¼V?
��1ðXÞV�?þð1�cÞ�0ð0Þ�0

�
X��

1�c

�
; (30)

�h��ðð�r2þXÞ���þcr��Þ �h��
¼ �h?�� ��? �
� �

�

�2ðXÞ
ð2�cÞ�1ð��Þ�1

�
3c��10�þ6X

6�3c

�
3
16ð4�3cÞ�0ð0Þ�0

�
�4�

3

	
�0

�
4ðð3c�8Þ�þ3XÞ

12�9c

�

0
BBBBBB@

1
CCCCCCA

Diag

�
�h?��

�?
�

�

0
BB@

1
CCA; (31)

for some constants X and c.

1. Gauge fixing

We have two symmetries present in this sector; local
Lorentz and infinitesimal coordinate transformations. To
fix the former we simply follow the convention of setting
the antisymmetric part of the vierbein to zero [1], leading
to nonpropagating ghost fields which can then be disre-
garded here. To fix the coordinate gauge transformations
we add a standard two parameter covariant gauge fixing
term,

SðGFÞB ¼� 1

4�2

1

�

Z
d4x

ffiffiffi
g

p �
r�h�� � 1þ�

4
r�h

�
2
; (32)

which necessitates the ghost action

SðGHÞB

¼ 1

4�2

1

�

Z
d4x

ffiffiffi
g

p �C�

�
ð�r2��Þ���þ��1

2
r��

�
C�;

(33)

for some anticommuting complex vector field C.
This may be easily integrated after applying the first

identity given previously to arrive at the ghost partition
function

ZðGHÞ
B ¼ det �1ð��Þ ��0

�
4�

�� 3

�
; (34)

where we have absorbed any prefactors into the
normalization of the functional measure.
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2. Physical gauge

There is however a secondary line of approach by which
we may instead address the issue of gauge fixing. This is
via an appeal to so-called ‘‘physical’’ gauges; gauges
which represent an alternative path to quantization to the
conventional Faddeev-Popov method, inasmuch as they
consist of isolating the gauge degrees of freedom present
and essentially disregarding them as a physical gauge
choice.

In practice this is achieved in the following manner. It is
first well known that we must gauge fix in order to render
path integrals well defined. Without dividing out by the
volume of the gauge group, we naturally overcount field
configurations which are physically equivalent and related
by gauge transformations. Conventionally this is remedied
via a gauge fixing condition specifying a phase-space
hypersurface which intersects each orbit of the gauge
group, along with the inclusion of a Faddeev Popov ghost
determinant in the path integral measure to locally cancel
the phase-space curvature of non-Abelian gauge symme-
tries. This is however not the only path we may proceed by.

Reexamining our gauge fixing condition (32) we may
consider the illuminative case � ! 0, whereupon we may
strongly impose (i.e. use at the level of the action, rather
than solely imposing via Lagrange multiplication) the
condition

r�h
�
� � �þ 1

4
r�h ¼ 0: (35)

Substituting the decomposition (25) and setting� ¼ 0, this
condition then becomes r�r��� þr�r��

� ¼ 0 for

�� ¼ �T
� þr��. We may then straightforwardly note

that �� must therefore be Killing, and as such, it is ��

that parametrizes the underlying diffeomorphism symme-
try present. Our physical gauge condition is then to
strongly impose that �� ¼ 0 and therefore disregard the

components of the graviton corresponding to general
coordinate transformations; i.e. the fields �T

� and � in our

notation. The functional integral over these gauge degrees
of freedom then yields an infinite constant prefactor of
the volume of the diffeomorphism group, which is unim-
portant for our purposes.

We should note at this point that there are some
additional complications to this physical gauge procedure
regarding the correct counting of the zero modes of
�� (which should not necessarily be disregarded even if

�� ¼ 0), however as in the previous instance of the extra

zero modes arising from our decompositions, these con-
tributions are subleading as � ! 0.

Given the inevitable gauge dependence of effective
potentials such as these; a consequence of our artificial
truncation to one-loop order, it is arguable that physical
gauge techniques are more natural in this context,
and certainly can offer significant computational
simplifications. It is perhaps unsurprising then that they

have been utilized effectively in a number of situations
similar to these [13–15].
Naturally of course we may apply these same consid-

erations to the gauge fixing of the fermionic sector, how-
ever for our purposes it will suffice to utilize this procedure
only in the bosonic case. As we will see, in this context it is
ultimately the behavior of the bosonic sector that dictates
the stability of the effective potential.

3. Gravitational partition function

With the two extra contributions outlined above, along
with our gauge fixing term, the quadratic gravitational
action now becomes

Sð2ÞB ¼ 1

4�2

Z
d4x

ffiffiffi
g

p �
1

2
�h��

�
ð�r2 þ X1Þ��

�

þ 2

�
1þ 1

�

�
r�

�

�
�h��

� ð3�þ �2Þ
16�

h

�
�r2 � 2X2�

ð3�þ �2Þ
�
h

� �þ �

2�
�h��r��h

�
: (36)

Performing the functional integral would be straight
forward, were it not for the final term in (36). However,
we may first note from (27) that �h?�� is conserved and so

cannot mix with h. Furthermore, we may also leverage the
result that for Einstein backgrounds there is no ð�?; hÞ
mixing [16]. To eliminate the final ð�; hÞ mixing we could
then also use a so-called ‘‘diagonal gauge’’ [13], however
this would be incompatible with the Landau-DeWitt
gauge choice, which we know to correspond to the unique
gauge-invariant one-loop effective action for pure Einstein
gravity [17].
Instead, we will proceed with our general-gauge

calculation. Schematically, the scalar part of the action is
then of the form

1

4�2

Z
d4x

ffiffiffi
g

p
0
@ h �
� � � A1 B

B A2

 !
� h

�

 !1A (37)

with matrix elements

A1 ¼ � 1

16�
ð�ð3�þ �2Þr2 � 2X2�Þ; (38)

A2¼�3ð�þ3Þ
16�

�0ð0Þ�0

�
�4

3
�

�
�0

�
4ð��3Þ��6�X1

3ð�þ3Þ
�
;

(39)

B ¼ � 3ð�þ �Þ
16�

�0ð0Þ�0

�
� 4

3
�

�
; (40)

so that we may integrate this along with the other fields
present to find the bosonic partition function
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ZðBÞ ¼ ZðGHÞ
B �

�
det �0ð� 4

3�Þ ��0ð0Þ
det�2ðX1Þ � �1ð�ð23�� X1Þ ��Þ � ðA1A2 � B2Þ

�
1=2

¼ det�1ð��Þ � �0

�
4�

�� 3

�
�
�
�2ðX1Þ ��1

�
�

�
2

3
�� X1

�
��

�
��0

�
A3 �

ffiffiffiffiffiffi
A4

p
6ð�� 3Þ2

���1=2
; (41)

A3 ¼ 4�ð6�þ �2 þ 6�� 9Þ � 6X1ð3�þ �2Þ
þ 6ð�þ 3ÞX2; (42)

A4¼4ð2�ð6�þ�ð�þ6Þ�9Þ�3X1ð3�þ�2Þ
þ3ð�þ3ÞX2Þ2þ48ð��3Þ2X2ð3�X1�2ð��3Þ�Þ;

(43)

where we have again disregarded an irrelevant multiplicative
prefactor.

As a quick check we may verify that we can reproduce
known results from the literature. If we consider the re-
placements fX1 ! 8

3�� 2�0; X2 ! 2�0; � ! 1; � ! 0g,
corresponding to Einstein gravity in Landau-DeWitt
gauge, we find

ZðBÞ !
�

det �1ð��Þ ��0ð�2�Þ
det �2ð83�� 2�0Þ ��0ð�2�0Þ

�
1=2

; (44)

arriving precisely at the partition function given in [10].
Equivalent results in other gauges follow similarly.

B. Fermionic sector

On the fermionic side we follow largely the same
approach as utilized in the previous section, with the
exception that rather than starting from the Euclidean
(S4) action, wewill utilize (8) and perform the continuation
at an opportune moment. We have the action

Sð2ÞF ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

2
����
c ��5��D�c 


�
ffiffiffiffiffiffi
11

p
ffiffiffi
2

p �	cðc ��
��c �Þ

�
; (45)

which, given the absence of fermionic background terms,
is already quadratic in quantum fields. From the standard
decompositions

c � ¼ ’� þ 1

4
��c ; ��’� ¼ 0;

’� ¼ ’?
� þ

�
D� � 1

4
�� 6D

�
�; D�’?

� ¼ 0;

Dc � ¼ D’?
�DcD�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det�1=2ð� 4
3�Þ

q ; (46)

where c ¼ 0 in our gauge choice (6). We then define a
class of fermionic operators for constant X:

�1=2ðXÞc ¼ ð�D2 þ�þ XÞc ;

�
��
3=2ðXÞ’?

� ¼
�
�D2�� þ 4

3
�g�� þ g��X

�
’?

�;
(47)

where explicit � terms are largely for future convenience
and coherence with the literature.
We Euclideanize via the transformations

f�0 ! i�0
E; �

j ! �j
E; e

0 ! e0E; e
j ! iejEg ) 6D ! i 6DE;

(48)

which, since the Dirac operator ‘‘squares’’ to give the
Laplacian

6D2
E ¼ �D2 þ R

4
; (49)

provides the useful transformation

�6D2 ! �D2 þ R

4
; (50)

which we may then apply to simultaneously remove 6D
operators and Euclideanize the theory.
As before, we may streamline computations via the (S4)

identity given in [10] [using (50) as appropriate]

1

2
����
c ��5��D�c 
 þmðc ��

��c �Þ

¼ 1

2
�’?
�ð 6D�mÞ’?� þ 3

16
�� �c

� �

�
ð 6Dþ 2mÞ�1=2

�
� 4

3�
	

��1=2

�
� 4

3�
	

��1=2

�
� 4

3�
	

�ð 6D� 2mÞ

0
B@

1
CA

� �

c

 !
; (51)

where m is a generic mass term.

1. Gauge fixing

Although we have already imposed the gauge condition
via (6), to implement it consistently (and with a view to
preserving local supersymmetry) we may first consider a
more general gauge fixing strategy [which will in fact
supersede the condition (6)], before specializing to the
specific instance of � � c ¼ 0.
In generality, to fix the local supersymmetry present in the

gravitino sector we must supplement (45) with some gauge-
fixing term, which, to preserve on-shell supersymmetry, we
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may derive via considerations of the variation of (32)
with respect to the transformation �h�� ¼ � ���ð�c �Þ
(where � is assumed to be Killing, thus obeying the S4

relationD�� ¼ 1
2

ffiffiffiffiffiffiffiffiffi
� R

12

q
���).

As encountered in other circumstances, strict propor-
tionality between the fermionic and bosonic gauge fixing
terms is difficult due to the presence of ’?

� terms in the

variation of (32) [13,18]. As a compromise however, we
may find a proportionality in the following manner. Taking
the variation and the subsequent � trace (and noting that
we will apply the eventual constraint � � c ¼ c ¼ 0),
we find

��ðr��h
�
� þ �þ 1

4
r��hÞ ¼ 3

2
� ��

�
D2 þ R

12

�
�; (52)

which suggests the following gauge fixing term:

SðGFÞF ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p �F

0
@ 6Dþ

ffiffiffiffiffiffiffiffiffi
�R

3

s 1
AF;

F ¼
0
@ 6D�

ffiffiffiffiffiffiffiffiffi
�R

3

s 1
A�;

(53)

since 0
@ 6Dþ

ffiffiffiffiffiffiffiffiffi
�R

3

s 1
AF ¼

�
D2 þ R

12

�
�; (54)

and on-shell proportionality between (52) and (54) is
ensured.

To now find the corresponding ghost action we vary F
about the classical background (where S ¼ P ¼ A� ¼ 0)

by decomposing �c � in (12) to give�
D2 � R

12

��
�� � �

�

�
¼ 0; (55)

which yields the ghost action

SðGHÞF ¼ 1

�

Z
d4x

ffiffiffiffiffiffiffi�g
p

��

0
@ 6D�

ffiffiffiffiffiffiffiffiffi
�R

3

s 1
A�; (56)

for some commuting complex spin-1=2 field �.
To ensure on-shell gauge independence we must also

take account of so-called third (or Nielsen-Kallosh) ghosts

arising from the nontrivial

�
6Dþ

ffiffiffiffiffiffiffiffi
� R

3

q �
operator in our

gauge fixing condition. Exponentiating, we find

SðNKÞF ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
0
@!

0
@ 6Dþ

ffiffiffiffiffiffiffiffiffi
�R

3

s 1
A!

þ 


0
@ 6Dþ

ffiffiffiffiffiffiffiffiffi
�R

3

s 1
A


1
A; (57)

for some anticommuting Majorana and commuting Dirac
spinor fields ! and 
, respectively.
Integrating gives the fermionic ghost partition function

ZðGHÞ
F ¼

0
@det

0
@ 6D�

ffiffiffiffiffiffiffiffiffi
�R

3

s 1
A
1
A�1

0
@det

0
@ 6Dþ

ffiffiffiffiffiffiffiffiffi
�R

3

s 1
A
1
A�1=2

¼
�
det�1=2

�
�R

3

���3=4
; (58)

where we have leveraged (50) to equate

det ð 6D�mÞ ¼ ðdet�1=2ðm2ÞÞ1=2; (59)

which, as in the bosonic case, is true modulo the additional
zero modes incurred by the decomposition we have used.

2. Gravitino partition function

Combining these elements and noting that the gauge
condition (6) implies the vanishing of the spin-1=2 field
c , we find the quadratic gravitino terms

�1

2
’?

�

�
6D�

ffiffiffiffiffiffi
11

p
ffiffiffi
2

p �	c

�
’?�

�11

16
�

�
6Dþ3

ffiffiffi
2

p
ffiffiffiffiffiffi
11

p �	c� 8

11

ffiffiffiffiffiffiffiffiffiffiffiffi
�4

3
�

s �
�1=2

�
�4

3
�

�
�; (60)

which we can integrate as before to give the total fermionic
partition function (including Jacobian factors)

ZðFÞ

¼
det�3=2

11
2 �

2	2
c

� 	
��1=2






3
ffiffi
2

pffiffiffiffi
11

p �	c� 8
11

ffiffiffiffiffiffiffiffiffiffiffi
�4

3�
q 




2

� �
ðdet�1=2ð�4

3�ÞÞ3

0
BB@

1
CCA

1=4

;

(61)

and we have again leveraged (50) to equate

ðdet ð 6D�mÞ’?Þ ¼ ðdet �3=2ðm2ÞÞ1=2; (62)

which, as in the bosonic case, is true modulo the additional
zero modes incurred by the decomposition we have used.

V. ONE-LOOP EFFECTIVE POTENTIAL AND
SYMMETRY BREAKING PATTERNS

Having derived the relevant partition functions, we are
now in a position to compute the one-loop effective action
via the relation

� ¼ � ln ðZðBÞ �ZðFÞÞ ¼ 1

2
ln det�2ðX1Þ þ � � � ; (63)

in conjunction with the functional determinant techniques
detailed in the Appendix, i.e.
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ln det

�
�s

�2

�
¼ � 1

2
B0L

4 � 1

2
B2L

2 � B4

�
ln

�
L2

�2

�
� �

�

þ B4 ln

�
�

3�2

�
� � 0sð0Þ; (64)

where we have a cutoff � ¼ ð�2=L2Þ ! 0, � is the
Euler-Mascheroni constant, and the operator �s is ‘‘non-
decomposed.’’ The mass dimension of � and L is one, and
it is important to note at this point that as � arises from
Eq. (A10) in the Appendix, which can be thought of as a
proper time integral, � ! 0 is a short time (and thus high
energy) cutoff. Flowing from the UV to IR therefore
corresponds to the direction of increasing �2.

Given that we are investigating a simple model of
supergravity which we anticipate the embedding thereof

in the context of a more UV-complete theory, we set aside
the renormalizability of the action for now [encoded in the
divergent terms above (as an aside, B0 is always zero for
supersymmetric theories)]. Instead, we will focus on the
finite parts of our ‘‘decomposed’’ effective potential Veff

and the resultant effective equations. We may represent the
(finite parts of the) decomposed effective potential as

� ¼ Sc þ ðB4 � NÞ ln
�
�

3�2

�
� B0

4;

N ¼ 14� 1

2
� 8 ¼ 10; Veff ¼ � �2

24�2
�; (65)

where 24�2=�2 is the usual spacetime volume for an S4 of

radius
ffiffiffiffiffiffiffiffiffi
3=�

p
, and

Sc¼� 1

2�2

Z
d4x

ffiffiffi
g

p ðR�2�0Þ¼�12�2

�2�2
ðR�2�0Þ; (66)

B4 ¼ 1

2
�2ð0;X1Þ� 1

4
�3=2

�
0;
11

2
�2	2

c

�
� �1ð0;��Þþ 1

2
�1

�
0;�

�
2

3
��X1

�
��

�
� 1

4
�1=2

0
@0;







3

ffiffiffi
2

p
ffiffiffiffiffiffi
11

p �	c � 8

11

ffiffiffiffiffiffiffiffiffiffiffiffi
�4

3
�

s 







2

1
A

þ 3

4
�1=2

�
0;�4

3
�

�
� �0

�
0;

4�

�� 3

�
þ 1

2
�0

 
0;
A3 �

ffiffiffiffiffiffi
A4

p
6ð�� 3Þ2

!
; (67)

B0
4 ¼

1

2
� 02ð0; X1Þ þ � � � ; �sð0; XÞj�!0 � 6sþ 3

4

X2

�2
; � 0sð0; XÞj�!0 � 6sþ 3

4

X2

�2

�
3

2
� ln

�
3X

�

��
; (68)

where N is the number of extra zero modes incurred by
our decompositions (as alluded to previously, and first
elucidated in [10]).

We may note at this point the importance of the
asymptotic forms for � and � 0 presented above (and derived
in the Appendix); it is these relations that allow us to
express the effective potential in terms of elementary
functions, rather than the awkward integrals of digamma
functions from which they derive in this instance, and thus
fully investigate the behavior of Veff .

We should also note that one may be alarmed by the
presence of an Oðln ð�Þ��2Þ term in (68), which would
naturally dominate over any classical contributions as
� ! 0, suggesting a failure of our one-loop approach.
We may however note that there is a precise cancellation
of any such terms at the level of the effective potential.
More specifically, for every � 0s in (65) there is a correspond-
ing �s carrying the same coefficient and opposite sign. As
�s also gains a factor of ln ð�Þ in (65), this then cancels
exactly with the corresponding term arising from (68).

A. Imaginary terms

One may also naturally be alarmed by the presence of
ln ðXÞ terms in the above, as X has the potential to become
negative. This would then yield imaginary terms in the

effective potential, which, if not artifacts of our one-loop
formalism, would indicate an instability and thus the im-
possibility of dynamical gravitino condensation in this
context. We may address this issue in two distinct ways.
Given that the parameter we have available to tune is f,

we will consider the case where �0 < 0: i.e. whereupon
after varying 	c we self-consistently find nontrivial min-
ima 	2

c 	 f2. This is natural in the present context as we
are considering a renormalized cosmological constant
� ¼ �0 þOðℏ2Þ, and it is known generically that quanti-
zation of metric fluctuations about dS4 leads to (positive)
Planckian values for � [10]. To thus arrive at the case
�� 0 we must tune �0 (18) to cancel out the positive
energy density incurred via quantization, mandating that
�0 < 0.
Given that for � ! 0 X1 ! �3�0=2, it is first straight-

forward to note upon inspection of (67) that in the limit
� ! 0 the only � 0 functions from (68) which may be
problematic in this sense are(

� 01
�
0;
3

2
��0

�
; � 00

�
0;
A3 �

ffiffiffiffiffiffi
A4

p
6ð�� 3Þ2

�)
; (69)

corresponding to the fields �T
�, �, and h.

Working for convenience in the gauge � ! 0, these
become
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�
� 01ð0; 0Þ; � 00

�
0;
3ð�2 þ 5Þ�0

ð�� 3Þ2
�
; � 00ð0; 0Þ

�
; (70)

and it is simple to note that via (68) wewill then arrive at an
imaginary term in Veff which we may freely tune via the
gauge parameter �. This freedom to tune is of course
suggestive of the conclusion that any such terms are non-
physical. In this sense, the imaginary parts found in the
analysis of Ref. [9] might be considered as artifacts of their
particular gauge choice. However, the reader should notice
that, even in the present instance, imaginary parts do exist
if 	2

c > f2. This is an important point, which, because of
the absence of the global supersymmetry breaking scale f,
could not be discussed in [9]; namely that we need f � 0 in
order to avoid instabilities in the massive-gravitino phase.

Whilst the real-valued nature of � prevents us from
tuning any such terms exactly to zero, we may in practice
tune such that they may no longer play any physical role;
i.e. that

Im

�
24�2

�2
Veffð	cÞ

�
¼ 2n�; n 2 Z; (71)

for some nontrivial minimum 	c satisfying the self-
consistency condition Veffð	cÞ ¼ 0 outlined in the next
section. Given the inelegance of this approach however,
we will not make use of it in what follows.

We will instead address this issue via an appeal to
so-called physical gauges as outlined in IVA 2. In the
current context, this would amount to disregarding the
components of the graviton corresponding to general
coordinate transformations; i.e. the fields �T

� and � in our

notation. One may note that it is the ‘‘A3 þ
ffiffiffiffiffiffi
A4

p
’’ term

which yields the (noncontributory) last element of (70),
and also by comparison with the pure Einstein gravity case
as in (44) verify that it corresponds to the trace of the
graviton h. It is perhaps illustrative to then note that it is
precisely �T

� and � that correspond to the two remaining � 0

functions in (70), indicating that any imaginary terms in
this context must arise purely from gauge, rather than
physical, degrees of freedom. Working in a physical gauge
these � 0 functions would not be present, and reality of the
action for negative �0 would thus be assured.

B. Effective potential

Whilst, as discussed previously, we may tune � to
eliminate any imaginary terms, it is simpler in this context
to utilize a physical gauge. Having already derived the
effective action � in generality, it is straightforward to
specialize to this gauge; we set f� ¼ � ! 0g and disregard
the fields �T

� and �, along with the ghost fields that were

originally introduced to cancel out their (gauge) degrees of
freedom (which at any rate do not contribute for � ! 0).
Note that this process also requires careful handling of the
requisite Jacobians [14], which similarly have no effect for
� ! 0. The functional integral over these gauge degrees of
freedom then yields an infinite constant prefactor of the
volume of the diffeomorphism group, which is unimpor-
tant for our purposes. As also noted in the previous section
this process incurs extra zero modes, but whose contribu-
tions are subleading as � ! 0 and so can also be neglect-
ing in the following. We find for f� ¼ � ! 0g

Veff ¼ f2 � 	2
c þ �4

61952�2

�
16335f4 � 10890ðf2 � 	2

cÞ2 ln
�
3�2ðf2 � 	2

cÞ
2�2

�

� 32670f2	2
c þ 61156	4

c ln

�
�2	2

c

3�2

�
� 75399	4

c þ 58564	4
c ln

�
33

2

�
þ 2592	4

c ln

�
54

11

��
; (72)

where the limit � ! 0 is understood to have been taken.
Wemay first note the presence of the ln ð�2ðf2 � 	2

cÞÞ ¼
ln ð��0Þ term in (72), which has the capability to desta-
bilize the potential for f2 <	2

c. In some sense, given the
general incompatibility of supersymmetry with de Sitter
space, this should perhaps be unsurprising: as our intention
is to break local supersymmetry dynamically (i.e. via loop
corrections), breaking it first at tree level via a positive
cosmological constant �0 renders the subsequent breaking
via a dynamically generated 	c an impossibility. As such,
we must tune f for a given value of� to find self-consistent
minima 	c satisfying the condition 	2

c < f2 to ensure
�0 < 0 and thus a real Veff . If this condition is not met,
Veff will contain an imaginary contribution,

45i

256�
�4ðf2 � 	2

cÞ2: (73)

It is furthermore interesting to note that this problem-
atic term arises precisely from the spin-2 part of the
effective potential; absent these contributions, we find
the potential

f2 � 	2
c þ �4

30976�2

�
	4

c

�
30578 ln

�
�2	2

c

3�2

�

þ 29282 ln

�
33

2

�
þ 1296 ln

�
54

11

�
� 45867

��
; (74)

which is real for all f, 	c. We may compare this expres-
sion with the potential computed in [5], found in a similar
context but via an expansion about a flat, rather than
curved, spacetime (thus neglecting fluctuations of the
metric field).
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Vflat ¼ f2 � 	2
c þ �4

4�2

�
11

	2
c�

02

�2

þ 	4
c

�
121

2
ln

�
11�2	2

c

�02

�
� 121

4

��
; (75)

where �0 is the UV cutoff implemented in [5]. The shapes
of the potentials (72) and (75) are qualitatively similar,
however, we find generically that (72) leads to a larger
dynamically generated gravitino mass.

At this point we emphasize that the complexity of the
potential beyond the self-consistent minima is unproble-
matic in the current context; the minima 	c is a constant
which is self-consistently determined by the minimization
procedure, and in that sense is not a dynamical field.
Quantum fluctuations about the minima are represented
by a space-time dependent condensate field 	ðxÞ ¼ 	c þ
ℏ~	ðxÞ, which however is massive, with mass of order of the
gravitino field, as can be deduced by the (parabolic) shape
of the effective potential around the nontrivial minima.
Thus, such quantum fluctuations are suppressed and are
not capable of destroying the stability of the broken phase
minima.

A rigorous estimation of the mass of the gravitino
condensate requires a computation of the wave-function
renormalization of the condensate field, following the steps
outlined in [19]. In the present context, such an analysis has
to be performed in de Sitter space prior to the limit� ! 0.
Given that such estimates are of no interest to us at this
stage, we will not perform these calculations here. The
mass of the gravitino condensate, though, is essential when
discussing the phenomenology of inflationary scenarios
that such condensates may induce [19]. This is postponed
for a future publication.

It is straightforward to note (see Fig. 1) that the potential
above has the correct shape to realize the super-Higgs
effect, yielding [cf. (17), in view of the normalization of
[10] (16)] a minimum dynamically generated gravitino
mass of order

m ¼
ffiffiffiffiffiffi
11

2

s
�	c ¼

ffiffiffiffiffiffiffiffiffi
11

16�

s
�2	cMPl ’ 1:63730MPl

’ 1:99899� 1019 GeV; (76)

with a corresponding global supersymmetry breaking scaleffiffiffi
f

p ’ 0:37876MPl ’ 4:62433� 1018 GeV: (77)

Furthermore, we may isolate the fermionic and bosonic
contributions at zero and one-loop order as

Veff ¼ Vð0Þ
B þ Vð1Þ

B þ Vð1Þ
F ¼ ��0

�2
þ Vð1Þ

B þ Vð1Þ
F (78)

so that we may identify

Vð1Þ
B ¼ 45�4

512�2
ðf2 �	2

cÞ2
�
3� 2 ln

�
3�2ðf2 �	2

cÞ
2�2

��
; (79)

and

Vð1Þ
F ¼ �4	4

c

30976�2

�
30578 ln

�
�2	2

c

3�2

�
� 45867

þ 29282 ln

�
33

2

�
þ 1296 ln

�
54

11

��
: (80)

At the nontrivial minima given above we find �4Vð1Þ
F ’

�0:791357, �4Vð1Þ
B ’ 0:0410402, while the tree-level cos-

mological constant is negative (corresponding to anti–de
Sitter space time), �2�0 ’ �0:750279. In this case,
the one-loop cosmological constant (vacuum energy)
vanishes, as a result of the stronger spin-2 contributions
(positive sign) as compared with the (opposite sign)
gravitino torsion terms.
The above-mentioned dynamical gravitino mass can be

modified by tuning the free quantities f and �, with the
above minimum value (76), obtained when the nontrivial
minima of the potential occur close to inconsistent regions
of the parameter space, where�0 changes from negative to
positive, preventing the dynamical mass from being
consistently decreased further.
Moreover, as demonstrated in Fig. 2, the shape of the

effective potential changes, as one varies the (renormal-
ization) scale � from ultraviolet (UV) to infrared (IR)
values (i.e. flowing in the direction of increasing �), in
such a way that the symmetry broken phase (double-well
shaped potential) is reached in the IR. For comparison,
we also mention that this feature also characterizes
the flat-space time effective potential of [5], as shown in
[19]. This demonstrates that the dynamical generation
of a gravitino mass is actually an IR phenomenon, in

FIG. 1 (color online). The effective potential (72) for �� ’
3:87990, �2f ’ 3:60559, with nontrivial minima at �2	c ’
3:50000. We may observe first that �0 < 0 and Veff ¼ 0 at the
minima, to respectively ensure reality and self-consistency with
our previous limit� ! 0, and second that the onset of imaginary
terms [represented by the transition from blue (solid) to green
(dashed) in the curve] occurs when �0 changes sign. For higher
values of the nontrivial minima, this transition occurs further and
further away from the minimum, extending the range of the blue
curve beyond the minimum at the cost of a higher dynamically
generated mass.
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accordance with rather general features of dynamical
mass in field theory.

C. Conformal supergravity models and
phenomenologically realistic gravitino masses

Given the phenomenological unsuitability of the above
(trans-Planckian) value of the gravitino mass (76) and the
global supersymmetry breaking scale (77), of order of the
reduced Planck mass, it is natural to seek ways for gen-
erating much lower gravitino masses, for global supersym-
metry scales below the grand unification scale, thereby
making contact with realistic phenomenology of such
theories. To this end, we shall consider an extension of
the above analysis to a conformal N ¼ 1 supergravity
scenario, e.g. of the type considered in [20], which was
used in [19] to discuss the role of gravitino condensates
in providing inflationary scenarios compatible with the
current astrophysical data [21].

Although we shall postpone, for a forthcoming publica-
tion, a detailed analysis of dynamical breaking of local
supersymmetry in such conformal supergravities, includ-
ing their matter sectors (that notably can accommodate the
next-to-minimal supersymmetric standard model), we may
nevertheless discuss some important consequences of such
models in yielding phenomenologically realistic values
for the global supersymmetry breaking scale f and the
dynamical gravitino mass.

In this respect, we first notice that, in conformal super-
gravities [20,22] in the Jordan frame, there is a nontrivial
coupling of a dilaton superfield to the gravitational
Einstein term in the supersymmetric action. Passing to
the Einstein frame [22], where the (bosonic) Einstein-
Hilbert scalar curvature term in the Lagrangian assumes
its canonically normalized form, the gravitational part of
the action of N ¼ 1 conformal supergravity, of relevance
to our purposes here, is given by

LEðeEÞ�1 ¼� 1

2�2
REðeEÞ � 1

2
���
	c 0

��5��D
E

c

0
	

� e2’VE � 11�2

16
e�2’ððc 0

�c
0�Þ2

� ðc 0
��5c

0�Þ2Þ þ 33

64
�2e�2’ðc 0
�5��c

0

Þ2

þ �� � ; (81)

where the superscript E denotes quantities in the Einstein
frame, ’ is the (dimensionless) dilaton field, VEð’; . . .Þ its
potential, c 0

� denotes the canonically normalized gravitino

with a standard kinetic term as in N ¼ 1 supergravity, and
the . . . in (81) denote contributions from dilaton-derivative
terms, dilatinos, as well as auxiliary, gauge-fixing ghost and
matter fields,whichwill not play a role in our discussion here.
In general the form of the potential VE depends on the

low-energy content of the action, and apart from the dilaton
terms it may also contain terms that depend on matter
multiplet fields that appear in next-to-minimal extensions
of the standard model that can be accommodated in
the low-energy limit of such frameworks. For our purposes
in this workwe simply assume [19] that, upon appropriately
minimizing the potential VEð’; . . .Þ, the dilaton field is
stabilized to a (space-time) constant vev h’i ¼ ’0. In this
way, we observe from (81) that in conformal supergravities,
the four-gravitino interaction terms carry an extra factor
arising from the vev of the dilaton field, yielding a modified
coupling in the gravitino self-interaction sector [19]

~� ¼ e�’0�; h’i ¼ ’0: (82)

The presence of two couplings, one (the standard gravita-
tional one, �) for the metric tensor interactions, and the
other [~�, cf. Eq. (82)] for the gravitino self-interaction terms,
leads to the possibility of dynamical generation of much
smaller gravitino masses in the instance of conformal super-
gravity models with [19] ~� 
 � than in the simpleN ¼ 1
supergravity scenario discussed in previous sections.

FIG. 2 (color online). The effective potential (72) showing schematically the effect of tuning� and f, whilst holding, respectively, f
and� fixed. The arrows in the respective axes correspond to the direction of increasing� and f. We may first note that as we flow from
UV to IR [i.e. in the direction of increasing �, cf. discussion following Eq. (64)] we obtain the correct double-well shape required for
the super-Higgs effect, and, second, that tuning f allows us to shift Veff and thus attain the correct vacuum structure [i.e. nontrivial
minima 	c such that Veffð	cÞ ¼ 0].
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It should be noted, however, that, as in the standard super-
gravity case, the tree-level cosmological constant at the
broken symmetry minima (18) must be negative (anti–de
Sitter space-time) in order to avoid imaginary parts in the
potential, which still arise in the bosonic part of the potential
when 	2

c > f2. This is a notable difference from the flat
space-time case of [4,5,19], where �0 > 0 at the nontrivial
minima, and thus global and local supersymmetries are al-
ready broken at tree level. We next notice that in the confor-
mal case the gravitino torsion parts of the effective potential
dominate over the contributions due to the spin-2 graviton
quantum fluctuations, and thus it is such torsion condensates
which drive the one-loop cosmological constant to zero in
this case. Since the situation is qualitatively similar to the flat
space-time case of [5], we may say that in the case of
conformal supergravity models with ~� 
 �, the gravitino
torsion condensates ‘‘effectively’’ parallelize the manifold,
in the sense of the gravitino parts of the spin connection being
responsible for ‘‘flattening’’ the space-time.4

To see this, we first notice that in the conformal super-
gravity case, the contributions to the one-loop effective
potential coming from the spin-2 (graviton) fluctuations
are still given by (79), while the gravitino contributions are
given by (80) upon the replacement of � by ~�:

Vð1Þ
F ¼ ~�4	4

c

30976�2

�
30578 ln

�
~�2	2

c

3�2

�
� 45867

þ 29282 ln

�
33

2

�
þ 1296 ln

�
54

11

��

¼
�
~�

�

�
4 �4	4

c

30976�2

�
30578 ln

��
~�

�

�
2 �2	2

c

3�2

�
� 45867

þ 29282 ln

�
33

2

�
þ 1296 ln

�
54

11

��
: (83)

If we consider for concreteness the case ~� ¼ 103�,
which is a value dictated by the inflationary phenomenol-
ogy of the model [19], we may find solutions with a
vanishing one-loop effective potential at the nontrivial
minima corresponding to (cf. Fig. 3)

~�2	c ’ 3:50000; ~�2f ’ 3:69182;

~�� ’ 3:95668; (84)

which lead to a global supersymmetry breaking scaleffiffiffi
f

p ’ 4:67933� 1015 GeV; (85)

and dynamical gravitino mass

m ¼
ffiffiffiffiffiffi
11

2

s
~�	c ¼

ffiffiffiffiffiffiffiffiffi
11

16�

s �
�

~�

�
~�2	cMPl

’ 1:99899� 1016 GeV: (86)

At the nontrivial minima we find ~�4Vð1Þ
F ’ �1:37957,

~�4Vð1Þ
B ’ 5:87744� 10�13, with tree-level cosmological

constant ~�2�0 ’ �1:37957. These values are phenomeno-
logically realistic, thereby pointing towards the viability
(from the point of view of producing realistic results of
relevance to phenomenology) of the scenarios of dynami-
cal breaking of local supersymmetry in conformal super-
gravity models.
An additional important feature is the pronounced flat-

ness (near the origin, cf. Fig. 3) of the one-loop effective
potential for the gravitino condensate in such models, as
compared to the pure supergravity case of the previous
sections. This leads [19] to inflationary scenarios, with
the massive gravitino condensate playing the role of the
inflaton field, which are in agreement with the Planck
satellite data on inflation [21]. The (slow-roll) inflationary
phase in such approaches is identified with the rolling
of the inflaton/gravitino-condensate field towards its

FIG. 3 (color online). The effective potential in the case of
conformal supergravity models, with parameters ~� ¼ 103�,
~�2	c ’ 3:50000, ~�2f ’ 3:69182, ~�� ’ 3:95668. The flatness
of the potential around the origin is pronounced compared to
the simple N ¼ 1 supergravity case of Fig. 1, whilst the other
features of the diagram remain unchanged.

4In this sense, this situation is somewhat reminiscent of the
role of gravitino torsion contributions in the extra dimensional
space (S7, which is known to be a parallelizable manifold) of
higher-dimensional (D ¼ 11) supergravities [23], which were
argued to condense, canceling any contributions from the metric
in the corresponding components of the Christoffel symbol. In
this way, a vanishing cosmological constant arises [23] in the
four-dimensional space-time obtained after appropriate compac-
tification. However, our result on ‘‘torsion-induced parallelism’’
in the 4D conformal supergravity case does not constitute an
exact mathematical statement, since it is only demonstrated at
one loop. Unlike the higher-dimensional case of [23], it has not
been demonstrated that the gravitino torsion parts in the con-
nection cancel out exactly any bosonic metric contributions to
the Christoffel symbols, thereby leading to a vanishing Riemann
tensor for our four-dimensional space-time manifold. All we
have shown here is that, at one-loop order, the minimum of the
effective potential vanishes, if there are Lorentz-invariant bi-
linear gravitino condensates, corresponding to a nonzero grav-
itino mass. The resulting effective Einstein equations then, for
vanishing cosmological constant, admit flat Minkowski solutions
under the one-loop approximation. Hence, there is no contra-
diction of the current results with any rigorous theorems on
parallelism, known in the literature.
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nontrivial minimum on either side of the potential, with a
model-dependent duration. The initial value of the inflaton
depends on the initial conditions for inflation, whilst the
exit from inflation coincides with the phase in which the
field oscillates coherently near its nontrivial minimum.
In that regime, as becomes evident from the shape of the
double well potential, the inflaton condensate is massive
(in the conformal model of [19] the inflaton has mass of
the order of the grand unification scale). Reheating of the
Universe then could conceivably arise from the decays of
the condensate field upon coupling supergravity to matter.
It would be interesting to explore such scenarios within our
framework, in which the full quantum gravity corrections
have been accounted for. This will constitute the topic of a
future publication.

Finally, before closing this section we should also men-
tion an additional possibility that might characterize the
conformal supergravity models of inflation, as envisaged in
[19,22]. This regards viewing the broken-supergravity-
phase vacuum as being a metastable one, with a lifetime
longer than the age of the Universe. In such a case, the
restriction on the value of the condensate field at the non-
trivial minima 	2

c < f2 could be lifted (thus implying local
supersymmetry breaking already at tree level), provided
the conformally rescaled coupling ~� is sufficiently larger
than the gravitational coupling �, in order to ensure meta-
stability. Detailed studies in this direction, making contact
with realistic phenomenologies, will also be a topic for
future work.

VI. CONCLUSIONS AND OUTLOOK

In this work we have revisited the issue of dynamical
breaking of local supersymmetry (supergravity) without
coupling to either gauge or matter sectors. We have exam-
ined for simplicity the specific case of D ¼ 4, N ¼ 1
simple supergravity, although our considerations can be
extended to more complicated and extended supergrav-
ities. We have constructed one-loop effective potentials,
which exhibit a double-well (symmetric about the origin)
shape and which vanish at the nontrivial minima. In this
way dynamical mass generation of the gravitino field can
be understood most clearly. We have taken into account
quantum fluctuations of the metric field by expanding
about a Euclidean de Sitter background and taking the
limit of a vanishing renormalized cosmological constant
only at the end of the computations.

It is essential for our arguments that global supersym-
metry is broken at a given scale. We have assumed F-type
breaking for concreteness, which resulted in a positive
value of the one-loop effective potential at the origin of
the condensate field. This allows for the existence of a
nontrivial minimum at which the one-loop effective poten-
tial vanishes, consistently with the assumed vanishing of
the (renormalized) cosmological constant � ! 0.

We have demonstrated the existence of vacua at which
the imaginary parts of the effective action are absent for
values of the classical condensate 	2

c < f2, illustrating the
importance of accounting for global supersymmetry break-
ing at a scale

ffiffiffi
f

p
. Thus, our present work seems to contra-

dict previous claims in the literature [9,11] on the
impossibility of breaking local supersymmetry dynami-
cally, which, though, as discussed above, were performed
in different gauges than ours, and without the presence of
the scale

ffiffiffi
f

p
and the associated Goldstino. Our results

support the possibility of dynamical breaking of supergrav-
ity through the acquisition of a dynamical mass by the
gravitino. The latter is found to be of the order of the
Planck mass in this simple supergravity framework,
although this conclusion changes in more complicated
settings, such as conformal supergravities [20], where
phenomenologically realistic values are obtained for the
dynamical gravitino mass and the global supersymmetry
breaking scale. Our findings support therefore, at least
qualitatively, the results of the flat-space analysis of [4,5]
on dynamical breaking of supergravity.
An interesting feature of the double-well potentials that

we have calculated in the broken phase of conformal
supergravity models is their flatness about the origin,
prompting one to consider small-field inflationary scenar-
ios with the gravitino condensate playing the role of the
inflaton field. A preliminary study [19] of such scenarios in
the context of the flat-space potential of [5] within a
conformal supergravity model [22] has shown agreement
of the inflationary cosmology with the current cosmologi-
cal data. A complete analysis in this direction, within the
context of conformal supergravity models, where one-loop
quantum fluctuations of the metric field are fully taken into
account, as in the current article, is still pending, and will
be the subject of a future work.
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APPENDIX

In this Appendix we give details of some mathematical
aspects and notions of our approach towards the construc-
tion of the one-loop effective action of theN ¼ 1, D ¼ 4
supergravity model. More precisely, we detail the use
of the heat kernel in computing functional determinants,
before specializing to the computation of the resultant
zeta functions on S4. Finally, we demonstrate an asymp-
totic expansion which allows these zeta functions to be
explicitly evaluated in the limit � ! 0.
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1. The heat kernel

Consider a second-order Laplace-type differential
operator of the form � ¼ �hþ X, for some constant X,
defined on a smooth vector bundle over a compact, smooth
d-dimensional Riemannian manifold without boundary.
There exist a discrete number of eigenfunctions and
corresponding eigenvalues of this operator, which may
be decomposed spectrally into a complete orthonormal
set of eigenfunctions n with eigenvalues �n, of multi-
plicity gn.

The determinant of this operator may be expressed

Y1
n

�gn
n ; (A1)

however as this obviously diverges, we shall instead define
the zeta function

�ðzÞ � X1
n

gn�
�z
n ; (A2)

convergent for <ðzÞ> 2, which can in practice be
extended via analytic continuation to a meromorphic
function of z over the entire complex plane. It is important
to note that �ðzÞ is regular at z ¼ 0, yielding the derivative

� 0ð0Þ ¼ �X
n

gn ln ð�nÞ; (A3)

so that we may define

det ð�Þ � exp

�
� d

dz
�ðzÞjz¼0

�
: (A4)

Our task is then to compute the form of � 0 for a given
operator.

A convenient way of encapsulating some of the behavior
of � is via the ‘‘trace over the heat kernel,’’ defined thusly

Tr Kðx; x; t;�Þ �X
i

biðx;�Þtði�dÞ=2; (A5)

valid for t ! 0þ, where K satisfies the heat equation with
boundary condition

d

dt
Kðx; x0; t;�Þ þ �Kðx; x0; t;�Þ ¼ 0;

Kðx; x0; 0;�Þ ¼ �ðx; x0Þ;
(A6)

and the biðx;�Þ are the heat kernel coefficients, which
integrate to give spectral invariants of �. Since the heat
equation has the solution

Kðx; x0; t;�Þ ¼ X
i

iðxÞ �iðx0Þ exp ð�t�iÞ; (A7)

we can trace over (A7) and integrate to see that (since the
i form an orthonormal basis)X

i

exp ð�t�iÞði;iÞðxÞ �
X
i

biðx;�Þtði�dÞ=2 (A8)

) X
i

exp ð�t�iÞ �
X
i

tði�dÞ=2 Z ffiffiffi
g

p
biðx;�Þddx

� X
i¼0

tði�dÞ=2Bið�Þ: (A9)

Finally, we note that �ðzÞ is related to (A9) via a Mellin
transform

�ðzÞ ¼ 1

�ðzÞ
Z 1

�!0þ
tz�1

X
i

exp ð�t�iÞdt

¼ 1

�ðzÞ
Z 1

�!0þ

X
i

tðiþ2z�d�2Þ=2Bið�Þdt; (A10)

so that for t ! 0þ wemay expand the sum (thus preserving
only the first few terms) and extract information about � as
necessary.
Taking the divergent parts given by the trace over the

heat kernel, in conjunction with the known expression for
the finite parts of zeta regularized determinants [24], we
can then find for d ¼ 4

ln det

�
�s

�2

�
¼ � 1

2
B0L

4 � 1

2
B2L

2 � B4

�
ln

�
L2

�2

�
� �

�

� B4 ln

�



�2

�
þ � 0sð0Þ; (A11)

where we have a cutoff � ¼ ð�2=L2Þ ! 0, and � is the
Euler-Mascheroni constant. The mass dimension of � and
L is one, and it is important to note at this point that as
(A10) can be thought of as a proper time integral, � ! 0 is
a short time (and thus high energy) cutoff. Flowing from
the UV to IR therefore corresponds to the direction of
increasing �2.
Computing the form of the bi is straightforward in

practice as their general forms are known [10]. In d ¼ 4
we have

Bp ¼ 1

16�2

Z
bp

ffiffiffi
g

p
d4x; b0 ¼ Tr1;

b2 ¼ Tr

�
1

6
R� X

�
; bi ¼ ð4�Þ2bi;

(A12)

where the trace is performed in the space of fields. As the
heat kernel coefficients are straightforward to find (for low
d), our problem of evaluating functional determinants is
now reduced to computing the form of �ð0Þ and � 0ð0Þ for a
given background.

2. Zeta functions

As � is defined by the eigenvalues and their degeneracies
for a given operator, we must work in a framework where
these quantities are known. This is achieved in practice by
specializing to ‘‘differentially constrained’’ operators;
those corresponding to irreducible representations of the
background isometry group. For SOð5Þ these representa-
tions can be labeled by ðn; sÞ (for a positive integer n and a
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spin s) with corresponding eigenvalues �ðn; sÞ and degen-
eracies then given by the dimension of the representation,

�ðn; sÞ ¼ nðnþ 3Þ þ 2nsþ X



;

gn ¼ dim ðn; sÞ ¼ 1

6
ð2sþ 1Þðn� sþ 1Þ

� ðnþ sþ 2Þð2nþ 3Þ: (A13)

For the various representations we therefore have [10]

(where we have rescaled �n ¼ 
�n, X ¼ 
X, for

 ¼ �=3 on S4)

Spin 0.—ðn; 0Þ

�n ¼ n2 þ 3nþ X; gn ¼ 1

6
ðnþ 1Þðnþ 2Þð2nþ 3Þ:

(A14)

Spin 1.—ðn; 1Þ

� n ¼ n2 þ 3n� 1þ X; gn ¼ 1

2
ðnþ 3Þð2nþ 3Þ:

(A15)

Spin 2.—ðn; 2Þ
�n ¼ n2 þ 3n� 2þ X;

gn ¼ 5

6
ðn� 1Þðnþ 4Þð2nþ 3Þ:

(A16)

Spin 1/2.—ðn� 1
2 ;

1
2Þ Where both representations have the

same spectra, for (n� 1=2; 1=2) we have

�n ¼ ðnþ 1Þ2 þ X; gn ¼ 2

3
nðnþ 1Þðnþ 2Þ; (A17)

which is to be doubled.
Spin 3/2.—ðn� 1

2 ;
3
2Þ Where both representations again

have the same spectra, for ðn� 1=2; 3=2) we have

�n ¼ ðnþ 1Þ2 þ X; gn ¼ 4

3
ðn� 1Þðnþ 1Þðnþ 3Þ

(A18)

which is to be doubled. Spinor representations may
be incorporated into this framework via ‘‘squaring’’ the
corresponding first-order operators to yield those of second
order.

With this in mind, our prior expression for � (A2) can
now be reexpressed more concretely as

�sðz;XÞ ¼
X1
n¼0

gn�
�z
n

¼ ð2sþ 1Þ
6

X1
n¼0

ðn� sþ 1Þðnþ sþ 2Þð2nþ 3Þ
ðnðnþ 3Þþ 2nsþ X


Þz

¼ 1

3
ð2sþ 1ÞF

�
z;2sþ 1;

�
sþ 1

2

�
2
;bsðXÞ

�
; (A19)

where (following the conventions of [10]) we have defined

Fðz; k; a; bÞ � X1
v¼1

2kþ1

vðv2 � aÞ
ðv2 � bÞz ; (A20)

b0ðXÞ ¼ 9

4
�X



; b1=2ðXÞ ¼�X



; b1ðXÞ ¼ 13

4
�X



;

b3=2ðXÞ ¼�X



; b2ðXÞ ¼ 17

4
�X



; (A21)

where 
 ¼ �=3, and we note that our sum starts from the
minimal v such that gn > 0, and therefore all possible
negative and zero modes are included.
Following the Appendix of [25], it is first straightfor-

ward to show that

Fð0; k; a; bÞ ¼ 1

4
bðb� 2aÞ þ 1

24
að3k2 þ 6kþ 2Þ

� 1

64
k2ðkþ 2Þ2 þ 1

120
: (A22)

In line with this derivation we can compute Fð1; k; a; bÞ via
a similar argument, making use of the identity [26]

X1
n¼0

X1
m¼1

bn

ðmþ k
2 þ 1Þ2nþ1

¼ � 1

2

�
F

�
k

2
þ 1þ ffiffiffi

b
p �

þ F

�
k

2
þ 1� ffiffiffi

b
p ��

; (A23)

where F is the digamma function. We find

Fð1; k; a; bÞ ¼ 1

2
b� 1

12
� 1

8
kðkþ 2Þ

� 1

2
ðb� aÞF

�
k

2
þ 1� ffiffiffi

b
p �

: (A24)

We may then note that

d

db
F0ð0; k; a; bÞ ¼ Fð1; k; a; bÞ; (A25)

so that we may integrate both sides to arrive at

F0ð0; k; a; bÞ ¼ 1

4
b2 � 1

12
b� 1

8
bkðkþ 2Þ � 1

2

Z b

0
ðy� aÞ

� F

�
k

2
þ 1� ffiffiffi

y
p �

dyþ C; (A26)

where C is a (real) constant of integration

C ¼ F0ð0; k; a; 0Þ
¼ 2� 0R

�
�3;

1

2
kþ 1

�
� 2a� 0R

�
�1;

1

2
kþ 1

�
;

�Rðz; qÞ ¼
X1
n¼q

n�z: (A27)
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For large b we can explicitly evaluate the integral above
by shifting the measure via y ! y2 and inserting the
asymptotic expansion

F ðxÞ ¼ ln ðxÞ � 1

2x
� X1

n¼1

B2n

2nx2n

¼ ln ðxÞ � 1

2x
� 1

12x2
þ � � � ; (A28)

where Bn is the nth Bernoulli number. Integrating term
by term, only the leading order remains relevant and we
find

F0ð0; k; a; bÞ � 1

4
b2 �

Z ffiffi
b

p

0
y3 ln

�
k

2
þ 1� y

�
dy

� b2

8
ð3� 2 ln ð�bÞÞ: (A29)

Combing these elements, we thus find that for small �

�sð0; XÞ � 6sþ 3

4

X2

�2
;

� 0sð0; XÞ � 6sþ 3

4

X2

�2

�
3

2
� ln

�
3X

�

��
:

(A30)

From this result, it is interesting to note that in the limit
� ! 0, the presence or absence of imaginary terms in the
effective potential is a straightforward consequence of the
sign of X, the argument of the functional determinant being
evaluated. This may be therefore leveraged to explicitly
investigate the possibility of instabilities in the effective
potential, along with the associated question of whether or
not any such apparent instabilities are, in fact, one-loop
artifacts which may then be disregarded. These issues are
of course central to the topic of this paper.
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