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We extend the superembedding formalism for 4D N ¼ 1 superconformal field theory to the case of

fields in arbitrary representations of the superconformal group SUð2; 2j1Þ. For applications we obtain

manifestly superconformally covariant expressions for two- and three-point functions involving conserved

currents, e.g., the supercurrent multiplet or global symmetry current superfields. The embedding space

results are presented in a compact form by employing an index-free formalism. Our expressions are

consistent with the literature, but the manifestly covariant forms of correlators presented here are new.
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I. INTRODUCTION

Four-dimensional conformal symmetry imposes strin-
gent constraints on the form of quantum field theory cor-
relators as well as restrictions on scaling dimensions of
certain operators [1]. However, the full implications of
conformal invariance in four dimensions are not yet com-
pletely known. Recently, there has been some progress in
using general principles such as unitarity, the operator
product expansion (OPE) and its conformal block decom-
position, and crossing symmetry to derive constraints on
four-dimensional conformal field theories (CFTs). See, for
instance, Refs. [2] for recent results in this direction.

A useful tool for exploring the consequences of confor-
mal invariance in four dimensions is the embedding space
formalism [3,4], in which four-dimensional Minkowski
space is identified with the projective light cone in a flat
six-dimensional space with signature (4, 2) metric, which
we will refer to as the ‘‘embedding space.’’ The conformal
group SOð4; 2Þ acts linearly on the embedding space, so
working in this framework makes conformal symmetry
manifest at the level of the correlation functions. The
embedding space language was first applied to field theory
in Refs. [3] to derive manifestly covariant free wave equa-
tions and employed in the context of general interacting
CFTs in Ref. [4]. From the point of view of constraining
CFTs, applications of embedding space methods include a
conformally covariant formulation of the OPE [5] and the
derivation of closed-form expressions for the conformal
partial wave decomposition of four-point functions in four
and six dimensions [6]. More recent results can be found,
e.g., in Refs. [7,8].

In this paper, we consider a supersymmetric version of
the projective light-cone formalism, which is appropriate
to describe four-dimensional (4D) N ¼ 1 superconfor-
mally invariant field theory (SCFT), following the recent
work of Ref. [9]. One motivation for focusing on super-
symmetric conformal theories is that they provide a large
sample of interacting CFTs with often tractable dynamics,
which could be used to explicitly test the recent ideas
discussed in Refs. [2]. Indeed, most nontrivial 4D CFTs

with a known microscopic realization (apart from pertur-
bative Banks–Zaks-type fixed point theories) are in fact
SCFTs.
Reference [9] showed how to realize the SUð2; 2j1Þ

N ¼ 1 superconformal symmetry on an embedding
superspace for which the coordinates transform linearly
under SUð2; 2j1Þ. These coordinates are spanned by a
set of supermatrices that decompose into seven bosonic
and four Grassmann components and transform in 11-
dimensional irreducible representations of SUð2; 2j1Þ.
Four-dimensional Minkowski superspace is realized in
terms of a set of covariant quadratic constraints on these
coordinates. Related work on supersymmetric generaliza-
tions of embedding space methods include Ref. [10],
which makes SOð4; 2Þ rather than SUð2; 2j1Þ invariance
manifest, and Refs. [11,12], which employ supertwistor
techniques. The equivalence of superembedding methods
and the supertwistor approach was established in
Refs. [13,14]. The N > 1 extension of the construction
discussed in Ref. [9] was introduced in Ref. [15] and fully
developed in Ref. [13].
Here, we further develop the realization of superconfor-

mal fields in the language of Ref. [9]. In particular, we
establish a correspondence between superfields of arbitrary
spin on Minkowski superspace and superfields in the em-
bedding space and use it to work out the implications for
two-point and three-point correlators. To illustrate our
methods, we focus on the physically relevant cases of
global symmetry current multiplets, described in four di-
mensions by real scalar superfields, and the supercurrent
multiplet. Our results are presented in a compact index-free
notation analogous to the one developed in Refs. [7,8]
for nonsupersymmetric CFTs. When written in four-
dimensional language, our results agree with the existing
literature [16–18].
The paper is organized as follows. In the next section,

we review the superembedding formalism of Ref. [9] and
establish our notation. In Sec. III, we establish a corre-
spondence between superfields in arbitrary Lorentz repre-
sentations and their superembedding space counterparts. In
Sec. IV, we apply our formalism to examples of two-point
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and three-point correlators. Emphasis is placed on corre-
lators involving the various symmetry currents of the
SCFT. In particular, we recover the known superconformal
relations between possible anomalies of global currents.
Construction of manifestly covariant correlators reduces to
the problem of enumerating SUð2; 2j1Þ invariants built
from products of embedding space supercoordinates
with a fixed number of supertwistors and their complex
conjugates. We conclude in Sec. V.

II. SUPEREMBEDDING FORMALISM

In order to establish our notation, we briefly review
the ‘‘superembedding formalism’’ developed in Ref. [9].
The four-dimensional N ¼ 1 Minkowski superspace,

M ¼ R4j4, is embedded in a higher-dimensional super-
space E, on which the superconformal group SUð2; 2j1Þ
acts linearly. The reduction from the embedding space E
to the four-dimensional superspaceM is accomplished by a
set of covariant constraints, which we review in this section.

A. Superconformal group

Our notation for the N ¼ 1 superconformal group
SUð2; 2j1Þ follows that of Ref. [9]. The supergroup
SUð2; 2j1Þ consists 5� 5 supermatrices1 of the form

UA
B ¼ U�

� ��

c � z

 !
; (1)

with bosonic (c-number) entries U�
� and z and (anticom-

muting) fermionic entries �� and c �. These matrices act
on a fundamental (defining) five-dimensional representa-
tion VA, where we assign V� to be fermionic and V5 is
bosonic, as VA ! UA

BVB. On the conjugate representation,

V _A � Vy
A , SUð2; 2j1Þ acts as V _A ! V _BU

_B
_A
, with U

_B
_A
¼

ðUA
BÞy. A supermatrix UA

B belongs in SUð2; 2j1Þ if it
satisfies the ‘‘unitarity’’ constraint

A
_AA ¼ U

_A
_B
A

_BBUB
A; (2)

where the SUð2; 2j1Þ invariant metric is given by

A
_AB ¼ A _�� 0

0 1

 !
¼

0 � _a
_b

0

�a
b 0 0

0 0 1

0
BB@

1
CCA (3)

as well as the ‘‘unimodular’’ constraint

½s detU��1 ¼ det ðU�
� � z�1��c

�Þ
z

¼ 1: (4)

It is most often convenient to work with infinitesimal
generators rather than with finite group elements. Near the
identity,

UA
B ¼ �A

B þ iTA
B; (5)

where the generators take the form

TA
B ¼ T�

� þ 1
4��

�� ��

��� �

 !
: (6)

The traceless tensor T�
� is a generator of SUð2; 2Þ �

SUð2; 2j1Þ [the invariant SUð2; 2Þ metric is the matrix
A _�� defined above], and ��� � � _�A

_��. The action of
the generators on fundamental and antifundamental
representations is then

�VA ¼ iTA
BVB; (7)

and

� �VA ¼ �i �VBTB
A; (8)

where we have introduced the notation �VA � V _AA
_AA.

Tensor products of fundamental and antifundamental VA

and �VA representations generally have mixed symmetry
properties. To keep track of minus signs that arise when
permuting such objects, we employ the notation

�ðABÞ�
��1 if bothAandBare fermionic indices�;�;

þ1 otherwise;

(9)

�ðAÞ � �ðAAÞ: (10)

For instance,

VAWB ¼ �ðABÞWBVA; (11)

VATB
C ¼ �ðABÞ�ðACÞTB

CVA: (12)

Note that the indices inside �ðÞ do not obey the standard
repeated index sum convention; i.e., no sum is implied on
the right-hand sides of Eqs. (11) and (12). However, when
an index is repeated, not including the arguments of �ðÞ’s
in the count, then a single sum is implicit over such an
index. Equations (7) and (8) imply that

WA
�VA�ðAÞ ¼ �VAWA (13)

is an SUð2; 2j1Þ singlet, and as we already mentioned, a
sum over the index A is implicit on both sides. This is a
specific case of a general rule for covariantly contracting
SUð2; 2j1Þ indices when � is fermionic and 5 is bosonic.
From left to right, an upper index contracts with a lower
index without any � factor, and from left to right, a lower
index contracts with an upper index with a � factor.
Extensive discussions of SUð2; 2jN Þ representations can
be found in Refs. [19–21], and a discussion of tensor
product representations and the super-Young tableaux
can be found in Refs. [22,23], although for our purposes,
the properties summarized above will suffice.1Capital indices A;B; . . . ; run over A ¼ � ¼ 1; . . . ; 4 or A ¼ 5.
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B. Superembedding Space

We introduce an embedding superspace, which we will
refer to as the superembedding space E, which contains

four-dimensional superspace R4j4 (denoted by M) and
transforms linearly under superconformal transformations.
It is the analog of the embedding space for 4D CFTs R6

with coordinates Xm (with m taking the values þ, � or,
� ¼ 0, 1, 2, 3) that transforms linearly under SOð4; 2Þ and
contains the conformal compactification of four-
dimensional Minkowski space, realized as the projective
light cone 0¼X2¼�mnX

mXn¼���X
�X�þXþX� [3,4].

To do so, we need a ‘‘coordinate supermultiplet’’ XAB

defined to possess identical SUð2; 2j1Þ transfomation prop-
erties and index exchange symmetry as the tensor product
VAVB, i.e.,

XAB ¼ �ðABÞXBA; (14)

with infinitesimal SUð2; 2j1Þ transformation

�XAB ¼ iTA
B0
XB0B þ i�ðABÞTB

A0
XA0A: (15)

The multiplet XAB contains the bosonic components
X�� ¼ �X��, X55 � ’ and fermionic coordinates X5� ¼
X�5 � 	�. The antisymmetric SUð2; 2Þ tensor X�� can be

equivalently written in SOð4; 2Þ notation as the six-
dimensional vector Xm. The explicit correspondence is

Xm ¼ 1

2
X���

m��; X�� ¼ 1

2
Xm

~�m
��; (16)

where the matrices �m�� and ~�m
�� and their properties are

given in Appendix A of Ref. [9].
Because there is no covariant reality condition in

SUð2; 2j1Þ, XAB is in a complex representation. We intro-
duce an additional coordinate �XAB with the same properties
as the tensor product �VA �VB, i.e., �XAB ¼ �ðABÞ �XBA, and

� �XAB ¼ �i �XAA0
TA0

B � i�ðABÞ �XBB0
TB0

A: (17)

The superembedding space E consists of the space C7j4
spanned by the pair ðXAB; �X

ABÞ.
The real four-dimensional Minkowski superspace M is

recovered as the subset of E obtained by projective identi-
fication ðX; �XÞ � ð
X; �
 �XÞ, and by imposing the relation

�X AB ¼ A
_AAA

_BBX _A _B; where X _A _B � ðXBAÞy; (18)

between XAB and �XAB, together with the constraints [9,24]

½XABXCD�16 ¼ 0; ½ �XAB �XCD�16 ¼ 0; (19)

½XAB
�XBC�24 ¼ 0; (20)

where the boldface subscripts denote the dimensions of the
irreducible SUð2; 2j1Þ representation that we project onto.
For example, the (adjoint) 24 representation consists of
supermatrices MA

B with zero supertrace,

strM � ��ðAÞMA
A ¼ 0; (21)

while ½XABXCD�16 ¼ 0 is equivalent to the cyclic
constraint,

XABXCD � XABXCD þ �ðACÞ�ðABÞXBCXAD

þ �ðACÞ�ðBCÞXCAXBD

¼ 0; (22)

where appropriate � factors are inserted to ensure
SUð2; 2j1Þ covariance. Solutions of the constraint
equations, (19) and (20), also automatically satisfy
½XAB

�XAB�1 ¼ 0. Therefore, XAB
�XBC ¼ 0 for any values

of A and C.
To see that four-dimensional superspaceM corresponds

to the subspace of E defined by these equations, we note
that solutions can be generated, at least locally, by applying
all possible SUð2; 2j1Þ to any single point obeying the
constraints [9]. For example, one may start from ‘‘the
origin’’

X̂AB ¼
i
2 �abX

þ 0 0

0 0 0

0 0 0

0
BB@

1
CCA; (23)

which is (projectively) invariant under SOð3; 1Þ �
SUð2; 2j1Þ, special conformal transformations, special
superconformal transformations, dilatations, and by a
global Uð1ÞR � SUð2; 2j1Þ. It follows that the space of
solutions to the constraints can be identified with the coset
SUð2; 2j1Þ=H, with H the isotropy group of the origin.
This (4þ 4)-dimensional space is Minkowski superspace
M. A convenient parametrization near the origin is
ðXþ; �Xþ; x�; 	a; �	 _aÞ, where a; _a ¼ 1; 2 are two-component
SLð2;CÞ indices (our conventions for two-component spin-
ors are those of Wess and Bagger [25]), and

XAB ¼ Xþ

i
2 �ab

1
2 ðy��Þa _b 	a

� 1
2 ðy ���Þ _ab � i

2 y
2� _a _b iðy ��	Þ _a

	b iðy ��	Þ _b 2i	2

0
BBB@

1
CCCA; (24)

�XAB ¼ �Xþ
� i

2
�y2�ab � 1

2 ð�� �yÞa _b
�ið �	 �� �yÞa

1
2 ð� �� �yÞ _ab i

2 � _a _b
�	 _a

�ið �	 �� �yÞb �	 _b �2i �	2

0
BB@

1
CCA:
(25)

The four-dimensional coordinates satisfy y� � �y� ¼
2i	�� �	 on account of the ½X �X�24 ¼ 0 constraint, and
x� ¼ 1

2 ðy� þ �y�Þ. It is straightforward to verify [9] that

ðx�; 	a; �	 _aÞ transform in the standard way under super-
conformal transformations (for instance in the form given
in Ref. [26]). Note that the upper 4� 4 block in Eq. (24) is
1
2Xm

~�m
�� with Xm ¼ ðXþ; X� ¼ Xþy�; X� ¼ �Xþy2Þ on

the (complexified) SOð4; 2Þ light cone. Similar results hold
for the conjugate coordinates.
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When XAB is restricted to M as in Eq. (24), its compo-
nents are linearly dependent. The second and third columns
of the matrix XAB can be given in terms of the first column:

XA
_b ¼ iy ��

_bbXAb and XA5 ¼ 2i	bXAb�ðAÞ: (26)

Similar relations for �XAB relate the first and third rows to
the second one:

�XbA ¼ �i �X _b
A ��

_bb and �X5A ¼ �2i �X _b
A �	

_b�ðAÞ: (27)

The parametrization ofM given above describes points
near the origin x� ¼ 0. Points near infinity, with z� ¼
x�=x2 close to z� ¼ 0, can be described by applying all
possible SUð2; 2j1Þ transformations to

�XAB ¼
0 0 0

0 i
2 � _a _bX

� 0

0 0 0

0
BB@

1
CCA; (28)

which is left invariant by SLð2;CÞ Lorentz transforma-
tions, translations, and Poincare supersymmetry transfor-
mations. Given two points inM, there exists an SUð2; 2j1Þ
transformation that simultaneously sends one of the points
to the origin, Eq. (23), and the other to ‘‘infinity’’ given in
Eq. (28).

III. SUPERFIELDS

We now develop the correspondence between super-
fields onM and their counterparts in E. A generic primary
superfield �M on M is specified by its SLð2;CÞ Lorentz
quantum numbers, by its scaling dimension �, and by the
Uð1ÞR charge of its lowest component field [17]. It is given
by an SLð2;CÞ multispinor,

�Ma1...a2j

_b1... _b2 �jðx; 	; �	Þ; (29)

where irreducibility requires complete symmetry under the
interchange of pairs of dotted or undotted indices.
Transformation properties of superfields under the super-
conformal transformations were discussed in Ref. [26]. It is
useful to label this superfield by its quantum numbers
ðj; �j; q; �qÞ, where

q � 1

2

�
�þ 3

2
R

�
; (30)

�q � 1

2

�
�� 3

2
R

�
: (31)

The correspondence for j ¼ �j ¼ 0 was developed in
Ref. [9]: A ð0; 0; q; �qÞ primary operator �Mðx; 	; �	Þ
in Minkowski spacetime maps into an embedding
space SUð2; 2j1Þ scalar superfield �EðX; �XÞ ¼ ðXþÞ�q �
ð �XþÞ� �q�Mðx; 	; �	Þ homogeneous in its arguments. We
now extend this result to other representations.

First, we recall the mapping between primary operators
of SOð4; 2Þ in spinor representations and their projective

light-cone countertparts. Recent detailed discussions can
be found in Refs. [8,27]. Starting with primary c aðx�Þ
transforming in the ð1=2; 0Þ representation of SLð2;CÞ, one
constructs a projective light-cone field

c �ðXÞ ¼ ðXþÞ���1=2X�bc
bðx�Þ; (32)

which is a homogeneous function, c �ð
XÞ ¼

��þ1=2c �ðXÞ, transforming in the fundamental represen-
tation of SUð2; 2Þ � SOð4; 2Þ. Points on the projective
light cone automatically obey the stronger constraint
X�
X


� ¼ 0, and thus c �ðXÞ defined by Eq. (32) satisfies
the relation

X��c �ðXÞ ¼ 0: (33)

Conversely, given a spinor c �ðXÞ on the projective light
cone satisfying the constraint in Eq. (33), it is possible to
project onto a spinor primary field c aðx�Þ in Minkowski
space,2

c aðx�Þ ¼ ðXþÞ��1=2c �¼aðXÞ: (34)

This correspondence generalizes to fields in other
representations in the obvious way.
To establish the analogous correspondence for

superconformal fields, we need to supersymmetrize the
constraint in Eq. (33). The generalization of c �ðXÞ is an
embedding space superfield �EAðX; �XÞ in the fundamental
representation of SUð2; 2j1Þ satisfying the scaling property

�EAð
X; �
 �XÞ ¼ 
�ðq�1
2Þ �
� �q�EAðX; �XÞ: (35)

To generalize Eq. (33), we must find a supermultiplet
of linear constraints constructed from the product of �EA
with either XAB or �XAB. The two possibilities are either
�XAB�EB ¼ 0, which reduces to Eq. (33) at the point
�X5� ¼ �X55 ¼ 0 or ½XAB�EC�15 ¼ 0, which can be written
explicitly as

XAB�ECðX; �XÞ � XAB�EC þ �ðACÞ�ðABÞXBC�EA

þ �ðACÞ�ðBCÞXCA�EB

¼ 0; (36)

or componentwise

X���E� ¼ 0; (37)

X���E5 þ 	��E� � 	��E� ¼ 0; (38)

2	��E5 þ ’�E� ¼ 0; (39)

2Note that there is some redundancy in this construction, as the
light-cone constraint on X�� means that the solution to Eq. (33)
is not unique. Given any solution to Eq. (33), one may generate
others by adding terms of the form X���

�ðXÞ. While this free-
dom changes the explicit expression for c aðx�Þ in Eq. (34), it
does not change results for correlation functions obtained via the
embedding space formalism; see Ref. [8] for details.
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’�E5 ¼ 0: (40)

In particular the A ¼ �, B ¼ �, C ¼  component of
Eq. (36), given in Eq. (37), implies that �E� obeys
Eq. (33) at all points of E. Furthermore, it can be checked
that imposing ½XAB�EC�15 ¼ 0 on E also implies that
�EA obeys the antifundamental constraint �XAB�EB ¼ 0
restricted to M.

From these observations, we conclude that
½XAB�EC�15 ¼ 0 yields the constraint necessary to recover
the correct four-dimensional superfield �M;aðx�; 	; �	Þ.
Indeed, for fixed �E�¼a and XAB restricted to M, using
the parametrization in Eqs. (24) and (39) implies

�E5 ¼ 2i	a�Ea; � _a
E ¼ iy� �� _aa

� �Ea: (41)

The remaining constraints, Eqs. (37), (38), and (40), are
then automatically satisfied given Eq. (41).

Since only the A ¼ a components of �EA are left
independent by the constraint in Eq. (36), we define
�Maðx�; 	; �	Þ as

�Maðx; 	; �	Þ ¼ ðXþÞq�1
2ð �XþÞ �q�EA¼aðX; �XÞ; (42)

where the coordinates on the right-hand side are restricted
to M. It is also possible to uplift the superfield �Ma

from M to E via

�EAðX; �XÞ ¼ ðXþÞ�ðqþ1
2Þð �XþÞ� �qXA

c�Mcðx; 	; �	Þ; (43)

which follows by using Eqs. (41), (42), and (26). Of course,
it is understood that the field �EAðX; �XÞ is not defined for
all values of X and �X in the superembedding space E since
�Mcðx; 	; �	Þ is only defined on M.
We now show that �Ma has the correct transformation

property of an undotted spinor with the label ð12 ; 0; q; �qÞ.
Equation (42) gives

�s�Ma¼ðXþÞq�1
2ð �XþÞ �q�s�EA¼aþ

�
q�1

2

��
�Xþ

Xþ

�
�Ma

þ �q

�
� �Xþ
�Xþ

�
�Ma; (44)

where the variation �s on a field �ðXÞ is defined by
�s�ðXÞ ¼ �0ðX0ðXÞÞ ��ðXÞ [in other words, we omit
the action of SUð2; 2j1Þ acting on the coordinates in
Eq. (24)]. Parametrizing the SUð2; 2j1Þ generator TA

B in
Eq. (6) in terms of the more familiar four-dimensional
superconformal transformations, the translation a�,

SOð3; 1Þ transformation !��, dilatation 
, special

conformal transformation b�, Poincare supersymmetry

�a, special superconformal transformation �a, and Uð1ÞR
charge �,

TA
B ¼

i
2 log
�a

b þ i
2!��ð���Þab þ 1

4��a
b b��

�

a _b
�2�a

a� ��� _ab � i
2 log
�

_a
_b
þ i

2!��ð ����Þ _a _b
þ 1

4�� _a
_b

2 �� _a

2�b �2 �� _b �

0
BBB@

1
CCCA; (45)

we obtain

�Xþ ¼
�
� log
þ i

2
�� 4�a	a þ 2ðb � yÞ

�
Xþ; (46)

� �Xþ ¼
�
� log
� i

2
�� 4 �� _a

�	 _a þ 2ðb � �yÞ
�
�Xþ; (47)

and, using Eq. (41),

�s�Ea ¼ � 1

2
!��ð���Þab�Eb � 1

2
log
�Ea þ ðb � yÞ�Ea � 2b�y�ð���Þab�Eb þ i

4
��Ea þ 4�a	

b�Eb: (48)

Note that this field has zero variation under translations and Poincare supersymmetry transformations. Putting together
these results, we finally get

�s�Ma ¼ � 1

2
!��ð���Þab�Mb � log
ðqþ �qÞ�Ma þ 2qðb � yÞ�Ma þ 2 �qðb � �yÞ�Ma � 2b�y�ð���Þab�Mb

� 4

�
q� 1

2

�
ð�	Þ�Ma þ 4�a	

b�Mb � 4 �qð �� �	Þ�Ma þ i

2
�ðq� �qÞ�Ma; (49)

which is the correct transformation rule for a ð1=2; 0Þ
spinor multiplet; see, e.g., Ref. [26]. The parameter �
does not correspond to the standard R-symmetry charge
assignment in four dimensions but differs by a factor of 4

3 ;
see Ref. [9].

To summarize, a field �EAðX; �XÞ on E obeying the

scaling relation (i) �EAð
X; �
 �XÞ ¼ 
�ðq�1
2Þ �
� �q�EAðX; �XÞ

and the covariant constraint (ii) ½XAB�EC�15 ¼ 0 defines a
superconformal multiplet �Maðx; 	; �	Þ in the ð1=2; 0; q; �qÞ
representation via the relation in Eq. (42). Conversely,
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given �Maðx; 	; �	Þ we can construct an operator
�EAðX; �XÞ that transforms linearly under SUð2; 2j1Þ.

This construction generalizes easily to other representa-
tions ðj; �j; q; �qÞ. A superfield �M _a transforming in the
ð0; 12 ; q; �qÞ representation corresponds in E to a superfield

�A
E that obeys the scaling property

�A
E ð
X; �
 �XÞ ¼ 
�q �
�ð �q�1

2Þ�A
E ðX; �XÞ (50)

and the constraint ½�A
E
�XBC�15 ¼ 0, or

�
A
E
�XBC ¼ 0; (51)

which implies the additional constraint�A
EXAB ¼ 0 onM.

One obtains �M _a from �A
E by

�M _aðx; 	; �	Þ ¼ ðXþÞqð �XþÞ �q�1
2�A¼ _a

E ðX; �XÞ; (52)

and conversely

�A
E ðX; �XÞ ¼ ðXþÞ�qð �XþÞ�ð �qþ1

2Þ�M _cðx; 	; �	Þ �X _cA (53)

defines a field �A
E ðX; �XÞ that transforms linearly under

superconformal transformations.

For the more general case of �Ma1...a2j

_b1... _b2 �jðx; 	; �	Þ in
the ðj; �j; q; �qÞ representation, we introduce a field
�EA1...A2j

B1...B2 �jðX; �XÞ, which we assign to have identical

SUð2; 2j1Þ transformation property to that of the tensor

product of 2j fundamentals Vð1Þ
A1

. . .Vð2jÞ
A2j

and 2 �j antifunda-

mentals �VB1

ð1Þ . . . �V
B2 �j

ð2 �jÞ,

�EA1...A2j

B1...B2 �j � Vð1Þ
A1

. . .Vð2jÞ
A2j

�VB1

ð1Þ . . . �V
B2 �j

ð2 �jÞ: (54)

We pick the highest-weight ðj; �jÞ representation by impos-
ing a symmetry under the exchange of adjacent indices
�E...AiAiþ1...

B1...B2 �j ¼ ��ðAiAiþ1Þ�E
B1

Aiþ1Ai

B2 �j . The fields

are homogenous

�EA1...A2j

B1...B2 �jð
X; �
 �XÞ
¼ 
�ðq�jÞ �
�ð �q� �jÞ�EA1...A2j

B1...B2 �jðX; �XÞ (55)

and satisfy the constraints

0 ¼ XCD�EA1A2...A2j

B1...B2 �j ; (56)

0 ¼ �EA1...A2j

B1...B2 �j�1B2 �j �XCD: (57)

Using the quadratic equations satisfied by points
ðXAB; �X

ABÞ on M, these constraints also imply that

�X AA1�EA1A2...A2j

B1...B2 �j ¼ 0; (58)

�EA1A2...A2j

B1...B2 �jXB2 �jA
¼ 0: (59)

The superfield �Ma1...a2j

_b1... _b2 �j is recovered through

�Ma1...a2j

_b1... _b2 �jðx; 	; �	Þ
¼ ðXþÞq�jð �XþÞ �q� �j�EA1¼a1...A2j¼a2j

B1¼ _b1...B2 �j¼ _b2 �j ; (60)

and one can also easily generalize Eq. (43) to this case.
It is sometimes possible to further reduce the superfield

by imposing holomorphy or antiholomorphy, i.e., func-
tional dependence only on XAB or �XAB, respectively.
Given the constraints in Eqs. (56) and (57), holomorphic
superfields �EðXÞ on E project onto chiral superfields
�Mðy; 	Þ only for the special values �j ¼ �q ¼ 0 of the
quantum numbers. In particular this implies the standard
relation � ¼ 3

2R between the scaling dimension and R

charge in the chiral sector [in a normalization with
Rð	aÞ ¼ 1]. Likewise, antichiral fields �Mð �y; �	Þ on M
correspond to antiholomorphic fields on E with j ¼ q ¼ 0,
and consequently � ¼ � 3

2R.

In what follows, we will focus on special cases of
ðj; �j; q; �qÞ that have particular relevance to physical
applications. In addition to chiral/antichiral fields with
j ¼ �j ¼ 0, we will consider the real scalar multiplet VM
transforming in the representation ð0; 0; q; qÞ. The case
q ¼ 1, i.e., � ¼ 2, R ¼ 0, usually denoted by LM, con-
tains a dimension � ¼ 3 conserved current j�ðxÞ. This
multiplet can be obtained from a real multiplet LM by
imposing the constraints [17]D2LM ¼ �D2LM ¼ 0, where
Da, �D _a are the N ¼ 1 Poincare supercovariant deriva-
tives, which restrict LM to

LMðx; 	; �	Þ ¼ CðxÞ þ i	�ðxÞ � i �	 ��ðxÞ � 	�� �	j�ðxÞ
þ 1

2
	2 �	 ���@��ðxÞ � 1

2
�	2	��@� ��ðxÞ

� 1

4
	2 �	2hCðxÞ: (61)

Finally, we will also consider the supercurrent multiplet
[28], a real superfield TMa _bðx; 	; �	Þ transforming in the
ð12 ; 12 ; 32 ; 32Þ representation and obeying the conservation

law DaTMa _b ¼ �D
_bTMa _b ¼ 0 with component field

expansion

T M�ðx; 	; �	Þ ¼ jR�ðxÞ þ 	aS�aðxÞ þ �	 _a
�S _a
�ðxÞ

þ 2	�� �	T��ðxÞ þ � � � ; (62)

where jR� is the Uð1ÞR current, S�a the supercurrent, and

T�� ¼ T�� the energy-momentum tensor. In the embed-

ding approach, TMa _b gets lifted to a superfield T EA
B in

the 24 (adjoint) representation, satisfying the constraints of
Eqs. (56) and (57), strT ¼ 0, together with the scaling law

T EA
Bð
X; �
 �XÞ ¼ 
�1 �
�1T EA

BðX; �XÞ (63)

and the reality condition

T EA
BðX; �XÞ¼ �T EA

BðX; �XÞ�AA _BT
y _B
E _A

ðX; �XÞA _AB: (64)

The relation between TM and T E is
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TMa _bðx; 	; �	Þ ¼ Xþ �XþT EA¼a
B¼ _bðX; �XÞ; (65)

and

T EA
BðX; �XÞ¼ ðXþÞ�2ð �XþÞ�2XA

aT a _bðx;	; �	Þ �X _bB: (66)

IV. CORRELATORS

We now use the superembedding formalism to construct
manifestly covariant expressions for SCFT correlation
functions.

A. Two-point functions

Given a set of coordinates Zi ¼ ðXi; �XiÞ, an overcom-
plete set of SUð2; 2j1Þ invariants is given by the supertraces
[29], e.g.,

h1�23�4 . . .i � strX1� �X2X3 . . . ; (67)

where the rules for constructing the tensor
ðX1� �X2X3 . . .ÞAB were given in Sec. II. For two indepen-
dent points, the only invariant is h1�2i and its complex
conjugate, as can be readily seen by going to the
frame in which X1 is at the origin and X2 at infinity. It
follows from the scaling relation, Eq. (55), that, up to
normalization,

h�E1ðZ1Þ�E2ðZ2Þi ¼
�q1 �q2� �q1q2

h1�2iq1h2�1i �q1 : (68)

The four-dimensional correlator immediately follows upon
inserting the expression

h1�2i ¼ � 1

2
ðXþ

1 Þð �Xþ
2 Þð �y2 � y1 þ 2i	1� �	2Þ2: (69)

Equation (68) contains as a special case the two-point
function of a chiral ( �q ¼ 0) scalar with an antichiral
(q ¼ 0) scalar, and the two-point function of the current
superfield LE � ð0; 0; 1; 1Þ. In the normalization of
Ref. [30], with � a real constant,

hLI
EðZ1ÞLJ

EðZ2Þi ¼ �IJ

64�4

�

h1�2ih2�1i ; (70)

where I, J are the adjoint indices of the symmetry group.
This result holds up to contact terms, which the embedding
formalism does not account for [9]. It is straightforward to
check that upon projection to M, the correlator satisfies
D2hLELEi ¼ �D2hLELEi ¼ 0. Thus, current conservation is
automatic at the level of the two-point function.

To construct correlators for higher-spin supermultiplets,
we employ a variant of the index-free notation introduced
in Ref. [7] for SOð4; 2Þ tensors and in Ref. [8] for SUð2; 2Þ
multitwistors. We use fundamental and antifundamental
representations WA, �WA for which the components are
now W� and �W� c numbers, while components W5, �W5

are Grassmann variables. We write

�ðW; �W;ZÞ ¼ X
j; �j

�ð� � �Þ �WA1 . . . �WA2j

��EA1...A2j

B1...B2 �jðZÞWB1
. . .WB2 �j

; (71)

which is a superconformal scalar under simultaneous
transformations of �EA1...A2j

B1...B2 �j , XAB, �XAB, WA, �WA.

[The symbol �ð� � �Þ denotes factors of Eq. (9) inserted to
ensure SUð2; 2j1Þ invariance].
Correlators of �ðW; �W;ZÞ are functions of invariants

constructed from insertions of the objectsW, �W, X, and �X.
Note that due to the constraints in Eqs. (58) and (59), there
is an additional ‘‘gauge invariance’’ under the shifts

WA ! WA þ �SBXBA; (72)

�W A ! �WA þ �XABSB; (73)

with arbitrary SA, �SA, which can be used to reduce the
number of invariants. For the two-point function h�1�2i, a
complete set of invariants on M consists of h1�2i and its
conjugate, together with

�W 1ð1�2ÞW2; (74)

�W 2ð2�1ÞW1; (75)

where �W1ð1�2ÞW2 � �W1ðX1� �X2ÞW2, etc. In the following
discussion, we will abbreviate X1 as 1, �X1 as �1, and so on
and omit the �’s as their position is uniquely specified
by SUð2; 2j1Þ invariance. The gauge transformations on
WA, �WA introduced above forbid SUð2; 2j1Þ invariants
like �W1ð2�1ÞW2 and others, while the exchange symmetries
�WA �WB¼��ðABÞ�ðAÞ�ðBÞ �WB �WA and XAB ¼ �ðABÞXBA

rule out invariants such as �W1ð1Þ �W1 ¼ 0. Longer strings
of coordinates either vanish due to the ½X �X�24 ¼ 0 con-
straint or can be reduced to the basic invariants using
the ½XX�16 ¼ 0 constraint. For example, ð1�21�2ÞAB is pro-
portional to h1�2i times ð1�2ÞBA. Finally, by the scaling
properties, all two-point functions reduce to powers of
�W1ð1�2ÞW2, �W2ð2�1ÞW1 and h1�2i, h2�1i.
We find using these results that the two point function of

�1 � ðj; �j; q; �qÞ with another superfield �2 is nonvanish-
ing only for �2 transforming in the representation
ð �j; j; �q; qÞ. This two-point function can be read off the
term in h�1�2i proportional to 2j powers of W2A, �WB

1

and 2 �j powers of W1A, �WB
2 . It is

½ �W1ð1�2ÞW2�2j½ �W2ð2�1ÞW1�2 �j
h1�2iqþjh2�1i �qþ �j

: (76)

For example, the two-point function of superfields
�1AðZÞ � ð12 ; 0; q; �qÞ and �2

AðZÞ � ð0; 12 ; �q; qÞ has the

form h�1A�2
Bi ¼ h1�2i�q�1

2h2�1i� �qð1�2ÞAB. Using

ð1�2ÞB¼ _b
A¼a ¼ � i

4
Xþ
1
�Xþ
2 ðy1�2 þ 4i	1 �	2Þa _b (77)
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(y�12 � �y1 � y2 ¼ �y2�1) together with the rules given in
Sec. III for projecting onto four-dimensional superfields
then yields

h�1aðx1; 	1; �	1Þ� _2bðx2; 	2; �	2Þi

¼ ðy1�2 þ 4i	1 �	2Þa _b

½ðy�21 þ 2i	1� �	2Þ2�qþ1=2½ðy�12 þ 2i	2� �	1Þ2� �q
: (78)

Similarly the two-point function of the supercurrent
T a _bðx; 	; �	Þ � ð12 ; 12 ; 32 ; 32Þ is given by the embedding space

expression

h½ �W1T ðZ1ÞW1�½ �W2T CðZ2ÞW2�i

¼ cTT

16

½ �W1ð1�2ÞW2�½ �W2ð2�1ÞW1�
h1�2i2h2�1i2 ; (79)

or in four-dimensional language

hTa _bðx1; 	1; �	1ÞTc _dðx2; 	2; �	2Þi

¼ � cTT

16

ðy1�2 þ 4i	1 �	2Þa _dðy2�1 þ 4i	2 �	1Þc _b

½ðy�21 þ 2i	1� �	2Þ2ðy�12 þ 2i	2� �	1Þ2�2
; (80)

in agreement with Ref. [17].

B. Three-point functions

Supertraces constructed from strings of products of the
three coordinates ðX; �XÞi¼1;2;3 reduce to products of the

bilinears hi �ji, as can be seen for instance in a frame in
which two points are fixed to the origin and infinity,
respectively. The remaining symmetries in this frame are
sufficient to fix the bosonic part of the third point but not to
set its Grassmann part to zero. Thus, in contrast to non-
supersymmetric theories, there is an invariant cross ratio
for three points [18]. It can be taken to be

u ¼ h1�2ih2�3ih3�1i
h2�1ih3�2ih1�3i : (81)

Because superfield three-point correlators can have
arbitrary dependence on u, it might seem at first that
predictive power is completely lost. Fortunately, the func-
tional dependence on u is fixed up to three numerical
constants: In the frame with points X1;2 fixed to the origin

and infinity, respectively, there is residual SLð2;CÞ �
Uð1ÞR plus dilation symmetry that fixes the unique inde-
pendent invariant to be 	3x3 � � �	3=x

2
3. This invariant is

related to u by

z � 1� u

1þ u
¼ � 2i	3x3 � � �	3

x23
: (82)

Thus, in any frame, the most general function fðuÞ is a
quadratic polynomial in z so SUð2; 2j1Þ symmetry does
yield some predictions, in the form of relations between
component field correlators. Many known 4D SCFTs have
in addition global symmetries, for which the (possibly
anomalous) Ward identities provide extra constraints.

Consider, for instance, the three-point function of
conserved currents LIðx; 	; �	Þ. By including suitable im-
provement terms if necessary, the correlator can be made
symmetric in the exchange of operator labels. Thus, in
terms of the structure constants fIJK and anomaly tensor
dIJK of the global symmetry group G,

hLI
EðZ1ÞLJ

EðZ2ÞLK
E ðZ3Þi¼ dIJKð
0þ
2z

2Þþ
1zf
IJK

½h1�2ih2�1ih1�3ih3�1ih2�3ih3�2i�12 :
(83)

We have used the property z ! �z under interchange of
coordinates to fix the dependence on u.
To fix the constants 
0;1;2, we impose Ward identites that

relate the coefficient of fIJK to the two-point function and
the coefficient of dIJK to the TrG3 chiral anomaly. Because
we lack an embedding space formulation of contact terms,
we impose these Ward identities directly on the component
fields. First, send x1 ! 0 and x2 ! 1, and pick out the
coefficient of 	3 �	3 from Eq. (83),

hCIðx1!0ÞCJðx2!1ÞjK�ðx3Þi¼�8i
1f
IJK

x42

@

@x
�
3

ðx23Þ�1;

(84)

where CIðxÞ ¼ LIðx; 	 ¼ �	 ¼ 0Þ. From the hCICJi
component of Eq. (70) and the G-symmetry Ward identity

@�3 hTCIðx1ÞCJðx2ÞjK�ðx3Þi
¼ �ifIJK½�4ðx1 � x3Þ � �4ðx2 � x3Þ� �

16�4x412
; (85)

we find, using hðx2Þ�1 ¼ 4�2i�4ðxÞ, that 
1 ¼
�i�=ð512�6Þ. To fix
2 in terms of
0, note that hCICJCKi is

hCIðx1 ! 0ÞCJðx2 ! 1ÞCKðx3Þi ¼ 8

x42x
2
3

dIJK
0; (86)

while the 	23
�	23 component gives

hCIðx1 ! 0ÞCJðx2 ! 1ÞhCKðx3Þi
¼ � 32

x42x
4
3

dIJKð2
2 � 
0Þ; (87)

where Lðx; 	; �	Þj	2 �	2 ¼ � 1
4hCðxÞ. Up to contact terms,

these two results are only consistent if 
2 ¼ 1
2
0. Finally,


0 is fixed in terms of the chiral anomaly, which from
Eq. (83) is given by

hjI�1
ðx1ÞjJ�2

ðx2ÞjK�3
ðx3Þijd

¼8ið
0þ6
2Þ
x412x

4
23x

4
31

dIJKðTr½� �x12 ���2
� �x23 ���3

� �x31 ���1
�

�Tr½� �x31 ���3
� �x23 ���2

� �x12 ���1
�Þ; (88)

which in turn is equal to the one-loop anomaly of k free chiral
fermions, provided we adjust 
0 ¼ k=ð1024�6Þ. Thus, the
three-point function can be written as
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hLI
EðZ1ÞLJ

EðZ2ÞLK
E ðZ3Þi

¼ 1

1024�6

�2i�fIJKzþ kdIJKð1þ 1
2 z

2Þ
½h1�2ih2�1ih1�3ih3�1ih2�3ih3�2i�12 : (89)

The correlator hT LILJi is obtained by similar consid-
erations. Imposing SUð2; 2j1Þ invariance, symmetry under
exchange ð1; IÞ $ ð2; JÞ, and reality conditions on the
fields, the most general form is

hLIðZ1ÞLJðZ2Þ½ �W3T ðZ3ÞW3�i

¼ �IJ

h3�1ih1�3ih3�2ih2�3i
�

̂0 � �W3

�
3�21�3

h1�2i þ
3�12�3

h2�1i
�
W3

þ z
̂1 � �W3

�
3�21�3

h1�2i �
3�12�3

h2�1i
�
W3

�
(90)

for some constants 
̂0;1. (A possible term proportional to z2

times the symmetric invariant in the first line of this
equation vanishes, as can be seen in a frame with Z3 at
the origin and Z2 at infinity). To fix the constants, we
impose Ward identities. Taking x1 ¼ 0 and x2 ! 1, the
	3 �	3 component of this equation is

hT��ðx3ÞCIð0ÞCJðx2 !1Þi¼ 2�IJ

x42x
4
3

�

̂0���þ 2
̂1

x3�x3�

x23

�
:

(91)

Comparing this to the energy-momentumWard identity [31]

@�3hTT��ðx3ÞCIð0ÞCJðx2 ! 1Þi
¼ �i@3�½�4ðx3 � x1Þ þ �4ðx3 � x2Þ�hTCIðx1ÞCJðx2Þi

(92)

requires that 
̂1 ¼ �2
̂0 and 
̂0 ¼ �=ð26�6Þ. This yields
hLIðZ1ÞLJðZ2Þ½ �W3T ðZ3ÞW3�i

¼ ��IJ

64�6h3�1ih1�3ih3�2ih2�3i
� �W3

�
ð1�2zÞ3

�21�3

h1�2i þð1þ2zÞ3
�12�3

h2�1i
�
W3: (93)

Because this correlator also contains the term hjR�1
jI�2

jJ�3
i,

we recover the relation between the normalization of the
global current two-point function and the mixed TrRG2

anomaly of the SCFT.
As our last application, we consider the correlator

hTT Li. The form of tensors that appear in this correlator
is restricted by the gauge invariance of Eqs. (72) and (73) to
be of the form

½ �W1ð1 . . . �1ÞW1� � ½ �W2ð2 . . . �2ÞW2�;
½ �W1ð1 . . . �2ÞW2� � ½ �W2ð2 . . . �1ÞW1�;
½ �W1ð1 . . . 2Þ �W2� � ½W1ð�1 . . . �2ÞW2�

(94)

times powers of z and z2. The omitted expressions, denoted
by ð. . .Þ, are strings of products of supercoordinates Z1;2;3,

which are constructed by imposing SUð2; 2j1Þ invariance
together with the covariant constraints, Eqs. (19) and (20).
The ½X �X�24 ¼ 0 and ½X �X�1 ¼ 0 constraints imply that such
strings cannot contain a coordinate times its conjugate in
adjacent positions. The ½XX�16 ¼ 0 constraint written as in
Eq. (22) is useful for rearranging/shortening strings with
repeated insertions of a given coordinate. As a specific
example, it follows readily from Eq. (22) that

ð1�21ÞAB ¼ 1

2
h1�2iX1AB: (95)

Using the constraints in this way to simplify possible
tensors, the hTT Li correlator reduces to six structures
with definite reality and permutation symmetry properties:

t1 ¼ ½ �W1ð1�2ÞW2�½ �W2ð2�1ÞW1�
h1�2ih2�1i ; (96)

t2 ¼ ½ �W1ð1�32Þ �W2�½W1ð�13�2ÞW2�
ðh1�2ih2�1ih1�3ih3�1ih2�3ih3�2iÞ12 ; (97)

t3 ¼ ½ �W1ð1�23�1ÞW1�½ �W2ð2�13�2ÞW2�
h1�2ih2�1ih3�1ih3�2i

þ ½ �W1ð1�32�1ÞW1�½ �W2ð2�31�2ÞW2�
h1�2ih2�1ih1�3ih2�3i ; (98)

t4 ¼ ½ �W1ð1�23�1ÞW1�½ �W2ð2�13�2ÞW2�
h1�2ih2�1ih3�1ih3�2i

� ½ �W1ð1�32�1ÞW1�½ �W2ð2�31�2ÞW2�
h1�2ih2�1ih1�3ih2�3i ; (99)

t5 ¼ ½ �W1ð1�23�1ÞW1�½ �W2ð2�31�2ÞW2�
h1�2i2h3�1ih2�3i

þ ½ �W1ð1�32�1ÞW1�½ �W2ð2�13�2ÞW2�
h2�1i2h1�3ih3�2i ; (100)

t6 ¼ ½ �W1ð1�23�1ÞW1�½ �W2ð2�31�2ÞW2�
h1�2i2h3�1ih2�3i

� ½ �W1ð1�32�1ÞW1�½ �W2ð2�13�2ÞW2�
h2�1i2h1�3ih3�2i : (101)

Not all these objects are independent. By going to the
special frame where Z2;3 are fixed, and covariantizing

the result, it is possible to establish certain relations
between the structures given above. These relations are
zt4¼0, zt6¼�z2t3, t3þt5¼�z2t2, and z2ðt3�t5Þ¼
z2ðt1þ2t2Þ. Thus, the most general form of the three-point
function hTT Li can be taken to be of the form

h½ �W1T ðZ1ÞW1�½ �W2T ðZ2ÞW2�LðZ3Þi

¼ð
1þ ~
1z
2Þt1þ
2t2þ
4t4þð
5þ ~
5z

2Þt5
½h1�2ih2�1ih1�3ih3�1ih2�3ih3�2i�1=2 : (102)

The coefficients in this expression are related by con-
servation of the supercurrent, DaTa _a ¼ �D _aTa _a ¼ 0. In the
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special frame with X2 ! 0, X3 ! 1, Eq. (102) contains
the component correlation function

hjR�ðxÞjR� ð0ÞCð1Þi
¼ 1

x4x43

�
����

�

1�1

2

2

�
þx�x�

x2
ð2
1�
5Þ

�
: (103)

Conservation of the R current @�jR� ¼ 0 then fixes 
5 ¼
2ð
2 � 
1Þ. In this frame, the correlator involving the
energy-momentum tensor is

hT��ðxÞjR�ð0ÞCð1Þi
¼ 1

x6x43

�

1�����x

�� i

2

4ðx�����x����Þ

�
; (104)

so that symmetry T�� ¼ T�� requires 
1¼
4¼0. Finally,

the 	2 �	2 component of the superfieldT a _aðx;	; �	Þ vanishes,
which implies that ~
1 ¼ �~
5 ¼ �
2. Combining together
the constraints from different components, we obtain

h½ �W1T ðZ1ÞW1�½ �W2T ðZ2ÞW2�LðZ3Þi

¼ cTTL

ðh1�2ih2�1ih1�3ih3�1ih2�3ih3�2iÞ12
�
z2

½ �W1ð1�2ÞW2�½ �W2ð2�1ÞW1�
h1�2ih2�1i � ½ �W1ð1�32Þ �W2�½W1ð�13�2ÞW2�

ðh1�2ih2�1ih1�3ih3�1ih2�3ih3�2iÞ12

� ð2þ z2Þ
�½ �W1ð1�23�1ÞW1�½ �W2ð2�31�2ÞW2�

h1�2i2h3�1ih2�3i þ ½ �W1ð1�32�1ÞW1�½ �W2ð2�13�2ÞW2�
h2�1i2h1�3ih3�2i

��
: (105)

Therefore, superconformal invariance determines the
hTT Li correlator up to the overall normalization, which
is in agreement with Ref. [17].

V. CONCLUSIONS

In this paper, we have shown how superconformal
multiplets in representations ðj; �j; q; �qÞ fit into the super-
embedding framework introduced in Ref. [9]. Physically,
the most important examples correspond to the real sca-
lar multiplet that contains the global conserved current
j� and the supercurrent multiplet T a _b containing j

�
R , the

supercurrent S�a , and the energy-momentum tensor T�
� .

Constructing the relevant correlators is reduced to the
task of enumerating SUð2; 2j1Þ invariants that appear in
the products of several copies of the linear representa-
tions XAB, �XAB, WA, �WA. This index-free approach yields
relatively compact expressions for the Green’s functions.
Although the examples presented are not new, the
manifestly covariant forms we presented are, and we
hope that the simplifications that come with working in
the superembedding formalism will eventually lead to
new results.

At present we have no way of representing contact terms
in the embedding formalism. This would be necessary, for

instance, to deal with the anomaly structure of conserved
current three-point functions in a covariant way (rather
than imposing that the formalism satisfies the correct
anomaly relations componentwise, as we did in this paper).
To this end, a direct embedding space formulation of
conservation laws such as D2L ¼ �D2L ¼ 0, etc., in terms
of embedding space differential operators would also be
required. Finally, besides the extension of the formalism
discussed here to the case of extended superconformal
invariance, another useful direction might be to see if the
recent techniques developed in Ref. [8] for efficiently
computing conformal blocks have a natural extension to
the supersymmetric case.
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