
Isospinning baby Skyrmion solutions

Richard A. Battye1,* and Mareike Haberichter1,2,†

1Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL, United Kingdom
2School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF, United Kingdom

(Received 15 October 2013; published 9 December 2013)

We perform full two-dimensional (2D) numerical relaxations of isospinning soliton solutions in the

baby Skyrme model in which the global Oð3Þ symmetry is broken by the 2D analogue of the pion mass

term in the Skyrme model. In our calculations we explicitly allow the isospinning solitons to deform and

to break the symmetries of the static configurations. We find that stable isospinning baby Skyrme solutions

can be constructed numerically for all angular frequencies! � min ð�; 1Þ, where� is the mass parameter

of the model. Stable, rotationally symmetric baby Skyrmion solutions for higher angular velocities are

simply an artefact of the hedgehog approximation. Isospinning multisoliton solutions of topological

charge B turn out to be unstable to break up into their B charge-1 constituents at some critical breakup

frequency value. Furthermore, we find that for � sufficiently large the rotational symmetry of charge-2

baby Skyrmions becomes broken at a critical angular frequency !.

DOI: 10.1103/PhysRevD.88.125016 PACS numbers: 12.39.Dc, 11.10.Lm

I. INTRODUCTION

Baby Skyrmions [1,2] are topological soliton solutions
in (2þ 1)-dimensional versions of the Skyrme model [3]
for nuclear physics. They can be used to describe quasi-
particle excitations in ferromagnetic quantum Hall systems
[4,5] or can arise as stable Skyrmion spin textures in
various other condensed-matter systems such as helical
magnets Fe1�xCOxSi [6] and MnSi [7].

In this article, our numerical study of isospinning soliton
solutions in baby Skyrme models is not only motivated by
their physical relevance but even more by the similarities to
their analogues in 3þ 1 dimensions, which are known as
Skyrmions. Using the baby Skyrme model as a simplified
model to guide investigations in the full (3þ 1)-
dimensional Skyrme theory has proven to be useful in
the study of various Skyrme soliton properties. For
example, scattering processes of baby Skyrmions [8,9]
strongly resemble those of Skyrmions [10] and allow us
to study the long-range forces between static, moving and
spinning Skyrmions with moderate numerical effort.

Suitably quantized Skyrmions [11,12] of topological
charge B are promising candidates to model spin and
isospin states of nuclei with baryon number B. However,
most attempts have so far been either based on a rigid-
body–type approximation [11,12]—the soliton’s shape is
taken to be rotation frequency independent—or only con-
sidered axially symmetric deformations [13–15] of the
spinning Skyrme configurations. As pointed out by several
authors [13,14,16], neglecting any deformations that could
arise from the dynamical terms in the Skyrme model is far
from an adequate approximation, and working within
an axially symmetric solution ansatz is only a valid

simplification for a few Skyrmions since most Skyrme
solitons are not axially symmetric.
In this article, we use the baby Skyrmemodel as a testing

ground to numerically investigate how the Skyrme soli-
ton’s geometrical shape, its mass and its moment of inertia
change when classically isorotating around the z axis.
To our knowledge, up to now there only exists research on

isospinning, rotationally symmetric charge-1 and charge-2
soliton solutions of the conventional baby Skyrme model
[9,17] and of two modified baby Skyrme models where the
domain R2 is replaced by a 2-sphere and by a unit disk,
respectively [18–20]. Furthermore, isospinning rotationally
invariant solitons have been constructed analytically [21] in
the Bogomolny-Prasad-Sommerfield (BPS) limit of the con-
ventional baby Skyrme model. Compared to previous work,
we do not impose any symmetries on the isopinning Skyrme
configurations and we do not apply the rigid-body approxi-
mation in our 2D numerical computations. Our calculations
are performed for isospinning soliton solutions up to charge 6
in the baby Skyrme model with a potential analogous to that
used in the (3þ 1)-dimensional Skyrme model.
This article is structured as follows. In Sec. II we briefly

review the baby Skyrmemodel and explain how isospinning
soliton solutions arise there. Then, in Sec. III we create
suitable initial field configurations of nonzero baryon num-
ber B, which in Sec. IV are numerically minimized using a
2D gradient flow evolution algorithm. The resulting baby
Skyrme configurations of vanishing isospin serve as initial
fields for our numerical simulations of isospinning baby
Skyrmions in Sec. V.We present our conclusions in Sec. VI.

II. CLASSICALLY ISOSPINNING
BABY SKYRMIONS

The Lagrangian density of the (2þ 1)-dimensional baby
Skyrme model is defined by
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L ¼ 1

2
@�� � @��� 1

4
ð@��� @��Þ2 � Vð�Þ; (1)

where� ¼ ð�1; �2; �3Þ is a real vector field of unit length
and hence the target space of � is given by a 2-sphere S2iso.
The first term in (1) is known as the Oð3Þ sigma model
term, the second is the (2þ 1)-dimensional analogue of the
Skyrme term, and the last term is a potential term which is
needed to stabilize the soliton’s size.

Finite energy solutions in model (1) require that the
vector field � has to approach a constant value �1 at
spatial infinity, i.e. �ðx; tÞ ! �1 as jxj ! 1 for all time
t. Consequently, this boundary condition results in a one-
point compactification of physical spaceR2 into a 2-sphere
S2space, and hence a field configuration � can be labeled by

the winding number B of the map S2space � S2iso, explicitly

given by

B ¼ deg ½�� ¼ 1

4�

Z
� � @1�� @2�d2x: (2)

The topological charge B 2 �2ðS2Þ ¼ Z is called baryon
number in analogy to the Skyrme model [3], and field
configurations which minimize the static energy functional
in a given topological sector B are known as baby
Skyrmions. In this article, the static energy MB of a baby
Skyrmion solution of topological charge B will be given in
units of 4�B. Our normalization choice is motivated by the
Bogomolny lower energy bound

MB � 4�B (3)

and simplifies the comparison with the energy values stated
in the literature (e.g. [9]). Note that Eq. (3) is the topologi-
cal bound related to the Oð3Þ sigma model term in (1)
alone. Both the Oð3Þ sigma model term and the Skyrme
and potential terms together provide an even tighter energy
bound [22–24].

The shape and the behavior of baby Skyrmion solutions
depend strongly on the choice of the potential term Vð�Þ
in (1). Here we will consider the Oð3Þ symmetry breaking
potential term

Vð�Þ ¼ �2ð1��3Þ; (4)

where � is a rescaled mass parameter. Equation (4) is the
most common potential choice, which was originally in-
cluded in [9,25] in analogy to the pion mass term of the full
(3þ 1)-dimensional Skyrme model. To ensure a finite-
energy configuration the field has to approach its vacuum
value �3 ¼ þ1 at spatial infinity. Choosing (4) in (1)
results in two massive modes ð�1; �2Þ of mass � and
one massless (�3). Here, the mass parameter � is usually

chosen to be � ¼ ffiffiffiffiffiffiffi
0:1

p � 0:316 [9,25], so that the size of
the B ¼ 1 soliton solution is approximately of order of the
Compton wavelength of the ‘‘mesons’’ in our model. This
specific choice of mass parameter was originally motivated
by the full (3þ 1)-dimensional Skyrme model, in which

the 1-soliton size is approximately equal to the pion’s
wavelength. Static multisoliton solutions in model (1)
with potential term (4) have been studied in [25–27].
To find isospinning baby Skyrmion solutions we per-

form a time-dependent SOð2Þ isorotation on a static baby
Skyrmion configuration � via

ð�1; �2; �3Þ � ðcos ð�þ!tÞ�1 þ sin ð�þ!tÞ�2;

� sin ð�þ!tÞ�1 þ cos ð�þ!tÞ�2; �3Þ;
(5)

where the rotation axis is chosen to be (0, 0, 1), ! is
the angular frequency, and the angle � 2 ½0; 2�Þ.
Substituting the dynamical ansatz (5) into the Lagrangian
(1) gives

L ¼ 1

2
�B!

2 �MB; (6)

where MB is the classical soliton mass

MB ¼
Z �

1

2
@i� � @i�þ 1

4
½ð@i� � @i�Þ2

� ð@i� � @j�Þð@i� � @j�Þ� þ Vð�Þ
�
d2x (7)

and �B is the moment of inertia

�B ¼
Z
fð�2

1 þ�2
2Þð1þ @k� � @k�Þ

� ð�� @k�Þ3ð�� @k�Þ3gd2x: (8)

The Noether charge associated with the SOð2Þ transforma-
tion (5) is the conserved total isospin K ¼ !�.
As shown in [28] the problem of constructing isospin-

ning soliton solutions in Skyrme models can be formulated
in terms of the following two variational problems for �:
(1) Extremize the pseudoenergy functional F!ð�Þ ¼

�L for fixed !.
(2) Extremize the total energy functional H ¼ MB þ

K2=ð2�BÞ for fixed K.
We performed most of our numerical relaxations for both
methods and verified that we obtained the same soliton
shape and dependence of the soliton’s energy on the rota-
tion frequency !.
Note that the pseudoenergy functional F!ð�Þ ¼ MB �

1
2�B!

2 takes the form

F!ð�Þ ¼
Z �

1

2
f½1�!2ð1��2

3Þ�ð@i� � @i�Þ

þ!2ð�� @i�Þ3ð�� @i�Þ3g þ 1

4
ð@i�� @j�Þ2

þ V!ð�Þ
�
d2x; (9)

where the effective, deformed potential V!ð�Þ is given by
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V!ð�Þ ¼ Vð�Þ �!2

2
ð1��2

3Þ: (10)

It was pointed out in [28] that isospinning soliton solutions
in Skyrme-like models suffer from two different types of
instabilities: One is due to the nullification of the terms
quadratic in first spatial derivatives in (9) at some critical
frequency value !1, and the other is related to the vanish-
ing of the effective potential term V!ð�Þ (10) at a second
critical frequency value!2. Recall [28] that for 0<!< 1
the terms in the curly brackets in (9) effectively describe
the geometry of a squashed sphere S2 deformed along the
direction �1 ¼ ð0; 0; 1Þ. For !>!1 ¼ 1, the metric be-
comes singular and the pseudoenergy of � is no longer
bounded from below. The second critical frequency !2 is
sensitive to the concrete potential choice Vð�Þ in (1) and
follows from the condition that the deformed potential
term (10) has to be positive and nonzero in order to allow
for stable isospinning soliton solutions. Consequently, sta-
ble isospinning soliton solutions can only be constructed
for all angular frequencies! � min f1; !2g. For the poten-
tial (4) the second critical value is given by !2 ¼ �, the
meson mass of the model.

III. INITIAL CONDITIONS

We create suitable initial field configurations with
nontrivial baryon number B by linear superposition of
static B ¼ 1 hedgehog solutions. These initial baby
Skyrmion fields will then be used as input for a 2D gradient
flow code to search for static (! ¼ 0) minimal-energy
soliton solutions in model (1) with the standard potential
term (4).

Hedgehog fields—fields for which a spatial rotation
can be compensated by an isospin rotation—are of the
form

�ðxÞ¼ ðsinfcosðB���Þ;sinf sinðB���Þ;cosfÞ; (11)

where ðr; �Þ are polar coordinates in the plane, � 2 ½0; 2�Þ
is a phase shift, and fðrÞ is a monotonically decreasing
radial profile function with boundary conditions fð0Þ ¼ �
and fð1Þ ¼ 0. Substituting (11) in the energy functional

(7) (� ¼ ffiffiffiffiffiffiffi
0:1

p
) and solving the associated Euler-Lagrange

equation numerically [29], we find for the B ¼ 1 soliton
mass 1:562� 4� and the corresponding moment of inertia
(8) is given by 7:533� 2�. Here, the ‘‘units’’ are chosen to
simplify comparison with the values in the literature, in
particular, with the hedgehog solutions calculated in
Ref. [9].

To construct multisoliton solutions in the baby Skyrme
model it is convenient to parametrize the real three-
component unit vector � in terms of a single complex
scalar field W [1] via the stereographic projection

� ¼ 1

1þ jWj2 ðW þ �W; iðW � �WÞ; ð1� jWj2ÞÞ: (12)

A rotationally symmetric, complex field WðnÞ is given by

WðnÞðr; �Þ ¼ tan

�
f

2

�
exp ð�in�Þ; (13)

where f is the solution of the reduced equation for a
charge-n baby Skyrmion.
Initial field configurations of baryon number B ¼ n are

obtained within this complex field formalism by a linear
superposition of n 1-soliton solutions [26],

Wðx; yÞ ¼ Xn
c¼1

Wð1Þðx� xc; y� ycÞ exp ði�cÞ; (14)

where Wð1Þ is the complex field of the cth baby Skyrmion,
ðxc; ycÞ are the Cartesian coordinates of the center of the
cth baby Skyrmion, and �c are the cth baby Skyrmion’s
respective phase. For most of our numerical simulations we
use a circular initial setup [26] of n equally spaced baby
1-Skyrmions with relative phase shifts �� ¼ 2�

n for maxi-

mal attraction [25].

IV. STATIC BABY SKYRMION SOLUTIONS

To find the stationary points of the energy functional
MB, given in (7), we solve the associated gradient flow
equation numerically. The gradient flow equation is a first-
order equation in a fictitious time and is obtained by setting
the velocity of the field equal to minus the variation of the
energy functional

_� ¼ ��MB

��
� 	�; (15)

where the Lagrange multiplier 	 imposes the unit vector
constraint � �� ¼ 1. The initial configurations are
evolved according to the flow equations (15) on rectangular
grids typically containing ð601Þ2 lattice points and with a
lattice spacing �x ¼ 0:2. Only our relaxation calculations
on 1-baby Skyrmion solutions are performed on finer grids
with �x ¼ 0:15 and ð401Þ2 grid points. The gradient flow
equations are discretized using second-order accurate finite
difference approximations for the spatial derivatives and
first-order ones for the time derivatives with �t ¼ 0:005.
The Lagrange multiplier 	 is explicitly calculated at each
time step of the gradient flow evolution. Recall that we

choose in this section the mass parameter� ¼ ffiffiffiffiffiffiffi
0:1

p
for the

baby Skyrme potential (4).
We list in Table I the energy and moment of inertia

values which we obtained for static, minimum-energy
configurations in the conventional baby Skyrme model.
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The associated energy density contour plots are displayed
in Fig. 1.

In this model (4) our 2D gradient flow algorithm repro-
duces the axially symmetric B ¼ 1 and B ¼ 2 soliton
solutions [25]. Their minimal energies are found to be
M1 ¼ 1:564� 4� and M2 ¼ 2:935� 4�, which is in ex-
cellent agreement with the values in the literature [25–27].
The corresponding moments of inertia are given by �1 ¼
7:556� 2� and �2 ¼ 10:617� 2�, respectively. For
comparison, minimizing the energy functional MB within
the axially symmetric ansatz (11) results, for the 1-soliton,
in M1 ¼ 1:562� 4� and �1 ¼ 7:533� 2�. The analo-
gous calculation for B ¼ 2 gives an energy of M2 ¼
2:934� 4� and a moment of inertia �2 ¼ 10:593� 2�.
As already observed [30] for soliton solutions in the full
(3þ 1)-dimensional Skyrme model, the numerical values
for the moments of inertia are a lot less accurate than the
ones for the solitons’ masses.

However, hedgehog solutions for topological charges
B> 2 have been shown [25] to be unstable against axial
perturbations. The 3-baby Skyrmion configuration forms a
chain of three aligned B ¼ 1 baby Skyrmions with a phase

shift �� ¼ � between neighboring 1-Skyrmions.
Similarly, the energy density distribution for the B ¼ 4
soliton is linear, but made up of two radially symmetric
2-Skyrmions. Our obtained energies M3 ¼ 4:423� 4�
and M4 ¼ 5:858� 4� are within 0.005% agreement with
the energy values given in [27]. Relaxing a circular setup of
five B ¼ 1 baby Skyrmions, we reproduce the 5-chain
solution [27], which we confirm to be of lower energy
than the 2þ 3 configuration (labeled 5?) [25]. For B ¼ 6
we find two configurations which can be seen as energy
degenerate within our numerical accuracy: the 6-chain
solution (labeled 6?) [27] and a configuration with three
2-baby Skyrmions placed at the vertices of an equilateral
triangle [25].
In Fig. 2 we display the normalized energies per 4�B as

a function of the baryon number B for the baby Skyrme
configurations which we assume to be global energy
minima.

V. NUMERICAL RESULTS FOR ISOSPINNING
BABY SKYRMIONS

In this section, we present the results of our 2D energy
minimization simulations of isospinning soliton solutions
in the baby Skyrme model with the potential choice (4). To
find the stationary points of the total energy functional
H ¼ MB þ K2=ð2�BÞ for a fixed angular momentum K
and for a given topological charge B, we perform a 2D
gradient flow evolution in analogy to Eq. (15) starting with
well-chosen initial configurations. We use the static con-
figurations obtained in the previous section as our start
configurations for vanishing angular momentum (K ¼ 0).
Then we increase K in a stepwise manner using previously
calculated configurations as starting configurations for the
next value of K. To check our computations we also
performed gradient flow calculations to minimize the pseu-
doenergy functional F! (9) for a fixed rotation frequency

FIG. 1 (color online). Energy density contour plots (not to scale) for multisolitons in the conventional baby Skyrme model (4) with
topological charges B ¼ 1–6. The numerical calculations were performed with the mass parameter � set to

ffiffiffiffiffiffiffi
0:1

p
.

TABLE I. Multi-Skyrmion solutions of the conventional baby
Skyrme model. For comparison, we include the normalized
energies MFoster

B =B given in [27].

B MB=4� MB=4�B MFoster
B =4�B �B=2� Shape

1 1.564 1.564 1.564 7.556 hedgehog

2 2.935 1.467 1.468 10.617 one pair

3 4.423 1.474 1.474 15.389 one triple

4 5.858 1.464 1.464 20.524 two pairs

5 7.323 1.464 1.464 25.303 5-chain

5? 7.363 1.472 1.470 25.917 tripleþ pair

6 8.778 1.463 1.462 30.742 three pairs

6? 8.786 1.464 1.462 31.716 6-chain
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!. Note that all simulation parameters are chosen as stated
in Sec. IV. In particular, we carry out most of our simula-
tions on relatively large grids containing ð601Þ2 lattice
points with a lattice spacing �x ¼ 0:2 in order to capture
the asymptotic behavior of our isospinning soliton
solutions.
The majority of our computations of isospinning baby

Skyrmions with charges B ¼ 1–6 have been performed

with the rescaled mass parameter � set to
ffiffiffiffiffiffiffi
0:1

p
. In this

case there is a maximum angular frequency !crit ¼ !2 ¼
� ¼ ffiffiffiffiffiffiffi

0:1
p

beyond which no stable isospinning baby
Skyrmion solution exists.

(i) B ¼ 1, 2: For the rotationally symmetric 1- and 2-
soliton solutions we verify that our 2D gradient flow

evolution reproduces, for the mass value � ¼ ffiffiffiffiffiffiffi
0:1

p
,

the behavior we expect from an isospinning hedge-
hog soliton solution [9]. Recall that for fields of the
hedgehog type (11) spatial rotations and isorotations

(c) (d)

(a) (b)

FIG. 3 (color online). Isospinning B ¼ 1 soliton solution (� ¼ ffiffiffiffiffiffiffi
0:1

p
). A starting configuration (11) is numerically minimized using

2D gradient flow on a ð401Þ2 grid with a lattice spacing of �x ¼ 0:15 and a time step size �t ¼ 0:005. To check our numerics we
explicitly verify that minimization of the pseudoenergy F! (for fixed angular frequency !) and minimization of the Hamiltonian H
(for fixed isospin K) reproduce the same curves. Additionally, we compare our results with those we expect for an isospinning,
rotationally symmetric deforming 1-soliton solution. Our results agree well with those presented in [9]. (a) Total energy vs angular
frequency. (b) Mass-Isospin relationship. (c) Inertia vs angular frequency. (d) Inertia-Isospin relationship.

FIG. 2. Normalized energiesMB=4�B vs baryon number B for
baby Skyrme solitons with potential (4) included. We plot the
energy values of those configurations which we believe to be
global energy minima.
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are equivalent, and consequently K can be inter-
preted as the total isospin or equivalently as the total
spin of the baby Skyrme field �. We plot in Figs. 3
and 4 the dependencies of the spinning B ¼ 1, 2
baby Skyrmion’s mass, Etot, and its moment of iner-
tia, �, on its angular frequency ! and its isospin K.
We confirm that we obtain the same energy and
moment of inertia curves when we substitute the
hedgehog field (11) in the pseudoenergy functional
F! or in the Hamiltonian H and solve the associated
variational equation [9]

�
rþ

�
B2

r
�!2r

�
sin 2f

�
f00 þ

�
1�

�
!2 þB2

r2

�
sin 2f

þ
�
B2

r
�!2r

�
f0 sinf cosf

�
f0

�
�
B2

r
�!2r

�
sinf cosf� r�2 sinf¼ 0; (16)

for the radial profile function fðrÞ with boundary
conditions fð0Þ ¼ � and fð1Þ ¼ 0.
Etotð!Þ and�ð!Þ grow rapidly with! and diverge at

!crit �
ffiffiffiffiffiffiffi
0:1

p
. We can see that the total energy

EtotðKÞ and the moment of inertia �ðKÞ increase
linearly with K for K sufficiently large and only
depend quadratically on K for slowly rotating solu-
tions. Consequently, the rigid-body approximation is
only a good approximation for small values of K,
in particular, K � 1:05� 4� for B ¼ 1 and K �
1:51� 4� for B ¼ 2. Close to the cutoff
(! � 0:31, K � 2:49� 4�) the energy values given
by the rigid-body formula are roughly 10% larger
than those for the non-rigidly rotating 1-soliton
solution. Similarly, for B ¼ 2 the rigid-body ap-
proximation predicts an energy value at ! � 0:31,
K � 2:49� 4� which is approximately 3% larger
than the one calculated for the deforming charge-2
solution. The energy density contour plots in Fig. 5

(a) (b)

(c) (d)

FIG. 4 (color online). Isospinning B ¼ 2 soliton solution (� ¼ ffiffiffiffiffiffiffi
0:1

p
). A starting configuration (11) is numerically minimized using

2D gradient flow on a ð601Þ2 grid with a lattice spacing of �x ¼ 0:2 and a time step size �t ¼ 0:005. Our results agree perfectly with
those obtained for an isospinning 2-soliton deforming within a hedgehog ansatz (11). (a) Total energy vs angular frequency. (b) Mass-
Isospin relationship. (c) Inertia vs angular frequency. (d) Inertia-Isospin relationship.
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show the deformation of the charge-1 and charge-2
solitons as a function of isospin K and rotation
frequency !. As shown in Fig. 5, the isospinning
charge-2 configuration preserves its rotational sym-
metry for all frequency values !< 0:31 and sponta-
neously breaks its rotational symmetry at ! � !2.
In the (3þ 1)-dimensional Skyrme-Faddeev model
it was found [28] that stable, isospinning soliton
solutions only exist for angular frequencies ! �
min f1; �g and that they can be destabilized by
nonlinear velocity terms in the field equations far
before the upper limit !2 ¼ � is reached. Similarly,
we find in the baby Skyrme model that for �> 1
isospinning soliton solutions become unstable far
before reaching !2. Fully two-dimensional relaxa-
tion calculations reveal that stable, isospinning soli-
ton solutions only exist for angular frequencies
! � min ð�; 1Þ. We display in Fig. 6 the critical
behavior of isospinning charge-1 Skyrmion solutions
for a range of mass values �.
For the mass range � 2 ð0; 1� the total energy Etot

and the moment of inertia � diverge at !2 ¼ �,
whereas for mass values �> 1 we find that they
take finite values at the critical frequency !1 ¼ 1.

It is interesting to compare this pattern of critical
behavior with the one calculated when only con-
sidering rotationally symmetric deformations. As
shown in the Appendix, the so-obtained critical fre-
quencies for charge-1 and charge-2 solitons inadver-
tently suggest the existence of stable isospinning
baby Skyrmion solutions with mass �> 1 for angu-
lar frequencies!>!1 ¼ 1. This result is simply an
artefact of the hedgehog approximation (11).

Furthermore, for larger mass values (�>
ffiffiffiffiffiffiffi
0:1

p
) our

full two-dimensional relaxation calculations show
that at some third critical angular frequency value
!3, the isospinning charge-2 soliton solutions be-
come unstable to breaking up into their charge-1
components which start moving away from each
other. Generally speaking, increasing the mass value
� results in increasingly larger rotational symmetry
breaking at a given angular momentum K (see
Fig. 7). Rotationally symmetric Skyrme configura-
tions are found to be of significantly higher energy
and turn out to be unstable for sufficiently large �
and K. The corresponding energy density contour
plots for a range of values of � are shown in Fig. 8.
We observe that for increasing mass parameter �,

FIG. 5 (color online). Energy density contour plots for isospinning multisolitons in the standard baby Skyrme model with charges
B ¼ 1–4 and mass parameter � chosen to be

ffiffiffiffiffiffiffi
0:1

p
. To simplify comparison with [9], the isospin K is given in units of 4�; i.e. we

define k ¼ K=4�.
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the breakup into individual charge-1 constituents
occurs at increasingly higher values of !3�!1¼1
(compare the middle plot in Fig. 7 and the corre-
sponding breakup frequency values listed in the
table). Recall that isospinning baby Skyrmion solu-
tions do not minimize the total energy functional
Etotð!Þ for fixed angular frequency !, which ex-
plains the negative deviations �Etot from the rota-
tionally symmetric deforming charge-2 baby
Skyrmion configuration shown in the middle plot
of Fig. 7.
We show in Fig. 9 the deviations from the rigid body,
plotted against the angular momentum K, for both
the charge-1 and charge-2 solutions. As the mass
value � increases, the rigid-body approximation
provides more accurate results for the isospinning
solutions of the model.

(ii) B ¼ 3: For the standard mass value (� ¼ ffiffiffiffiffiffiffi
0:1

p
)

the linear 3-soliton splits into three weakly bound,
linearly arranged B ¼ 1 hedgehog solitons when

isospinning about the z axis, as shown by the
energy density contour plots in Fig. 5. The energy
curves given in Fig. 10 show the linear dependence
of the total energy EtotðKÞ on the isospin K for
K > 2:0� 4�. For K < 2:0� 4� deformations
due to centrifugal effects can be neglected and
the isospinning solution can essentially be seen
as a rigid rotor. We find that with an increasing
mass value � the isospinning B ¼ 3 soliton be-
comes increasingly stable to breaking up into its
constituents; i.e. the breakup frequency !3 takes
larger values.

(iii) B ¼ 4: The energy densities for the isospinning 4-

baby Skyrme soliton are plotted for � ¼ ffiffiffiffiffiffiffi
0:1

p
in

the last row of Fig. 5. The pair of two weakly
bound 2-solitons breaks into four single linearly
arranged 1-solitons. The corresponding moment of
inertia curves �ð!Þ and energy curves Etotð!Þ,
EtotðKÞ can be found in Fig. 10. As � increases
the splitting into individual charge-1 constituents

FIG. 7 (color online). The deviation �Etot ¼ ðEhedgehog � EtotÞ=Etot from the rotationally symmetric deforming charge-2 baby
Skyrmion configuration (16) as a function of isospin K (left panel) and angular frequency ! (middle panel) for a range of mass values
�. Approximate values for the breakup frequencies !3—the frequencies at which the charge-2 solutions start to split into its charge-1
constituents—are listed in the table on the right-hand side. We verified that for this mass range the isospinning charge-1 baby Skyrmion
solution does not deviate significantly from a rotationally symmetric deforming B ¼ 1 Skyrme configuration.

FIG. 6 (color online). Total energy Etot and isospin K for B ¼ 1 soliton solutions in the standard baby Skyrme model as a function of
angular frequency !. The mass parameter takes the values � ¼ 0:5, 1, 1.5, 2. The same pattern of critical behavior can be confirmed
numerically for isospinning multisoliton solutions.
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FIG. 8 (color online). Energy density contour plots for isospinning B ¼ 2 soliton solutions in the standard baby Skyrme model for a
range of mass values �. Note that the results presented here have been obtained using ð601Þ2 grids with lattice spacing �x ¼ 0:2 for
� ¼ 0:5, 1 and �x ¼ 0:1 for � ¼ 1:5, 2.
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happens at increasingly higher rotational fre-
quency values.

(iv) B ¼ 5: With the mass parameter � set to its stan-
dard value, the two different B ¼ 5 baby Skyrme
configurations (5-chain solution and weakly bound
3þ 2 solution) both split into five almost undis-
torted 1-solitons; see Fig. 11. As already seen for
the lower charge baby Skyrmion solutions, the
deformations preserve the symmetries of the static,
nonspinning Skyrmion solutions. Both Skyrme
configurations are of very similar energy and
show, as a function of ! and K, almost identical
energy curves; see Fig. 12.

(v) B ¼ 6: The two (within the limits of our numerical
accuracy) energy-degenerate 6-soliton configura-

tions with � ¼ ffiffiffiffiffiffiffi
0:1

p
(6-chain solution and weakly

bound 2þ 2þ 2 solution) break into six single 1-
baby Skyrmions. As above, the deformations do not
break the symmetries of the nonspinning solutions;

compare Fig. 11. The energy degeneracy is not
removed by isospinning the charge 6-solitons; see
the energy curves given in Fig. 13. In particular,
EtotðKÞ remains degenerate.

We display in Fig. 14 as a function of isospinK the mean

charge radii of B ¼ 1–6 baby Skyrmions (with � ¼ ffiffiffiffiffiffiffi
0:1

p
)

defined as the square root of the second moment of the
topological charge density BðxÞ (2),

hr2i ¼
R
r2BðxÞd2xR
BðxÞd2x : (17)

The changes in the baby Skyrmions’ shapes are reflected
by the changes in slopes of the mean charge radius curves
in Fig. 14. We observe that for isospin values K > 1:04�
4� the radius hr2i1=2 of the charge-1 solution grows
approximately linearly with K. For B ¼ 2 the linear
growth starts at higher angular momenta (K�1:51�4�).
These changes in slope are related to the rigid-body

FIG. 9 (color online). The deviation �Etot ¼ ðERigid � EtotÞ=Etot from the rigid-body approximation for charge-1 and charge-2 baby
Skyrmions as a function of isospin K for various rescaled mass values �.

FIG. 10 (color online). Total energy Etot as a function of angular frequency ! and as a function of isospin K for solitons (� ¼ ffiffiffiffiffiffiffi
0:1

p
)

in the conventional baby Skyrme model with baryon number B ¼ 3, 4.
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approximation only being a valid simplification for slowly
isospinning Skyrme configurations, whereas for higher
isospin values deformations due to centrifugal effects
become increasingly important. Higher charge solutions
can change their slopes several times. For example, the
radius curve for the 5-chain solution can be divided by its

different slopes in three different regimes: For isospin
values K � 2:28� 4� the charge-5 chain is made up of
two B ¼ 2 tori weakly bound together by a single B ¼ 1
baby Skyrmion. In the isospin range 2:28� 4�<K �
7� 4� the chain is formed by the two tori moving further
apart and the single B ¼ 1 constituent. Furthermore, an

FIG. 11 (color online). Energy density contour plots for isospinning multisolitons in the standard baby Skyrme model with charges
B ¼ 5, 6 and mass parameter � set to

ffiffiffiffiffiffiffi
0:1

p
. Again we define k ¼ K=4�. Note that the tiny deviations from the linear alignment of the

chainlike B ¼ 5, 6? baby Skyrme configurations are purely numerical effects.

FIG. 12 (color online). Total energy Etot as a function of angular frequency ! and as a function of isospin K for solitons in the
standard baby Skyrme model with baryon number B ¼ 5 and mass value � set to

ffiffiffiffiffiffiffi
0:1

p
.
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increase of K results in five individual, linearly aligned
B ¼ 1 Skyrmions.

VI. CONCLUSIONS

We have performed full two-dimensional numerical re-
laxations of isospinning soliton solutions in the standard
baby Skyrme model where the potential is given by the 2D
analogue of the pion mass term of the full three-
dimensional Skyrme model.

We find that completely analogous to the recent work on
internally rotating soliton solutions [28,31] in the 3D
Skyrme-Faddeev model [32,33], there exist two types of
critical frequencies: If the mass parameter � is smaller
than 1, the isospinning configurations become unstable
when the angular frequency ! approaches �. If the mass
parameter � is taken to be larger than 1, the energy of the
isospinning solution becomes unbounded from below as !
increases above 1. Hence, a stable isospinning soliton
solution can only exist for frequencies ! � min ð�; 1Þ.
However, isospinning multi-Skyrmion solutions can break
up into their constituent charge-1 Skyrmions before

reaching this upper frequency limit. For � sufficiently
large there exists a third critical angular frequency value
!3 at which the total energy per unit charge is larger than
the one of a single baby Skyrmion and the breakup into
charge-1 baby Skyrmions is energetically favorable.
This pattern of critical behavior has been unobserved in

previous work [9] on isospinning charge-1 and charge-2
baby Skyrme solitons, mainly because the authors did not
take into account deformations which break the rotational
symmetry and only investigated relatively low mass val-
ues. Our numerical calculations clearly show that stable,
rotationally symmetric Skyrme solitons with mass parame-
ter �> 1 for angular frequencies !>!1 ¼ 1 are simply
an artefact of the hedgehog approximation. Even for lower
mass values (�< 1) we find that the hedgehog ansatz can
be a very poor approximation; the charge-2 baby Skyrmion
solution can spontaneously break its rotational symmetry
when isospinning.
Further, we observe that for the conventional mass pa-

rameter choice (� ¼ ffiffiffiffiffiffiffi
0:1

p
) the symmetries of the static,

nonspinning soliton solutions are not significantly modified
when isospin is added. This is in contrast to recent results

FIG. 13 (color online). Total energy Etot as a function of angular frequency ! and as a function of isospin K for solitons in the
standard baby Skyrme model with baryon number B ¼ 6 and mass value � ¼ ffiffiffiffiffiffiffi

0:1
p

.

FIG. 14 (color online). Mean charge radii hr2i1=2 (17) for baby Skyrme solitons of topological charges 1 � B � 6 as a function of
isospin K and for mass value � ¼ ffiffiffiffiffiffiffi

0:1
p

.
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on internally rotating soliton solutions [28,31] in the 3D
Skyrme-Faddeev model, where it was found that the model
allows for transmutations, formation of new solution types,
and a rearrangement of the spectrum of minimal-energy
solitons in a given topological sector when isospin is added.

However, although the soliton’s geometrical shape is
largely independent of the rotation frequency !, the sol-
iton’s size increases monotonically with increasing !. In
general, the rigid-body formula predicts, for the solutions
considered here, total energies which for large angular
momenta are roughly 1%–10% larger than those obtained
for the deformed, isospinning solutions. Naturally, the
accuracy of the rigid rotator approximation improves
with increasing soliton mass and topological charge B.
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Note added.—Note that similar results have been ob-
tained independently by Alexey Halavanau and Yakov
Shnir and have been reported in a very recent preprint
[36] which appeared shortly after ours. The authors use a
rescaled version of the conventional baby Skyrme
Lagrangian (1) [9,25]; the kinetic term differs from our
notation by a factor of 2. In particular, the mass parameter
� used in our article is related to the one (�HS) used in [36]
by �2 ¼ �2

HS=4. We observe, for isospinning soliton so-

lutions in the conventional baby Skyrme model, the same
pattern of critical behavior (see Figs. 1 and 2 in [36]), and
our results can be seen as complementary. Differences are
the investigated mass range � and the choice of initial
conditions: Whereas we relax the absolute minima (espe-
cially nonrotationally symmetric configurations for B> 2)
at ! ¼ 0 to find solutions for nonzero angular frequencies
!, the authors in [36] choose rotationally invariant ansätze
as their starting configurations.

APPENDIX: ISOSPINNING CHARGE-1 AND
CHARGE-2 BABY HEDGEHOG SOLITONS

Previous numerical and analytical results [9,21] on
isospinning charge-1 and charge-2 baby Skyrmion

solutions are largely based on the assumption that
deformations are only happening within a rotationally
symmetric hedgehog ansatz (11). Consequently, previous
work has been mainly concerned with the solution of
Eq. (16). In this appendix, we briefly demonstrate that
the pattern of critical behavior observed for rotationally
symmetric deforming Skyrmion solutions differs signifi-
cantly from the one we found when allowing for arbitrary
deformations.
For mass values � � 1 the asymptotic behavior is gov-

erned by theOð3Þ sigma model term and the potential term
in the Skyrme Lagrangian (1), whereas the Skyrme term is
effectively removed. The linearized field equations give a
critical angular frequency !crit ¼ !2 ¼ �, and the spin-
ning solitons are exponentially localized for !<!crit [9].
However, for larger � (�> 1) the Skyrme and potential
term become increasingly dominant. For � ! 1 the
model is effectively described by the quartic (Skyrme)
term and the potential. In this limit the model is often
referred to as the Bogomolny-Prasad-Sommerfield (BPS)
baby Skyrme model [34,21,22,24] because its infinitely
many exact static (multi)soliton solutions saturate the cor-
responding Bogomolny lower energy bound [22–24].
Using various numerical methods (collocation [29], simple
gradient flow evolution and Newton iteration [35]) we
solve (16) for isospinning charge-1 and charge-2 baby
hedgehog solitons within the mass range 0<� � 16.
The obtained critical angular frequencies !crit are shown
in Fig. 15 as a function of the mass parameter �. For
comparison, we also display in Fig. 15 the analytically

FIG. 15 (color online). Critical frequency !crit as a function of
the mass parameter � for isospinning B ¼ 1 and B ¼ 2 hedge-
hog soliton solutions in the full baby Skyrme model compared
with the ones in the BPS baby Skyrme model [21]. Note that
solid lines represent the critical frequencies obtained by solving
(16) numerically, whereas dashed lines show the frequencies
calculated analytically [21] in the infinite mass limit of the
standard baby Skyrme model.
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calculated [21] critical frequencies for charge-1 and
charge-2 rotationally invariant Skyrme solitons in the
� ! 1 limit of the conventional baby Skyrme model.
In this BPS limit the maximal rotation frequency
has been calculated analytically [21] to be given by

!crit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B�=2

ffiffiffi
2

pq
.

We observe that the !critð�Þ curves for isospinning
hedgehog solutions in the full baby Skyrme model and in
the BPS model are in qualitative agreement: In particular,

the graphs show approximately the same asymptotic
behavior and a crucially different behavior for low and
higher mass values.
However, our full two-dimensional relaxation calcula-

tions in the standard baby Skyrme model reveal that iso-
spinning soliton solutions are only stable up to angular
frequencies ! � min ð�; 1Þ and that the higher frequency
values shown for �> 1 in Fig. 15 are purely an artefact of
the hedgehog approximation.
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