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We apply the dynamical mean field theory (DMFT) approximation to the real, scalar ’4 quantum field

theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field

theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities

considered in these tests are the critical coupling for the transition to the ordered phase and the associated

critical exponents � and �. We also map out the phase diagram in the most relevant case of four

dimensions. In two and three dimensions, DMFT incorrectly predicts a first-order phase transition for all

bare quartic couplings, which is problematic, because the second-order nature of the phase transition of

lattice ’4 theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behavior

away from the phase transition, one can obtain critical couplings and critical exponents. They differ from

those of mean field theory and are much closer to the correct values. In four dimensions the transition is

second order for small quartic couplings and turns weakly first order as the coupling increases beyond a

tricritical value. In dimensions five and higher, DMFT gives qualitatively correct results, predicts

reasonable values for the critical exponents and considerably more accurate critical couplings than

standard mean field theory. The approximation works best for small values of the quartic coupling. We

investigate the change from first- to second-order transition in the local limit of DMFT which is

computationally much cheaper. We also discuss technical issues related to the convergence of the

nonlinear self-consistency equation solver and the solution of the effective single-site model using

Fourier-space Monte Carlo updates in the presence of a ’4 interaction.
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I. INTRODUCTION

The numerical simulation of quantum field theories, typi-
cally in d ¼ 4 dimensions (3-spaceþ Euclidean time), is a
major computational challenge. Simulations suffer severely
from the high cost of increasing the four-dimensional lattice
volume. Moreover, in interesting situations like real-time
evolution or nonzero matter density, a ‘‘sign problem’’
arises, which makes the computational cost grow exponen-
tially with the volume. In such cases, we are forced to
consider simplified models which, at best, capture only the
most relevant properties of the full model. One such ap-
proximation is to consider a mean field version of the theory
in question. The simplest mean field approach reduces
the problem to a zero-dimensional one where the field, or
the gauge-invariant plaquette in gauge theories, is allowed to
fluctuate in the background of a self-consistently determined
mean field that represents the influence of the field at all
other points in space-time. Mean field theories have been an
important tool in the study of field theories for a long time.
From the Ising model to QCD [1–5], mean field approxi-
mations give us hints about phase transitions and critical

behavior. Although there exist regions in parameter space
where mean field theory gives very good or even exact
results (usually when d ¼ 1), it is obviously a very crude
approximation in most regions of physical parameters.
Hence, it is desirable to go beyond mean field theory
and to develop an approximation which provides a better
description of fluctuations.
An approach which has proven very useful for the study

of correlated lattice models relevant for solid state phys-

ics is dynamical mean field theory (DMFT) [6,7]. Here,

the word ‘‘dynamical’’ refers to the fact that the mean

field can fluctuate in one direction, typically the

Euclidean time direction, while remaining constant in

the (d� 1) other dimensions. The d-dimensional lattice

problem is thus mapped onto a one-dimensional problem

with nonlocal interactions representing the influence of

the remaining degrees of freedom. Due to this dynamical

dimension, DMFT gives access to correlation functions

which are localized in the frozen directions. If the dy-

namical dimension is the imaginary-time axis, DMFT

furthermore enables the calculation of finite-temperature

expectation values. Obtaining access to this kind of infor-

mation is an additional motivation to explore the DMFT

approach.
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In general, the effective one-dimensional model must
be solved numerically, for example using a (quantum)
Monte Carlo method [8]. As in mean field theory, the
DMFT calculation involves a self-consistent computation
of the (dynamical) mean field, which in practice amounts
to solving a set of nonlinear equations self-consistently.
The increased complexity arises from the fact that the field
to be optimized is a function (or a collection of functions)
of one variable.

DMFT was initially developed for fermionic systems,
but the theory has recently been extended and successfully
applied to bosonic lattice systems [9–11] and bose-fermi
mixtures [12]. The bosonic version of DMFT can, with
rather straightforward modifications, be applied to the ’4

quantum field theory. It is thus an interesting question to
ask how well this approach, which manifestly breaks
Lorentz invariance, can capture the phase diagram and
critical behavior of lattice field theories.

In models where local interactions dominate, it is a
reasonable further approximation to study the local limit
of DMFT. The effective model then reduces to a single site
problem with two coupled self-consistency equations.
This provides a generalization of standard mean field
theory, in which both the first and second moment of the
field are self-consistently determined [13].

The structure of the paper is as follows. We briefly
introduce ’4 theory in Sec. II. We then discuss the mean
field approximation and DMFT in Secs. III and IV. In
Sec. V we discuss the Monte Carlo method that we use
to solve the effective single-site model. In Sec. VII we
briefly discuss the local limit of DMFT. Section VIII
presents the numerical results for ’4 theory in dimensions
two to five. We give a short summary and an outlook on
possible extensions in Sec. IX.

II. ’4 THEORY

’4 theories are an important class of quantum field
theories. Even the simplest incarnation, with a real scalar
field, exhibits interesting phenomena like spontaneous
symmetry breaking with a second-order phase transition.
One important application is in the Standard Model Higgs
sector, which consists of a two-component complex ’4

theory, but the interest in such theories extends far beyond
that. Because of their relative simplicity, ’4 theories are
often used as a testing ground and stepping stone when
developing new methods. We will explicitly discuss here
the real scalar ’4 theory, but the approach can readily be
generalized to complex fields (see Appendix A).

The Lagrangian density of real scalar ’4 theory reads

L½’ðxÞ� ¼ 1

2
@�’ðxÞ@�’ðxÞ � 1

2
m2

0’ðxÞ2 �
g0
4!

’ðxÞ4; (1)

using a d-dimensional Minkowski metric, ðþ;�; . . . ;�Þ.
This model is a prototype for spontaneous symmetry break-
ing: here, the Z2 global symmetry, ’ðxÞ $ �’ðxÞ8x, is

spontaneously broken for negative [renormalized] m2 via a
second- order phase transition at m2 ¼ 0. After Wick rotat-
ing time to the imaginary axis to obtain a Euclidean metric,
we discretize the action and apply the conventional change
of variables,

a
d�2
2 ’ðxÞ ¼ ffiffiffiffiffiffi

2�
p

’x; (2)

ðam0Þ2 ¼ 1� 2�

�
� 2d; (3)

a4�dg0 ¼ 6�

�2
: (4)

The action can then be defined on a regular d-dimensional
hypercubic lattice with an extent L ¼ aNl in each direc-
tion, so that there are N ¼ Nd

l lattice sites. The action

expressed in terms of � and � becomes

S ¼ X
x

�
�2�

X
�

’xþ�̂’x þ ’2
x þ �ð’2

x � 1Þ2
�
: (5)

The renormalized mass and coupling are unknown func-
tions of � and �, which must be determined via numerical
simulations or perturbation theory. Since we can only
measure dimensionless observables, the renormalized,
physical mass mR always appears together with a factor
of the lattice spacing a. Keeping the physical mass fixed,
this implies that a second-order phase transition on the
lattice, i.e. ðamRÞ ! 0, in fact defines the continuum limit
a ! 0. Thus, our interest in the lattice model is focused on
the behavior in the vicinity of the phase transition corre-
sponding to the spontaneous Z2 symmetry breaking, when
one approaches the transition both from the symmetric and
from the broken-symmetry phase.

III. MEAN FIELD THEORY

The mean field approximation has been an important
tool in the study of field theories for a long time. The idea
behind mean field theory is to simplify the model by
mapping it to a zero-dimensional effective model, which
means that all interactions except contact terms are re-
placed by an interaction with a constant background field.
For ’4 theory on the lattice, the partition function is

Z¼
Z
D½’�Y

x

exp

�
�’2

x��ð’2
x�1Þ2þ2�

Xd
�¼1

’x’xþ�̂

�
:

(6)

By fixing the field to v at all lattice sites but one, we find
the self-consistency equation

v � h’i
¼ 1

ZMF

Z 1

�1
d’’ exp ð�’2 � �ð’2 � 1Þ2

þ 2�ð2dÞv’Þ; (7)
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ZMF ¼
Z 1

�1
d’ exp ð�’2 � �ð’2 � 1Þ2 þ 2�ð2dÞv’Þ:

(8)
The critical coupling, �c, can be expressed in terms of
modified Bessel functions after an expansion of
exp ð2�ð2dÞv’Þ for small values of v, but the expression
is not very enlightening. Using the same expansion it is

also easy to check that v / ð�� �cÞ1=2, which implies the
critical exponent � ¼ 1=2.

In the limit � ! þ1, we have ’ðxÞ ¼ �1 � �ðxÞ and
the lattice field theory reduces to an Ising model,

ZIsing ¼ X
f�g

exp

�
2�
X
hi;ji

�i�j

�
: (9)

Standard mean field theory maps the d-dimensional prob-
lem onto a zero-dimensional model coupled to a constant
(Weiss) effective field,

Z
Ising
MF ¼ X

�¼�1

exp ð�heff�Þ ¼ 2 cosh�heff : (10)

The effective field, heff , is fixed by the self-consistency
equation,

h�i ¼ 1

2d
heff ) h�i ¼ tanh ½2dð2�Þh�i�: (11)

Beside DMFT, a number of methods have been developed
that systematically improve on mean field theory. One ex-
ample is the extended mean field theory, which we will
introduce as the local limit of DMFT in Sec. VII. Other
noteworthy examples are the so-called ‘‘Cluster variation
methods’’ [14–16]. These methods are systematic exten-
sions of mean field theory, which in the limit of large
clusters approach the exact result, but they break translation
invariance and do not give direct access to correlation
functions. We do not pursue these methods further here.

IV. DYNAMICAL MEAN FIELD THEORY

We will now introduce DMFT as an extension of stan-
dard mean field theory. There are many parallels between
the two approximations as the name suggests, but there are
also differences. Our derivation of the one-dimensional
effective model in the disordered and broken-symmetry
phases is analogous to that for bosonic DMFT (see
Refs. [10,11]). DMFT extends on mean field theory by
treating an effective field which is a function of one vari-
able; i.e., the full dynamics is preserved in one direction,
while fluctuations in the (d� 1) others are frozen. Since
we are working with a Lorentz invariant field theory it
makes no difference which direction is singled out, but we
will follow the convention from solid state physics and
call the dynamical dimension t with conjugate momentum
!, and the other dimensions x1; . . . ; xd�1 with conjugate
momenta k1; . . . ; kd�1. Moreover, in this way, the finite-
temperature behavior of our quantum field theory can be
studied by varying the extent of the dynamical dimension.

Since DMFT takes full account of the fluctuations
along the time direction, the effective model is defined
on a one-dimensional chain, with nonlocal couplings in
time. Schematically, starting from a model with a purely
local potential V,

Z ¼
Z

D½’� exp
�X

x

X
�

’x’xþ�̂ �X
x

Vð’xÞ
�
; (12)

one obtains

ZDMFT ¼
Z

D½’� exp
�
�X

t;t0
’tK

�1ðt� t0Þ’t0

�X
t

Vð’tÞ þ h
X
t

’t

�
; (13)

where K is a nonlocal effective kernel that emulates the
propagation in the (d� 1) frozen dimensions. We will here
briefly discuss how the effective one-dimensional model is
obtained. In Appendix A we present a complete derivation
of the effective action for complex ’4 theory. The idea is to
split the degrees of freedom into internal (’int;t � ’ð~0;tÞ) and
external (’ext;t � f’ð ~y;tÞ; ~y � ~0g) degrees of freedom, and

integrate out the latter (cavity method) [6,11]. The action (5)
separates into three parts: S ¼ Sint þ�Sþ Sext, with

Sint¼
X
t

½�2�’int;tþ1’int;tþ’2
int;tþ�ð’2

int;t�1Þ2�;

�S¼�2�
X
t

’int;t

X
hint;exti

’ext;t;

Sext¼
X

x�ð~0;tÞ

�
�2�

X
�

xþ�̂�ð~0;tÞ

’xþ�̂’xþ’2
xþ�ð’2

x�1Þ2
�
: (14)

In the second equation, the sum over hint; exti is short
hand for the sum over all external sites at time t which
are nearest neighbors to the internal site at time t. See
Fig. 1 for a graphical interpretation of the decomposition.

SextSint

∆S 
x

t

FIG. 1 (color online). Graphical interpretation of the cavity
method where the action (14) is decomposed into an internal
part, Sint, an external part, Sext, and an interaction part, �S.
The external degrees of freedom are then integrated out after a
Taylor-expansion of the interaction, exp ð��SÞ.
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The next step is to Taylor-expand exp ð��SÞ and inte-
grate out the external degrees of freedom ’ext;t. This will

give a series of expectation values of n-point functions of
external fields, h’ext;t1 � � �’ext;tniext, which can be reexpo-

nentiated to produce effective couplings among n internal
fields. Depending on how high the powers of connected
correlators that we keep, we obtain more or less compli-
cated self-consistency equations. It is an easy exercise to
check that keeping only h’ext;tiext yields standard mean

field theory, i.e. a linear coupling to a constant background
(due to translational invariance). In DMFT we normally
keep both the linear terms, which introduce a coupling to
an effective external field,

h’ext;tiext’int;t ) �ext’t; (15)

and the quadratic fluctuations, which give rise to a nonlocal
quadratic term,

’int;th’ext;t’ext;t0 iext’int;t0 ) ’t�ðt� t0Þ’t0 : (16)

In general, higher-order fluctuations could also be consid-
ered, which would introduce interactions among three,
four, etc. fields. These nonlocal interactions are due to
propagation through the effective medium. In the limit
where all orders are taken into account, the mapping to
the one-dimensional model becomes exact. Each term kept
in the expansion of exp ð��SÞ introduces one (nonlocal)
coupling that has to be determined self-consistently. From
Eqs. (15) and (16) we find that the following quantities are
related:

�ext $ h’iZDMFT
; (17)

�ðt� t0Þ $ h’t’t0 iZDMFT
: (18)

In fact, the correspondence between�ext and h’iZDMFT
must

be an equality, whereas the connection between �ðt� t0Þ
and the two point correlator is more involved and will be
discussed below.

In anticipation of a broken symmetry it is more conve-
nient to expand the fields around their expectation value
when deriving the effective action (see Appendix A). This
implies that we will work only with connected quantities
which will be labeled with a subscript c. In our case we
consider up to quadratic fluctuations and the resulting
one-dimensional model will from now on be referred to
as the ‘‘impurity model,’’ and quantities related to it will
be subscripted with an ‘‘imp.’’ This terminology follows
the established DMFT terminology in the context of
condensed-matter physics: the full lattice model is mapped
onto a lower-dimensional entity (‘‘impurity’’) coupled to
a self-consistent environment. Here, the ‘‘impurity’’ is a
one-dimensional worldline of a single spatial site,

Simp ¼
X
t;t0
’tK

�1
imp;cðt� t0Þ’t0 þ �

X
t

ð’2
t � 1Þ2 � h

X
t

’t;

(19)

~K�1
imp;cð!Þ ¼ 1� 2� cos ð!Þ � ~�ð!Þ; (20)

h ¼ 2�extð2�ðd� 1Þ � ~�ð0ÞÞ: (21)

~K�1
imp;cð!Þ is the inverse of the connected two-point Green’s

function of the free (� ¼ 0) theory and h is an effective
external magnetic field, which is nonzero in the broken-
symmetry phase (See Appendix A). (We put a tilde on
Fourier transformed quantities.)

The frequency-dependent effective coupling ~�ð!Þ is
determined self-consistently by demanding that the impu-
rity Green’s function coincides with the local propagator of
the full model. Quite generally, we can express the Green’s
function of some interacting theory in momentum space as

~Gðk; !Þ ¼ 1

~G�1
0 ðk; !Þ þ ~�ðk; !Þ ; (22)

where ~G�1
0 ðk; !Þ ¼ 1� 2�

P
d
i¼1 cos ðkiÞ is the Green’s

function of the free d-dimensional theory and ~� is the
self-energy which captures the interaction effects. The

‘‘local’’ Green’s function, from ~x ¼ ~0 to ~x ¼ ~0, is obtained
by summing over all spatial momenta,

~Glocð!Þ ¼ X
k

1

~G�1
0 ðk; !Þ þ ~�ðk; !Þ ; (23)

where themomentum sum is normalized such that
P

k1 ¼ 1.
The Green’s function of the impurity model also satisfies
such a relation,

~Gimpð!Þ ¼ 1

~K�1
imp;cð!Þ þ ~�impð!Þ : (24)

DMFT approximates the exact self-energy ~� with the

self-energy ~�imp of the impurity system, i.e. ~�ðk; !Þ �
~�impð!Þ ¼ ~G�1

impð!Þ � ~K�1
imp;cð!Þ, which can be substituted

in Eq. (23). The local Green’s function may then be
expressed as

~Glocð!Þ ¼ X
k

1
~G�1
0 ðk; !Þ þ ~G�1

impð!Þ � ~K�1
imp;cð!Þ ; (25)

or, alternatively, in terms of ~�ð!Þ, as
~Glocð!Þ ¼ X

k

1

~G�1
impð!Þ þ ~�ð!Þ � 2�

P
d�1
i¼1 cos ki

: (26)

The self-consistency condition identifies the local
Green’s function (23) with the impurity Green’s function

(24), which thus implicitly determines ~Kimp;cð!Þ (or ~�).

The two coupled self-consistency equations then read
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~Gimpð!Þ ¼ ~Glocð!Þ; (27)

h’iSimp
¼ �ext: (28)

The DMFT procedure is illustrated as a circular flowchart
in Fig. 2.

V. IMPURITY SOLVER

As shown in the flowchart of Fig. 2, a DMFT calculation
requires the repeated evaluation of Gimp and h’i for suc-
cessive values of the effective interaction Kimp;c, so that

both the accuracy and the efficiency of the ‘‘impurity
solver’’ are relevant issues. We use a Monte Carlo method,
which allows to reach arbitrary precision in polynomial
time.

The general form of the impurity action is

Simp ¼
X
t;t0
’tK

�1
imp;cðt� t0Þ’t0 � h

X
t

’t þ
X
t

Vð’tÞ;

where K�1
imp;c is nonlocal but translation invariant, and thus

diagonal in momentum space. Vð’tÞ is local, and thus
diagonal in position space, and goes to þ1 as ’ goes to
�1. The nonlocal nature of the kernel renders single-site
updates inefficient, while the potential V prevents a local
formulation in Fourier space. To overcome this difficulty,
we use the method proposed in Ref. [17]. It substitutes the
exponential of the potential at each time-slice by a sum of
M different Gaussians,

exp ½�Vð’tÞ� �
XM
m¼1

�m exp ½��ð’t � �mÞ2�: (29)

It is important to keep the width, �, independent of m, so
that the quadratic part of the action (for a given selection of
Gaussians, one per t-value) will be translation invariant,
and thus diagonal in Fourier space. The number of
Gaussians,M, is chosen empirically and the other parame-
ters are determined via fitting for fixedM. AsM ! 1, the
sum over m turns into an integral and the Gaussians turn
into delta functions, so that Eq. (29) becomes an equality.
It is therefore desirable to use a large M to keep the error
in the approximation small but at the same time keep
M � Nt to make the updates more efficient than single-
site updates.
The variables �m and �m play the role of auxiliary

variables and the partition function can be written as

Z ¼ X
fmtg

Z
D½’�Wðf’g; fmtgÞ: (30)

The update is then performed in two steps. First, for fixed
’, each time-slice t is assigned a Gaussian termmt accord-
ing to the heat-bath probability,

pðmtj’tÞ ¼
�mt

exp ½��ð’t � �mt
Þ2�P

m �m exp ½��ð’t � �mÞ2�
: (31)

Then, for fixed fmtg, ’ is updated. The point of this update
scheme is that for fixed fmtg the action is quadratic in ’
and translation invariant, i.e. diagonal in Fourier space.

We have Wðf’g; fmtgÞ ¼ exp ð�ŜÞ with

Ŝ ¼ 1

Nt

X
n

½ ~K�1
imp;cð!nÞj~’nj2 þ �j~’n � ~�nj2� � h~’0

¼ 1

Nt

X
n

ð�þ ~K�1
imp;cð!nÞÞ

��������~’n �
�~�n þ Nt

2 h�n;0

�þ ~K�1
imp;cð!nÞ

��������
2

;

(32)

up to terms that do not depend on ’. A new configuration
can now efficiently be generated by sampling the Gaussian

distribution which is defined by Ŝ. The total complexity of
updating all Nt components of ’ is Nt maxðlog ðNtÞ;MÞ,
Nt logNt from Fourier transforming � and ’ and NtM
from calculating the M heat bath probabilities, pðmtj’tÞ
for all t. In cases where the effective field h is zero or small
it can be advantageous to combine this update scheme with
cluster updates to sample the configuration space more
efficiently. There exist appropriate cluster methods that
can deal with nonlocal interactions and ‘‘double-well’’
potentials, see Ref. [18]. However, if the external field is
large (as is the case for example if the symmetry breaking
transition is first order), the cluster updates become
inefficient.

FIG. 2. Schematic depiction of the DMFT procedure. For a
given quartic coupling � and either � or �ext fixed we make a
guess for � and the nonfixed variable. This defines an impurity
action via Eqs. (19)–(21). We then solve this effective model for
the Green’s function and the expectation value of the field, h’i.
The local Green’s function of the full model is approximated via
Eq. (26). The self-consistency equations, (27) and (28), are then
used to calculate new values for � and �ext or �. This procedure
is repeated until the self-consistency equations are satisfied.
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VI. SOLUTIONS OF THE SELF-CONSISTENCY
EQUATIONS

By studying the solution of the self-consistency
equations very close to the phase transition we have found
that for dimensions lower than five DMFTwrongly gives a
first-order transition, while Monte Carlo simulations of the
full model correctly give a second-order transition for all
dimensions d � 2. The first-order behavior can be hard to
detect for weak quartic couplings. Conventional iterative
substitution methods to solve the self-consistency equa-
tions are also not well suited to detect such behavior,
which may thus be overlooked. This is because forward-
substitution methods can only find stable fixed-points
and slow convergence together with statistical noise can
conceal a small first-order jump. We propose an alternative
update procedure which speeds up convergence and allows
us to obtain all fixed points of Eq. (23), even unstable ones.
An illustrative example of the first-order behavior in
three dimensions can be seen in Fig. 3. There, we plot the
deviation of �ext from the self-consistent solution, by iter-
atively solving Eq. (23) in three dimensions for fixed �ext.
Stable (unstable) fixed points correspond to zero crossings
with positive (negative) slope. This figure clearly demon-
strates the first-order transition, and also a potential problem
arising from a possibly very slowly converging �ext.

Our solution to this problem is to interchange the roles
of � and �ext. Instead of fixing � and searching for stable
fixed points, we fix �ext and search for the unique � giving
a self-consistent solution of Eqs. (27) and (28); i.e., we
search for the root of

fð~�ð!nÞ; �j�extÞ ¼ ð ~Glocð!nÞ � ~Gimpð!nÞ; �ext � h’iÞ:
(33)

Fast convergence can be achieved by using generalized
Newton methods with either an approximated or numeri-
cally exact Jacobian matrix. In our Monte Carlo scheme
it is straightforward and cheap to directly sample the
Jacobian. This approach to solving the self-consistency
equations has much in common with the phase space-
extension used by Strand et al. [19] to study the first-order
Mott transition in the Hubbard model.

VII. EXTENDED MEAN FIELD THEORY:
A LOCAL LIMIT OF DMFT

At a second-order phase transition the full lattice
Green’s function, Eq. (22), becomes massless, i.e
~Gð0; !Þ / !�2, ! ! 0. This does not, however, imply

that also ~Gloc [Eq. (26)] and ~Gimp [Eq. (24)] behave simi-

larly. In fact we find that the phase transition is mainly
driven by a large contact term in �ðt� t0Þ, which cancels
the mass in Gimp, rather than a long-range tail which could

trigger spontaneous symmetry breaking [20–24]. We fur-

ther observe that the self-energy ~�impð!Þ ¼ ~�ð!Þ also

shows only a mild dependence on !, especially in higher
dimensions, as illustrated in Fig. 4. These two observations
motivate us to simplify DMFT further and consider its

local version in which ~� and ~� are frequency-independent,
and thus local in t: �ðt� t0Þ ¼ ��t;t0 . The DMFT con-

struction then reduces to the scheme introduced by Pankov,
Kotliar and Motome [13] in their study of so-called
extended DMFT. In this local limit, the impurity action
simplifies to
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FIG. 3 (color online). Results for d ¼ 3 and � ¼ 0:5, showing
the change in �ext � h’i in an iterative substitution scheme
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Simp ¼ ð1� �Þ’2 � 2�extð2d���Þ’þ �ð’2 � 1Þ2:
(34)

It involves two variational parameters, � and �ext, while
standard mean-field theory involves only the order parame-
ter �ext. The Green’s function Gimp is now just a number,

which is the variance of the field:

Gimp ¼ 2ðh’2i � h’i2Þ: (35)

Gimp is purely local in space and time and is required to

coincide with the full Green’s function Gðr; tÞ at the origin
ð0; 0Þ. The expression for the local Green’s function Eq. (25)
stays the same but with an additional integral over !:

Gloc ¼
Z dkd

ð2	Þd
�
G�1

imp þ�� 2�
Xd
i¼1

cos ðkiÞ
��1

¼
Z 1

0
d
 exp ½�
ðG�1

imp þ �Þ�I0ð2�
Þd; (36)

where I0ðxÞ is the zeroth modified Bessel function.
Demanding self-consistency, i.e. h’i ¼ �ext and Gimp ¼
Gloc, leads to a set of two coupled integral equations that
can easily be solved numerically and compared to the
DMFT result. This self-consistent scheme will from here
on be referred to as extended mean field theory (EMFT).

Note the difference with the single self-consistency
equation (7) of the standard mean field treatment: here,
mass renormalization is made possible via the parameter
�, which is coupled with the wave-function renormaliza-
tion via Eq. (36). As we will see, this improved but still
local approximation provides a dramatic improvement in
the estimate of the critical coupling �c.

Depending on the dimension and the value of the
quartic coupling, we get either a first or second-order
transition. The tricritical coupling, �tc where the order of

the transition changes is shown in Fig. 5. For d ¼ 4 the
tricritical � is found to be 0. The critical � is found by
solving the following equation for �,

h’2iSc ¼
Id
4�

; (37)

Sc ¼
�
1� 2�

Id
ðdId � 1Þ

�
’2 � �ð’2 � 1Þ2; (38)

Id �
Z

d
e�
dI0ð
Þd; (39)

where I0ðxÞ is the zeroth modified Bessel function of the
first kind. In the Ising limit this simplifies to

�cðdÞ ¼ Id
4
: (40)

A detailed treatment can be found in Appendix B.

VIII. RESULTS

We judge the quality of the DMFT approximation by
how well it reproduces the critical coupling, �c, and the
critical exponents � and � compared to Monte Carlo and
standard mean field theory. In the case of a first-order
transition we define the critical coupling as if the transition
was second order; i.e., we fit the magnetization to a power
law. In the DMFT loop we measure the field expectation
value, h’i, and the renormalized mass, (amR). The latter is
extracted from the Green’s function in momentum space,

ZRðm2
R þ!2Þ � ~G�1

c ð0; !Þ
¼ ~G�1

c;impð!Þ þ ~�ð!Þ � 2ðd� 1Þ�; (41)

for a range of ! close to zero. This procedure is more
robust against noise than the usual second moment defini-
tion of the mass where only the data points at ! ¼ 0 and

! ¼ 2	=Nt are considered. Z1=2
R is the wave function

renormalization. From mR and h’i we can extract �c, �
and � via the fits

� ¼ 1

mR

/ ð�� �cÞ��; (42)

h’i / ð�� �cÞ�: (43)

We will present results successively in five, four, three and
two dimensions to show how the quality of the approxi-
mation depends on the dimensionality.
In five dimensions we have only standard mean

field results to compare with, so we can only guess if
DMFT improves the estimate of the critical coupling.
It is however known that mean field theory always under-
estimates the critical coupling �c and we find that DMFT
gives a larger �c than mean field theory. In Fig. 6 we show
that DMFT predicts critical exponents, � ¼ 0:499ð4Þ and
� ¼ 0:504ð4Þ, which are very close to the exact values
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� ¼ � ¼ 1=2. The correlation length obtained by DMFT
agrees with the one obtained by EMFT. The values of �, �
and �c have been obtained by minimizing the Chi-square
of a linear fit of log-log data to Eqs. (42) and (43). We also
see that there is quite a remarkable agreement between
DMFT and EMFT. But in contrast to DMFT, the EMFT
calculation is not affected by numerical errors close to the
transition.

Next, we consider the four-dimensional theory. Here, we
can compare with Monte Carlo simulations of the full
theory, where we used a mixture of local updates and
cluster updates of Wolff-type [25]. Each data point is
typically obtained from 105 measurements, where 2Nd

l

local updates and 20 cluster updates were performed
between successive measurements (the integrated auto-
correlation time was 
 � 10 measurements). In Fig. 7

we show the expectation value of the field for weak
(� ¼ 0:01) and strong (� ¼ 2) coupling. For � ¼ 0:01,
DMFT gives � ¼ 0:508ð5Þ and �c ¼ 0:1269475ð5Þ,
while the Monte Carlo data yield � ¼ 0:497ð3Þ and
�c ¼ 0:1269470ð4Þ. In the strong coupling case, � ¼ 2,
the best fit of the DMFT data to Eq. (43) gives
� ¼ 0:325ð4Þ and �c ¼ 0:1163ð3Þ, whereas from the
Monte Carlo data, one obtains � ¼ 0:44ð7Þ and �c ¼
0:1144ð5Þ.
We see that DMFTworks well in both cases, although as

� increases it deviates more from the exact, mean field
values (� ¼ � ¼ 1=2). This can be understood as a
consequence of neglecting higher order correlators of the
external fields in the expansion of exp ð��SÞ, Eq. (14),
which become more important as the quartic coupling
increases. The agreement between EMFT and DMFT is
also very good. We see clearly a first-order transition in
the EMFT result for the stronger coupling, which can
explain the deviation of � from the mean field value.
We do not explicitly see a first-order transition in the
DMFT result but the convergence of the self-consistency
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equations for small �ext is quite poor so we cannot rule it
out. Also, based on the good agreement of EMFT and
DMFT in three dimensions where both methods predict a
first-order transition, we suspect that this is also true in
four dimensions. Another source of deviation from the
mean field exponent might be logarithmic corrections. If
we study the divergence of the correlation length for the
same couplings we find the behavior shown in Fig. 8. It
should be noted that we obtain slightly different values of
�c depending on the phase in which we fit the scaling
behavior of the correlation length. We find for � ¼ 2,
in the symmetric phase �c ¼ 0:1175ð3Þ, � ¼ 0:65ð2Þ,
and in the broken-symmetry phase �c ¼ 0:1161ð2Þ, � ¼
0:426ð2Þ. For � ¼ 0:01, in the symmetric phase �c ¼
0:1269470ð5Þ, � ¼ 0:41ð1Þ, and in the broken-symmetry
phase �c ¼ 0:1269475ð5Þ, � ¼ 0:47ð1Þ. The results of the
fits are summarized in Table I.

In Fig. 9 we show the phase diagram in the ð�; �Þ-plane
obtained from DMFT, EMFT, Monte Carlo simulation
of the full theory, and mean field theory. For � � 1 we
have also included results from second-order perturbation
theory (see inset). In all cases, DMFT is the superior
approximation with EMFT close behind. Over the whole
range 0 
 � 
 5 it predicts the phase boundary with an
accuracy of about 1% although the transition for larger � is
weakly first order.

In two and three dimensions we can explicitly see a first-
order transition in the DMFT results. This can be clearly
seen in Fig. 10 which shows the coexistence region (for d ¼
3 and � ¼ 1). The hysteresis in the curve (red, with
circles), obtained by iterative substitution of �ext, was
obtained by successively increasing or decreasing �, using
the previous converged h’i as input at the next value of �

cf. Fig 2. For the curve obtained by fixing �ext, where a
root solver is applied to find the self-consistent �, we see
that we agree with the substitution method for the stable
nonzero solution but that we are also able to obtain the
unstable solution. In two dimensions we find a similar
situation with an even larger coexistence region.
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TABLE I. Comparison of critical exponents and critical
couplings obtained with mean field theory, DMFT, EMFT and
Monte Carlo simulations for ’4 theory in d ¼ 4. The exact
values of the critical exponents are the mean field values, since
d ¼ 4 is the upper critical dimension.

�c � �

� ¼ 0:01
MF 0.126149 1=2 1=2

DMFT 0.12695(1) 0.508(5) 0.47(1)

EMFT 0.1269552(1) 0.49(2) 0.49(3)

MC 0.126945(5) 0.50(3) 0.64(4)

� ¼ 0:1
MF 0.131651 1=2 1=2

DMFT 0.13655(5) 0.431(3) 0.404(3)

EMFT 0.13658(2) 0.44(4) 0.45(4)

MC 0.13637(2) 0.46(7) 0.57(5)

� ¼ 0:5
MF 0.130756 1=2 1=2

DMFT 0.14251(5) 0.350(2) 0.51(2)

EMFT 0.14243(2) 0.36(2) 0.51(3)

MC 0.1415(1) 0.45(6) 0.51(6)

� ¼ 2:0
MF 0.100313 1=2 1=2

DMFT 0.1163(3) 0.325(4) 0.426(2)

EMFT 0.11670(5) 0.29(1) 0.64(5)

MC 0.1144(5) 0.44(7) 0.50(3)
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FIG. 9 (color online). Phase diagram of ’4 theory in four
dimensions in the space of � and � obtained by DMFT,
EMFT, Monte Carlo and mean field theory. The inset shows
the � � 1 regime, where second-order perturbation theory also
can be used.
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In order to determine which solution is the physical
solution we have to compare the free energies of the
lattice model. In DMFT, the free energy of the lattice
model can be expressed as the free energy of the impurity
model plus some correction terms [7]. The free energy
difference in the impurity model, �f, can be obtained
by taking the logarithm of the ratio of the partition
functions,

�f ¼ � log
Z1

Z2

¼ � log

R
D½’� exp ð�S1ÞR
D½’� exp ð�S2Þ

¼ � log

R
D½’� exp ð�S1 þ S2Þ exp ð�S2ÞR

D½’� exp ð�S2Þ
� � log hexp ð�S1 þ S2ÞiZ2

; (44)

or introducing additional partition functions interpolat-
ing between Z1 and Z2 if necessary [26]. Thus, we can
obtain �f by sampling the exponential of the difference
in actions with respect to one of the actions. It turns out
that the solution with h’i � 0 has the lower impurity free
energy. We have not explicitly evaluated the correction
terms for the DMFT lattice free energies.

In the EMFT setup, which gives almost identical results,
the correction terms have been explicitly worked out in
Ref. [27]. It turns out that the nonzero solution starts as a
local minimum for small � and becomes a global minimum
when � is further increased. This suggests that the first few
broken-symmetry points in the re-entrance region of the
DMFT curve may be unstable and justifies disregarding the
data points on the magnetization curve close to where
@�=@h’i ¼ 0: it makes sense to use the nonzero branch
to estimate �c ¼ 0:1991ð2Þ and � ¼ 0:285ð1Þ by extrap-
olating the expectation value. This should be compared
with �c ¼ 0:1988ð3Þ and � ¼ 0:3200ð20Þ from the
Monte Carlo data and �c ¼ 0:174342ð1Þ and � ¼ 1=2

from mean field theory. The value of � from the literature
is � ¼ 0:3267ð10Þ [28]. In Table II we summarize the
measured quantities for two and three dimensions.
Although the strength of the first-order transition increases
as � increases, the values for �c and � obtained by ex-
trapolating from the broken-symmetry phase are of a
comparable quality for the complete range of �. In the
Monte Carlo data we see that � is too large for small �, but
approaches the correct value with increasing �. This is
because of the Ginzburg criterion which states that we
will see a mean-field-like behavior as soon as the fluctua-
tions of the order parameter are much smaller than the
order parameter itself. That means that we have to go very
close to the phase transition to see the correct exponents
and h’i increases more rapidly when � is small. Because of
the strong first-order transition we are unable to measure �
in two and three dimensions.

A. Comparison to a cluster variation method

To quantify the improvement over standard mean field
calculations, we compare our results for the critical
coupling with Kikuchi’s method [15]. Kikuchi’s method
involves three sub-clusters, a single site, a pair of nearest
neighbors and a plaquette, as well as three self-consistently
determined mean fields. For definiteness we choose a

TABLE II. Comparison of critical exponents and critical
couplings obtained with mean field theory, DMFT, EMFT and
Monte Carlo simulations for the two and three dimensional ’4

theory. The exact value of � (obtained by Monte Carlo in d ¼ 3)
is 0.3267(10) [28] in d ¼ 3 and 1=8 in d ¼ 2.

d ¼ 2 d ¼ 3

�c � �c �

� ¼ 0:01
MF 0.252297 1=2 0.168198 1=2

DMFT 0.2610(5) 0.23(3) 0.1704(1) 0.37(4)

EMFT 0.2602(1) 0.16(3) 0.1704(1) 0.36(3)

MC 0.2618(2) 0.13(1) 0.17026(3) 0.44(2)

� ¼ 0:1
MF 0.263301 1=2 0.175534 1=2

DMFT 0.2986(3) 0.15(2) 0.1871(1) 0.32(4)

EMFT 0.2967(5) 0.15(3) 0.1872(4) 0.30(4)

MC 0.3033 0.1290(5) 0.18670(5) 0.353(3)

� ¼ 0:5
MF 0.261512 1=2 0.174342 1=2

DMFT 0.3305(4) 0.170(5) 0.1991(2) 0.285(10)

EMFT 0.3277(4) 0.145(20) 0.1992(3) 0.28(3)

MC 0.3438(2) 0.127(3) 0.1988(3) 0.3200(20)

� ¼ 1:0
MF 0.23997 1=2 0.15998 1=2

DMFT 0.322(2) 0.163(9) 0.1909(3) 0.23(2)

EMFT 0.318(1) 0.140(10) 0.1910(5) 0.23(2)

MC 0.3402(4) 0.125(5) 0.18993(4) 0.320(4)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.17  0.175  0.18  0.185  0.19  0.195  0.2  0.205  0.21

<
φ>

κ

DMFT, L=75, Iterative substitution

DMFT, L=75, φext fixed

Monte Carlo, 643

EMFT

Mean Field

 1
10-4 10-3 10-2

κ-κc

FIG. 10 (color online). Results for d ¼ 3, � ¼ 0:5. Expectation
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rather large value of � ¼ 5 and four dimensions. In this
region the deviation from the Monte Carlo result is large
and the large quartic coupling also helps to keep the four-
site integral in Kikuchi’s method numerically manageable.
The results can be found in Table III.

While Kikuchi’s method gives a slightly better estimate
for the critical coupling, the accuracy of the DMFT pre-
diction is almost comparable. At smaller values of � it
becomes increasingly difficult to keep the numerical errors
in Kikuchi’s method under control, whereas DMFT and
EMFT do not suffer from any convergence problem.

IX. SUMMARYAND OUTLOOK

To summarize, we found that the DMFTapproximation in
some aspects provides a remarkably accurate description of
’4 theory in dimensions d � 2, especially for small quartic
coupling and high dimensions. A posteriori, this is quite
natural: DMFT is rooted in a mean field approach, which
works better in high dimension, and in an approximation for
the self-energy, which works better if interactions are weak.
Within these limitations, DMFT is a remarkable improve-
ment over ordinary mean field theory: with modest com-
puter resources, it provides an estimate of the critical
coupling �cð�Þ to an accuracy Oð10�5Þ (see Fig. 6), and
reasonably accurate critical exponents. In addition, DMFT
yields an approximation of the Euclidean two-point func-
tion, from which one may extract the spectral density or the
real-time, analytically continued correlator. The finite-
temperature behavior can conveniently be studied as well,
by varying the extent of the preserved compact, dynamical
dimension. Such information is out of reach of the standard
mean field approach.

DMFT incorrectly predicts a first-order transition for all
values of the quartic coupling in dimension d 
 3. In four
dimensions we find a second-order transition only for
very small quartic coupling. This kind of breakdown below
the upper critical dimension is typical for mean-field-like
methods. It is only when d � 5 that the transition is of
second order for all couplings. A first-order transition
means that we cannot take the continuum limit of the
lattice theory. Nevertheless, an effective scaling behavior,
with associated effective critical exponents, can be
observed in the regime of large correlation length near
the weak first-order transition.

We have also shown that, if nonlocal quantities are
not of direct interest, the local limit of DMFT (extended

meanfield theory, EMFT [13]) can make predictions which
are vastly superior to mean field theory at a low computa-
tional cost.
In conclusion, while DMFT might not be reliable in

d ¼ 2 and 3, it is a useful method for the study of ’4

theory in d ¼ 4. Depending on the region in parameter
space and the observables of interest, DMFT offers a
remarkably accurate and computationally less expensive
alternative to simulations of the full model.
It would be particularly interesting to apply DMFT and

EMFT to theories afflicted by a ‘‘sign problem’’, because
in that case the computer resources required for a reliable
Monte Carlo study are prohibitive. With this in mind, the
natural next step in our study is the extension to complex
’4 theory, which has additional interesting features of
great physical interest. It has a continuous global symmetry
which allows us to introduce a chemical potential �. For
sufficiently large �, the global symmetry is spontaneously
broken and the system undergoes Bose condensation via
a phase transition. This chemical potential leads to a sign
problem in Monte Carlo simulations, which has much in
common with the sign problem in QCD at finite chemical
potential. We have derived in Appendix A the impurity
action and the self-consistency equations, so if the sign
problem in the one-dimensional chain can be dealt with,
the simulations should be straightforward. Anders et al.
[11] have simulated a similar system with a sign problem,
so there is hope that DMFT may also give good results
for the complex ’4 theory, at least in the vicinity of the
Bose-condensation phase transition. It is also possible that
EMFT will already give good results when applied to
complex ’4 theory [29].
Yet another possible direction to proceed would be to

improve the method for the existing model, for instance by
pushing the cumulant expansion of � , Eq. (A10), to higher
order. This would be a complementary effort to existing
work on the systematic improvement of DMFT [30], and
cluster extensions of DMFT [31].
The most appealing prospect is perhaps cluster DMFT

where instead of an impurity model consisting of a single
one-dimensional chain one considers a narrow cylinder.
At each time point the field is then allowed to fluctuate in
the spatial direction, at least on short scales. This would
introduce some dependence on short-range fluctuations
in space and hence on large spatial momenta in the self-
energy, which should improve the approximation. This
approach is especially attractive when we think about
applications of DMFT to gauge theories. Since the smallest
gauge invariant object is a plaquette, it is necessary to treat
at least a plaquette (four-site cluster) at each time.
Self-consistency equations involving plaquette variables

can be written down, as a generalization of, eg., Ref. [32].
The nonlocal kernel �ðt� t0Þ would now describe
plaquette-plaquette interactions. Hopefully, a satisfactory
approximation can be achieved when truncating � to a few

TABLE III. Illustrative comparison of critical couplings ob-
tained with mean field theory (MF), DMFT, EMFT, Kikuchi’s
method and Monte Carlo simulations for the four dimensional
’4 theory at � ¼ 5.

MF DMFT EMFT Kikuchi MC

0.07521 0.09007(10) 0.09064(20) 0.08859 0.08893(20)
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terms. The fast decay of �ðt� t0Þ observed in the ’4 case,
even close to the phase transition, fosters optimism.
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APPENDIX A: IMPURITYACTION
OF COMPLEX ’4 THEORY

In this appendix, we derive the DMFT equations for the
complex valued, scalar ’4 theory in the presence of a
chemical potential �. This is more general than the real-
valued, scalar’4 theory, studied in this paper, which can be
obtained as a special case of the complex theory. We derive
the action and self-consistency equations using an effective
medium approach, closely following Ref. [11]. We assume
that the global symmetry, (Uð1Þ when the field is complex
and Z2 in the real case), is broken since this is the more
general case, and since the equations for the symmetric
phase can be easily obtained by setting the expectation
value of the field to zero. The expectation value of the field
in the broken-symmetry phase will then be determined
self-consistently as in standard mean field theory.

We start by quickly reminding the reader of the lattice
action of complex ’4 theory with a chemical potential �
coupled to the time component of the conserved current:

S ¼ X
x

�
j’xj2 þ �ðj’xj2 � 1Þ

� �
X
�

½e����;t’�
x’xþ�̂ þ e���;t’�

x’x��̂�
�
; (A1)

where ��;t ¼ 1 if � is the time direction and zero

otherwise.
We consider a lattice withNd�1

s Nt sites (Ns can formally
be taken to be infinite) and denote by ’~i;t the field on the

site ð~i; tÞ ¼ ðx1; . . . ; xd�1; tÞ. We then single out ~i ¼ ~0 �
ð0; . . . ; 0Þ and call the worldline at the spatial origin,
’int;t � ’~0;t, the internal degrees of freedom. All other

sites are considered an external effective bath or external

degrees of freedom, ’ext;t ¼ f’~j;t:
~j � ~0g. We will also use

the Nambu notation throughout. In the Nambu notation we
have �y ¼ ð’�; ’Þ and this allows us to write equations
with ’ and ’� more compactly using vectors and matrices.

We can write the action, Eq. (A1), as a sum of three
terms, the action of the worldline, the action of the external
sites and the interaction of the worldline with the external
bath. The action in the Nambu notation reads

S ¼X
x

�
��

X
�

�y
xþ�̂Eð���;tÞ�x þ 1

2
j�xj2

þ �

4
ðj�xj2 � 2Þ2

�
¼ Sint þ�Sþ Sext; (A2)

with

EðxÞ ¼ e�x 0

0 ex

 !
; (A3)

Sint ¼
X
t

�
���y

int;tþ1Eð�Þ�int;t þ 1

2
j�int;tj2

þ �

4
ðj�int;tj2 � 2Þ2

�
; (A4)

�S ¼ ��
X
t

X
hint;exti

�y
int;t�ext;t; (A5)

Sext ¼
X

x�ð~0;tÞ

�
��

X
�

xþ�̂�ð~0;tÞ

�y
xþ�̂Eð���;tÞ�x þ 1

2
j�xj2

þ �

4
ðj�xj2 � 2Þ2

�
: (A6)

The sum over hint; exti is shorthand for the sum over all
external sites at time t which are nearest neighbors to the
internal site at time t.
The surrounding bath is considered to be of infinite

size and can thus spontaneously break the symmetry and
develop an expectation value. The worldline subject to the
action Sint can not spontaneously break the symmetry,
since d ¼ 1 is the lower critical dimension of the Ising
universality class, (and d ¼ 2 for a Uð1Þ symmetry). At
and below the lower critical dimension, the system is
always disordered since the entropy gain of introducing
a domain wall wins over the energy cost. In a one-
dimensional chain of Ising spins the cost of breaking one
bond is constant but it does not cost any energy to move the
broken bond along the chain. However, one-dimensional
systems can exhibit a phase transition if there are long-
range interactions [20–24]. Such long-range interactions
can be induced as the field on the chain interacts with the
bath through �S and also �int can acquire a nonzero
expectation value. In order to account for this possibility
we write,

�ext;t ¼ �ext þ ��ext;t; h�ext;ti ¼ �ext;

�int;t ¼ �int þ ��int;t; h�int;ti ¼ �int:

Notice that the two expectation values are not dynamical
variables but rather constants that can be tuned to achieve
self-consistency. Inserting this in �S yields
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�S ¼ ��
X
t

�
2ðd� 1Þ�y

ext��int;t þ ��y
int;t

X
hint;exti

��ext;t

þ 2ðd� 1Þ�y
int��ext;t

�
: (A7)

There are three different terms which are dealt with differ-
ently. The first term can be included in Sint. We assume
small fluctuations around the classical solution so the
second term can be used to expand the Boltzmann weight.
The third term is independent of the internal degrees of
freedom (�int is considered fixed) and is included in Sext.
Let us define

S1 ¼ �2�ðd� 1ÞX
t

�y
ext��int;t; (A8)

�S ¼ ��
X
t

X
hint;exti

��y
int;t��ext;t �

X
t

�SðtÞ; (A9)

and expand exp ð��SÞ to get

Z ¼ Zext

Z
D’int�extð�Sint � S1Þ;

� ¼ 1�X
t

h�SðtÞiext þ 1

2

X
t;t0
h�SðtÞ�Sðt0Þiext þ � � � ;

(A10)

where Zext �
R
D exp ð�SextÞ is the partition function of

the action including only ’ext;t. The expectation values are

with respect to Zext. The first-order term in � is proportional
to the expectation value of �’ext which is zero by construc-
tion. The second-order term is nonzero and we find,

h�SðtÞ�Sðt0Þiext ¼ �2��y
int;t

X
hint;exti

X0

hint;exti

	 h��ext;t��
y
ext;t0 iext��int;t0 ;

¼ ��y
int;t�ðt� t0Þ��int;t0; (A11)

where the prime on the second summeans that there are two
different external sites. This corresponds to a field propagat-
ing in the effective medium subjected to the unknown
propagator, between creation and annihilation at the spatial
origin. This term is called ‘‘hybridization function’’
�ðt� t0Þ. It originates from connected diagrams and will
be determined self-consistently in the DMFT loop by de-
manding that the local Green’s function of the effective
model coincide with the local Green’s function of the full
model. �ðtÞ is a 2	 2 Hermitian matrix and there is of
course an implicit dependence on �. Here we can see that
DMFT is a better approximation at high dimensionality. We
have already argued that mean field theory should be exact in
d ¼ 1 and in mean field theory quadratic fluctuations are
completely ignored. That means that expectation values like

h��ext;t��
y
ext;t0 iext factorize and there is no error involved

when we neglect contributions from higher order correlators.

The diagonal entry of �ðtÞ is associated with h’�ð0Þ’ðtÞi
and the off-diagonal entry is associated with h’ð0Þ’ðtÞi.
After the reexponentiation Eq. (A10), we find the impurity
action,

Simp¼
X
t

�
���y

tþ1Eð�Þ�tþ1

2
j�tj2þ�

4
ðj�tj2�2Þ2

�

�1

2

X
t;t0
��y

t �ðt�t0Þ��t0 �2�ðd�1Þ�yX
t

�t

¼X
t

�
���y

tþ1Eð�Þ�tþ1

2
j�tj2þ�

4
ðj�tj2�2Þ2

�

�1

2

X
t;t0
�y

t �ðt�t0Þ�t0 ��yð2�ðd�1ÞI� ~�ð0ÞÞX
t

�t

¼X
t;t0
�y

t K
�1
imp;cðt�t0Þ�t0 þ�

X
t

ð’2
t �1Þ2�hyX

t

�t;

(A12)

where ~K�1
imp;cð!Þ ¼ 1

2 I� �Eð�� i!Þ � 1
2
~�ð!Þ is the in-

verse of the connected two-point Green’s function of the free

theory and hy ¼ �yð2�ðd� 1ÞI� ~�ð0ÞÞ plays the role of
an external magnetic field. Note that the factor of 1=4 that
sometimes appears in front of � is due to the identity j�j2 ¼
2j’j2. Setting � to be real and the chemical potential to be
zero, one recovers Eqs. (19)–(21).

APPENDIX B: EXTENDED MEAN FIELD THEORY

In the zero-dimensional, or local, model we have the
impurity action

Simp ¼ ð1��Þ’2 � 2�extð2d���Þ’þ �ð’2 � 1Þ2:
(B1)

Sincewe are working with a single site model in coordinate
space all quantities are local in space and time, and all
quantities of the full lattice model which enter the self-
consistency equations are understood to be local in space
and time as well. Close to the phase transition, where �ext

is very small, we can expand the exponential of the action
in powers of �ext. It is convenient to define

Z0 �
Z

d’ exp ð�Simpj�ext¼0Þ; (B2)

Mk � h’kiZ0
: (B3)

In Z0 we only discard the explicit dependence on �ext but
not the implicit dependence in �. In this setupMk actually
depends on �ext. A naive expansion to order Oð�4

extÞ
gives

h’i¼ 2ð2d���Þ�extM2þ8

6
ð2d���Þ3�3

extðM4�3M2
2Þ;

(B4)
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Gimp ¼ 2ðM2 þ 2�2
extð2d���Þ2ðM4 � 3M2

2ÞÞ: (B5)

Using the self-consistency condition h’i ¼ �ext we can
determine � up to order �2

ext,

� ¼ 2d�� 1

2M2

þ �2
ext

12M2
2

�
M4

M2
2

� 3

�
; (B6)

which leads to an effective action in terms of �, �ext and
M2, M4, which needs to be determined self-consistently.
More precisely,

Simp ¼
�
1� 2d�þ 1

2M2

� �2
ext

12M2
2

�
M4

M2
2

� 3

��
’2

þ �ð’2 � 1Þ2; (B7)

Gloc ¼
Z 1

0
d
exp

�
�


�
2d�þ�2

ext

6M2
2

�
3�M4

M2
2

���
I0ð2�
Þd;

(B8)

Gimp ¼ 2M2 ��2
ext

�
3�M4

M2
2

�
; (B9)

which defines our self-consistency equations. M4 already
multiplies �2

ext so, to order �2
ext, we can use its value at

�ext ¼ 0, i.e. M4 � M4j�ext¼0. However, the �2
ext correc-

tion to M2 contributes and must be calculated. We find

M2 ¼ M2j�ext¼0 ��2
ext

6

�
M4

ðM2j�ext¼0Þ2
� 1

�
; (B10)

which gives the Green’s function,

Gimp ¼ 2M2j�ext¼0 � 2�2
ext

3

�
4� M4

ðM2j�ext¼0Þ2
�
: (B11)

M2j�ext¼0 must be determined self-consistently using

the action in Eq. (B7). Equating Gimp and Gloc at �ext ¼ 0

yields

2M2j�ext¼0 ¼ 1

2�

Z 1

0
d
 exp ð�
dÞI0ð
Þd; (B12)

which defines the critical coupling. In the Ising limit the
situation simplifies sinceM4 ¼ M2 ¼ 1.

A crucial question is how the � which equates Gimp and

Gloc behaves as a function of �ext. The analysis with
arbitrary � is quite involved but we can learn a lot by
considering the Ising limit where � ¼ 1. We have to
distinguish between two cases: when d > 4 the integral,

Z 1

0
d
 
e�
dI0ð
Þd � I0d; (B13)

is finite and we can expand the exponential in Eq. (B8).
After some algebra we find

� ¼ Id
4
þ
�
Id
4
� I0d

6Id

�
�2

ext; (B14)

Id ¼
Z 1

0
d
 e�
dI0ð
Þd: (B15)

If the coefficient in front of �2
ext is negative we have a first

order transition because we will have a region with mul-
tiple solutions and this indeed happens for d & 4:9. For
larger d the coefficient is positive and we find a second-
order transition with critical exponent � ¼ 1=2.
When 3< d 
 4, the integral in Eq. (B13) is divergent

and we cannot use a Taylor expansion of Eq. (B8). Instead
we can numerically study how Eq. (B8) behaves for small
�ext. We restrict ourselves to dimensions larger than three
since otherwise Id also is divergent. We find that Gloc has
an expansion,

Gloc ¼ Id
2�

� B

�2
�


ext � C�2
ext; B; C > 0; 
 < 2:

(B16)

This means that for small enough �ext the self-consistency
equation takes the form

Id
2�

� B

�2
c

�

ext ¼ 2; (B17)

which gives

� ¼ Id
4
� 32

B

I3d
�


ext: (B18)

Again, due to the negative prefactor, the transition is first
order. In Fig. 5 we show the quartic coupling for which the
transition turns second order as a function of the dimension.
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