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We describe an effective theory of a scalar field, motivated by some features expected in the low energy

theory of gluodynamics in 3þ 1 dimensions. The theory describes two propagating massless particles in a

certain limit, which we identify with the Abelian QED limit, and has classical string solutions in the

general case. The string solutions are somewhat unusual as they are multiply degenerate due to the

spontaneous breaking of diffeomorphism invariance. Nevertheless, all solutions yield an identical electric

field and have the same string tension.

DOI: 10.1103/PhysRevD.88.125004 PACS numbers: 11.15.Ex, 11.15.Kc

I. INTRODUCTION

The aim of this article is to describe a field theoretical
model, motivated by an attempt to extend the understand-
ing of certain aspects of 2þ 1 dimensional gauge theories
to 3þ 1 dimensions.

In 2þ 1 dimensions one has a very simple and straightfor-
ward relation between confinement and spontaneous break-
ing of a discrete magnetic symmetry [1,2]. Additionally, in
2þ 1 dimensions, non-Abelian gauge theories, exhibiting
the phenomenon of confinement, are related to Abelian
theories on the effective field theory level, by a simple
symmetry breaking deformation. This deformation breaks
the continuous Uð1Þ magnetic symmetry of an Abelian the-
ory down to a discrete group ZN for SUðNÞ gauge theories
with adjoint matter. The mere fact of the presence of this
deformation, coupled with the spontaneous breaking of the
residual discreet group leads with certainty to a confining
long distance behavior [2,3].

In this article we discuss a 3þ 1 dimensional model
that displays similar features. The model is designed to
implement certain aspects of Abelian–non-Abelian tran-
sition, similar to the 2þ 1 dimensional case. Although it
clearly cannot be taken literally as the effective theory of
QCD, curiously enough it does have some similarity with
the Fadeev-Niemi model, that has been proposed as an
effective theory of glueballs from a completely different
perspective [4].

Before discussing the model itself, we will recall briefly
the story of 2þ 1 dimensional gauge theories. As a proto-
typical Abelian gauge theory consider scalar QED. It
possesses a continuous U�ð1Þ global symmetry generated

by the total magnetic flux through the plane of the system,
� ¼ R

d2xBðxÞ. The order parameter for this symmetry is

one complex field V, which creates pointlike magnetic
vortices. In the Coulomb phase hVi ¼ v � 0 and U�ð1Þ
is spontaneously broken. The low energy dynamics is
qualitatively described by the effective ‘‘dual’’ Lagrangian

L ¼ �@�V@�V
� � �

�
V�V � e2

8�

�
2
: (1)

The Goldstone boson of the U�ð1Þ symmetry breaking is

identified with the massless photon, while the electric
charge in the dual formulation is the topological charge
of the field V:

J� ¼ 1

e
����@�V

�@�V: (2)

A charged state of QED in the effective description appears

as a hedgehog-like soliton of V: VðxÞ ¼ vei�ðxÞ, with
� ¼ tan�1y=x.
This effective formulation is also a good basis for

description of confinement in non-Abelian theories. In
particular, the effective theory of a weakly interacting
SUðNÞ model is essentially the same as Eq. (1), except
with a potential which breaks the magnetic U�ð1Þ symme-

try down to ZN:

L ¼ �@�V@�V
� � �

�
V�V � e2

8�

�
2 þ�ðVN þ V�NÞ: (3)

The perturbation reduces the infinite degeneracy of vacua
of the Abelian theory to a finite number of degenerate
vacuum states connected by the ZN transformations. As a
result, a charged state does not have a rotational symmetry
anymore, but the winding is concentrated within a quasi-
one-dimensional ‘‘flux tube’’ [2].
This is a very simple picture, and a very appealing one

inasmuch as it identifies charged objects with topological
defects which inherently have long range interactions due
to their topological nature. It also identified photons with
Goldstone bosons, providing a natural symmetry based
explanation for masslessness of the photon.
It is natural to ask, whether in 3þ 1 dimensions one can

have a similar description, which encompasses the mass-
less nature of photons in QED as well as a topological
mechanism of confinement in non-Abelian theories. The
situation here, of course, is much more complicated. First
of all, in 3þ 1 dimensions photons are vector particles and
so it is not clear at all whether they can be understood as
Goldstone bosons. Even if such a case can be made for
photons, it is not easy to identify the relevant conserved
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current that breaks spontaneously. It is clear that the
current has to be related to the dual field strength ~F��

consistent with the fact that photons have spin one [5]. The
dual field strength, however, has no local order parameter,
and thus is an object of a very different kind than ordinary
vector currents, which we are used to dealing with.
Another complication is that the classical effective descrip-
tion assumes weakly interacting theory, while QCD is of
course strongly interacting.

All these are difficult questions to which we do not
attempt to provide answers here. Instead we will be content
to construct a model that encompasses the following basic
features:

(1) The model should describe dynamics of scalar
fields, and contain no fundamental gauge fields.

(2) The model should have the limit (putative ‘‘Abelian
regime’’) in which it has 2 massless degrees of
freedom, which are identified as Goldstone bosons.
These massless Goldstone bosons in our model are
intended to play the role of photons.

(3) In the Abelian regime the model must provide for
the existence of classical topological solitons, which
play the role of electrically charged particles. We
require the topological charge that is carried by
these solitons to reflect the mapping of the spatial
infinity onto the manifold of vacua, and thus be
given by �2ðMÞ. The energy of these solitons has
to be finite in the infrared. The energy density of a
soliton solution should decrease as 1=r4 far from the
soliton core. This is nontrivial in 3þ 1 dimensions,
since our model has no gauge fields, while scalar
fields that contribute to �2 have to be long range.

(4) Soliton must become confined in the ‘‘non-Abelian
regime’’ when a symmetry breaking perturbation is
added. This same perturbation must eliminate mass-
less Goldstones by explicitly breaking the (previ-
ously) spontaneously broken symmetry group down
to a discreet subgroup. Confinement should be ac-
companied by the formation of string between the
solitons.

In this article we present a model which has all the above
features and discuss its properties, which are somewhat
unusual. In particular, the requirement of the finiteness of
the energy of a topological soliton in the Abelian regime is
very restrictive. It leads to rather unusual properties of the
confining strings in the non-Abelian regime such as the
exitance of an infinite number of zero modes. This degen-
eracy can be lifted; however, that requires the addition of
another perturbation which is not clearly related with
breaking of symmetries of the theory.

We stress that the model we discuss does not provide the
perfect emulation of many properties of gauge theories. In
particular, even in the Abelian regime, it contains classical
solutions with a magnetic charge density, and thus the
effective dual field strength tensor is not conserved.

Related to that, although we are able to construct solutions
of equations of motion that behave as single photons, the
model has no solutions that correspond to a two photon
state with arbitrary polarization vectors. Nevertheless, we
think that the model has many similarities with gauge
theories, and thus is sufficiently interesting to be consid-
ered perhaps as a simplified prototype for future work.

II. THE ABELIAN MODEL

A. The field space and the Lagrangian

As explained in the Introduction, we wish to construct a
model of scalar fields which contains 2 massless degrees of
freedom and solitons of finite energy. The simplest option
that we adopt is a theory with 2 scalar degrees of freedom
endowed with SUð2Þ symmetry. Spontaneous breaking of
this symmetry must lead to two massless modes. Thus we
choose as the configuration space the Oð3Þ nonlinear �
model.

�a; a ¼ 1; 2; 3; �2 ¼ 1: (4)

The moduli space allows for the requisite topology�2ðS2Þ.
The topological charge associated with it is identified with
the electric charge of QED’’

Q ¼ e

4�2

Z
d3x�abc�ijk@

i�a@j�
b@k�

c: (5)

As the first task, we have to contend with the following
potential problem. In a theory with the standard kinetic
term, the energy of a state with nonvanishing topological
charge diverges in the infrared. A typical topologically
nontrivial field configuration is a rotationally symmetric
hedgehog

�a
hðxÞ ¼

ra

jrj fðjrjÞ; fðjrjÞ!
r!11: (6)

The standard two derivative kinetic energy diverges quad-
ratically on such a configuration. In order to make the
energy of the soliton finite, we need to introduce a kinetic
term with more than two derivatives.
In fact, there exists a unique four derivative term which

is a natural choice for a kinetic term for our model. The
identification of the electric charge with the topological
charge Eq. (5) also naturally leads to the identification of
the electric current as

J� ¼ e

4�2
�abc�

����@��
a@��

b@��
c; (7)

and therefore electromagnetic field tensor as

F�� ¼ �abc������a@��
b@��

c: (8)

Since our goal is to construct a model that resembles QED
as close as possible, the natural choice for the kinetic term
is the square of the field strength tensor, which is just the
well-known Skyrme term.
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Hence we consider the model of a triplet of scalar fields
defined by the following Lagrangian:

L ¼ 1

16e2
F��F�� þ �ð�2 � 1Þ2: (9)

We note that the sign of the F2-term in the Lagrangian is
opposite to that in QED. In the framework of Eq. (9) the sign
is determined so that the Hamiltonian is positive, rather than
negative definite. This feature is common to models related
by duality. For example, the same is true in the 2þ 1
dimensional models described in the Introduction, where
the kinetic term in the Lagrangian of the effective theory
when written in terms of the field strength tensor has the
opposite sign to that of electrodynamics. The reason for this
inversion is that while in QED the electric field is propor-
tional to the time derivative of the basic field (in this case
A�), in the effective dual description it is the magnetic field

that contains the time derivative of the vertex field V. Thus,
in order for the Hamiltonian of the two models in terms of E
and B to be the same, the Lagrangians have to have opposite
signs. This inversion of sign also takes place in our model
and is the natural consequence of the relation between
the field strength tensor and the basic scalar degrees of
freedom, Eq. (8).

In the strongly coupled limit � ! 1, the isovector� has
unit length, and the field strength is trivially conserved

@�F
�� ¼ 0: (10)

This limit therefore corresponds to QED without charges.
In this limit the energy of the soliton, Eq. (6), diverges
linearly in the ultraviolet. At finite coupling � the variation
of the radial component of the field �a softens the UV
behavior, and the soliton energy is UV finite. It is also IR
finite thanks to our choice of the four derivative action. In
fact on the hedgehog configuration, Eq. (6), the ‘‘electric

field’’ decreases as EiðxÞ / r1

jrj3 , and the energy density

away from the soliton core decreases as 1=r4, just like
the Coulomb energy of a static electric charge in the
electrodynamics.

B. The equations of motion

We now derive the equations of motion for the model.
For convenience we define in the strong coupling limit

�3 ¼ z; c ¼ �1 þ i�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
ei	: (11)

With this parametrization one has

F�� ¼ ���
��abc�
a@
�

b@��
c ¼ �2���
�@
z@�	:

(12)

The Lagrangian can be written as

L ¼ 1

4e2
ð@�z@�	� @�	@�zÞ2: (13)

The equations of motion read

@�
�
1

e2
@�	ð@�z@�	� @�z@�	Þ

�
¼ 0;

@�
�
1

e2
@�zð@�z@�	� @�z@�	Þ

�
¼ 0:

(14)

This can be combined into

1

e2
@�Gðz; 	Þ@�ð@�z@�	� @�z@�	Þ

¼ 1

e2
@�½Gðz; 	Þ@�ð@�z@�	� @�z@�	Þ� ¼ 0; (15)

where Gðz; 	Þ is an arbitrary function of two variables.
These equations have a form of conservation equations for
currents defined as

JG� ¼ Gðz; 	Þ@�ð@�z@�	� @�z@�	Þ: (16)

C. The symmetries and the correspondence
to electrodynamics

The conserved currents of Eq. (16) can indeed be iden-
tified with conserved Noether currents. An unexpected
consequence of the choice of the Skyrme term as the
kinetic term in the Lagrangian, is that the global symmetry
group of the model is much larger than the SOð3Þ group we
have started with.
To see this, note that the field strength as defined in

Eq. (8) is related to an infinitesimal area on a configuration
space. Let us be more precise here. A given field configu-
ration �aðxÞ defines a map from space-time to a sphere S2.
Consider a given component, the field strength tensor, say
F12 at some point x. To calculate it in terms of � we
consider three infinitesimally close points A � x�, B �
x� þ ��1a, and C � x� þ ��2a. These three points in
space-time map into three infinitesimally close points on
the sphere �aðAÞ, �aðBÞ, �aðCÞ. The field strength F12 is
proportional (up to the factor a�2) to the area of the
infinitesimal triangle on S2 defined by these three points.
Since the action of our toy model depends only on F��, it
is clear that any reparametrization of the sphere which
preserves the area is an invariance of our action.
Thus, the SOð3Þ global symmetry we started with, is a

small subgroup of the area preserving diffeomorphisms of
S2, which we denote Sdiff(2) [6]. This is the group
of canonical transformations of a classical mechanics of
1 degree of freedom. The infinitesimal symmetry trans-
formation in terms of z and 	 is

z ! zþ @G

@	
; 	 ! 	� @G

@z
; (17)

with arbitrary Gðz; 	Þ. The appropriate Noether currents
are precisely those of Eq. (16) and the equations of
motion are indeed equivalent to conservation equations
of these currents.
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It is amusing to note that this symmetry is similar to the
world sheet diffeomorphism invariance of the Nambu-Gotto
string. Indeed, if one thinks of the fields z and 	 as the world
sheet string coordinates, the world sheet diffeomorphism
invariance is precisely Eq. (17) [7]. Although our setup
looks very different from a string theory, there may be
more to this analogy than meets the eye, as the basic ‘‘order
parameters’’ of the magnetic symmetry in QED4 are indeed
magnetic vortex strings [5]. The S2 topology of the world
sheet then implies closed string loops. We will not develop
this analogy any further here, and instead will return to the
field theoretical approach.

The enhanced symmetry means that the moduli space is
much larger than S2 as would be naively the case for
symmetry breaking pattern SOð3Þ ! SOð2Þ. Any configu-
ration �aðxÞ that maps the configuration space into an
arbitrary one dimensional curve on S2 has a vanishing
action and is thus a point on the moduli space. The moduli
space is therefore the union of maps �aðxÞ that map R4 to
L, where L is an arbitrary point or a one dimensional curve
on S2.

Nevertheless, even though themoduli space is not a simple
sphere, the topological chargeQ is quantized for any smooth
classical configuration of fields �ðxÞ. A twist in the tale is
that there are many more degenerate soliton configurations
than just the rotationally invariant hedgehog of Eq. (6). Any
Sdiff(2) transformation corresponding to an arbitrary regular
function G of Eq. (17) applied to the configuration, Eq. (6),
generates a soliton configuration�aG

h ðxÞwhich is degenerate
in energy with �a

hðxÞ. Note that although these are different
field configurations, they all correspond to the same electric
field Ei ¼ �ijk�

abc�a@j�
b@k�

c, since the electric (as well

as magnetic) field is invariant under the action of Sdiff(2)
transformations.

D. Plane waves and photon states

Returning to the Lagrangian equation (9), the natural
question to ask is how much of a relation does it have with
electrodynamics. With the identification, Eq. (8), we know
that the field strength F�� satisfies half of Maxwell’s
equations. The equations of motion, Eq. (15), are quite
reminiscent of the other half of Maxwell’s equations. They
can be rewritten in terms of F�� as

½@�Gðz; 	Þ�@� ~F�� ¼ 0: (18)

Thus, any configuration of the fields z, 	 that satisfies
@� ~F�� ¼ 0, also satisfies the equations of motion of our

model. The converse is not true: there are solutions of the
equations of motion, Eq. (15), which do not satisfy the
equations of motion of electrodynamics. We give an
example of such a solution in the Appendix.

The model, Eq. (9), is therefore not equivalent to electro-
dynamics. Nevertheless, it is interesting to ask whether the
spectrum of solutions of Eq. (9) contains basic excitations
of QED, in particular the photons. This is a slight abuse of

language, since we are dealing with a classical theory. We
will nevertheless refer to plane wave configurations of F��

with lightlike momentum as photons.
Our aim in this section is to show that the free wave

excitations are indeed solutions of Eq. (15). To this end
consider the configuration

	ðxÞ ¼ A��x�; zðxÞ ¼ sin k�x�; (19)

where the vector �� is normalized as ���� ¼ �1. On this

configuration

~F�� ¼ Að��k� � ��k�Þ cos k � x: (20)

Thus,

@� ~F�� ¼ �A½ð� � kÞk� � k2��� sin k � x: (21)

This vanishes, provided the momentum vector is lightlike
and the polarization vector � is perpendicular to k:

k2 ¼ 0; � � k ¼ 0: (22)

For a given lightlike momentum k� this equation has three

independent solutions for ��. One of them, however, is
proportional to k� itself. With this polarization vector, the

field strength tensor vanishes. Thus, there are two indepen-
dent polarization vectors �

�
� , � ¼ 1, 2 that correspond to

plane wave solutions for F��. Just like in QED, it is
convenient to choose the polarization vectors so that their
zeroth component vanishes ��� ¼ ð0; �i�Þ. The constant A is

the overall amplitude of the electromagnetic wave, whose
square is proportional to the number of photons with a
given momentum and a given polarization in the wave.
The arbitrariness in the choice of the polarization vectors

is precisely the same as in the choice of polarization
vectors in electrodynamics

�� ! �� þ ak�: (23)

Note that this shift of polarization vector is affected by the
transformation

	 ! 	þ a arcsin z; (24)

which is one of the Sdiff(2) transformations, Eq. (17). In
fact the two field configurations, Eq. (19), can be trans-
formed by any element of Sdiff(2) without changing F��.
The solution, Eqs. (19), (20), and (22), describes a state in

all respects equivalent to the freely propagating photon, and
we will refer to it as such. The setup here is dual to the usual
free QED. Normally one introduces the vector potential A�

via F�� ¼ @�A� � @�A�. This relation potentiates the ho-

mogeneous Maxwell’s equation @� ~F�� ¼ 0. However, in

the free chargeless QED entirely analogously one can po-
tentiate the other Maxwell equation by introducing the dual

vector potential via ~F�� ¼ @� ~A� � @� ~A�. The dynamics of

the dual vector potential ~A� is identical to that of A�, and it

can be expanded in exactly the same polarization basis as
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A�. In this formulation QED processes a dual gauge sym-

metry ~A� ! ~A� þ @��ðxÞ.
To make the correspondence between our model and the

electrodynamics more transparent, we can define a dual
vector potential

~A� ¼ z@�	: (25)

Under the Sdiff(2) transformation equation (17) it trans-
forms as

~A� ! ~A� þ @�

�
G� z

@G

@z

�
; (26)

which has a form reminiscent of the dual gauge trans-
formation in electrodynamics with the gauge function
�ðxÞ ¼ G� z @G

@z .

The analogy of Eq. (25) with the dual vector potential of
QED is suggestive, but one has to be aware that this is only
an analogy rather than equivalence. First, the transforma-
tion equation (26) is not a gauge transformation, but rather
the action of a global symmetry transformation of the

Lagrangian on ~A� of Eq. (25). More importantly, the vector

field defined in Eq. (25) in terms of two scalar fields is not
the most general form of a vector field, even allowing for a
possible gauge ambiguity. For that reason the variation of
the Lagrangian with respect to such a constrained vector
potential does not lead to the homogeneous Maxwell’s
equation directly, but instead to Eq. (18), which allows
additional solutions.

Finally we note, that the solution, Eq. (19), gives a nice
and simple interpretation for the properties of the photon
states in terms of the effective theory. The photon momen-
tum is the momentum associated with the variation of the
third component of the isovector�a, while the direction of
the photon polarization vector is determined by the spatial
variation of the phase 	.

Although a plane wave ~F�� solves the equations of

motion, the equations, Eq. (18), are not linear in the basic
field variables, and thus an arbitrary superposition of two
such solutions itself is not a solution. We may try to
construct a two photon state by slightly extending the
ansatz, Eq. (19).

	 ¼ ��x�; z ¼ a sin k�x� þ b sinp�x� (27)

with k� andp�—both lightlikevectors,��k� ¼ ��p� ¼ 0

and ���� ¼ �1. The latter two conditions can be satisfied

by taking

�� ¼ 


�
�� � � � k

k � pp� � � � p
k � p k�

�
; (28)

with an arbitrary vector �� and an appropriate normaliza-
tion constant 
.

The dual field strength tensor can be written as

~F�� ¼ aðk��k� � k��
k
�Þ cos k � x

þ bðp��
p
� � p��

p
�Þ cosp � x; (29)

with the polarization vectors

�k� ¼ �� � �0

k0
k�; �p� ¼ �� � �0

p0

p�: (30)

This is a bona fide two photon state. Unfortunately by
varying �� at fixed p and k one cannot obtain the two

most general polarization vectors for photons with mo-
menta k and p. This is obvious since both polarization
vectors �k and �p have equal components in the direction
perpendicular to the plane spanned by pi; ki. Thus we are
lacking 1 degree of freedom to be able to construct a two
photon state with arbitrary polarizations of both photons.
In the Appendix we show that this is problem is not
restricted to our ansatz, Eq. (27), but is a genuine limitation
of our Lagrangian.

III. THE NON-ABELIAN PERTURBATION
AND THE STRING SOLUTION

In analogy with 2þ 1 dimensions we now perturb the
theory with the simplest perturbation which breaks theOð3Þ
global symmetry. This perturbation should eliminate the
vacuum degeneracy associated with the spontaneous sym-
metry breaking. We find it convenient to choose a potential
that fixes the vacuum expectation value of the field z to be
equal to unity. We thus consider the Lagrangian

L ¼ 1

16e2
F��F�� � 2

e2
�2ðz� 1Þ2: (31)

The perturbation breaks not only the SOð3Þ symmetry, but
also generic Sdiff(2) transformations. Nevertheless, the
subgroup generated by

	 ! 	� dGðzÞ
dz

(32)

remains unbroken. We keep this in mind throughout the
discussion of this section.
The equations of motion now are

@�
�
1

e2
@�	ð@�z@�	� @�z@�	Þ

�
¼ 4

e2
�2ðz� 1Þ;

@�
�
1

e2
@�zð@�z@�	� @�z@�	Þ

�
¼ 0:

(33)

With this perturbation there are no finite energy solutions
with nonvanishing topological chargeQ. Instead, we expect
to find translationally invariant stringlike solution. In the
presence of a soliton and antisoliton such strings will con-
nect the two and will provide for a linear confining potential.
To find such a solution consider a static field configuration
translationally invariant in the third direction. For such a
configuration the only nonvanishing components of F�� are
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F03 ¼ 2�ij@iz@j	: (34)

We look for a solution invariant under rotations in the
plain perpendicular to the string

	ðxÞ ¼ �ðxÞ; zðxÞ ¼ zðrÞ; (35)

where r and � are the polar coordinates in the x1, x2 plain.
Such a configuration has a unit winding in the x1, x2 plain
which is precisely what one expects from the string connect-
ing the soliton and antisoliton. The soliton resides at some
very largenegativevalue ofx3. Far to the left of the soliton the
field configuration must be vacuum �1 ¼ �2 ¼ 0; z ¼ 1.
Thus the topological charge calculated on a surface enclosing
such a soliton is equal to the two dimensional topological
charge—the winding of the phase 	 on any plain pierced by
the string. An identical argument applies for the antisoliton,
which resides at large positive value of x3. Thus indeed our
ansatz is appropriate for the string connecting a soliton and an
antisoliton residing far apart. For our ansatz the equation of
motion for the field	 is trivially satisfied. The equation for z
becomes

4z00 ¼ 4�2ðz� 1Þ; (36)

where z0 � dz
dr2

For the solution to be well defined in the middle of the
string and approach vacuum far away from it, z must have
the asymptotic behavior:

zð0Þ ¼ �1; zð1Þ ¼ 1: (37)

The solution is easy to find

zðr2Þ ¼ 1� 2 exp f��r2g: (38)

The solution has some intuitively expected properties: it
has a finite width, outside which the fields approach vac-
uum, while inside the string the field values are different
from the vacuum and thus it carries a finite energy density.
The string tension can be calculated exactly

� ¼ 8�
�

e2
: (39)

Nevertheless, the solution is rather peculiar, since it does
not approach the vacuum exponentially, but rather as a
Gaussian. the string therefore has a very sharply defined
width, outside of which the vacuum is reached very
quickly. In a theory with a finite mass gap and a finite
number of massive excitations such behavior is impossible.
This strange behavior can be traced back to our noncanon-
ical kinetic term. Indeed, for simple dimensional reasons,
the kinetic energy for a rotationally invariant configuration
is a second derivative with respect to r2 rather than r, which
results in a Gaussian rather than exponential decay of the
solution.

IV. THE ZN PRESERVING PERTURBATION

The perturbation considered in the last section was the
simplest potential that breaks the SOð3Þ as well as the Sdiff
(2) symmetries but leaves an Oð2Þ subgroup of SOð3Þ and
large subgroup Sdiff(2), Eq. (32), intact. Following the
parallel with the 2þ 1 dimensional discussion, we expect
the global symmetries to be broken down to ZN if our
effective theory has a chance of mimicking some proper-
ties of SUðNÞ gauge theories. In this section therefore we
consider an additional perturbation, which breaks the re-
maining Oð2Þ symmetry down to the ZN subgroup. We
modify the Lagrangian to

L ¼ 1

16e2
F2 � 2

e2
�2ðz� 1Þ2½1��ðc N þ c ?NÞ�

¼ 1

16e2
F2 � 2

e2
�2ðz� 1Þ2½1� 2�ð1� z2ÞN=2 cosN	�:

(40)

We will only consider regimes where the minimum of the
potential is at z ¼ 1. It is easy to see that this is the case as
long as

�<
1

2
: (41)

For field configurations which do not depend on the
longitudinal coordinate x3, the energy per unit length is
given by

E ¼
Z

d2x
1

2e2
ð�ij@iz@j	Þ2 þ 2

e2
�2ðz� 1Þ2

� ½1� 2�ð1� z2ÞN=2 cosN	�: (42)

A. Perturbative solution

Let us first consider the perturbation to be small,� � 1,
and find the first order corrections to the string solution of
the previous section. We take the following ansatz for the
perturbative solution:

zðr; �Þ ¼ zðrÞ; 	 ¼ �þ 	1ðr; �Þ ¼ �þ fðrÞ sinN�;

(43)

where zðrÞ is given by Eq. (38). This is not the most general
form of the perturbation, but which nevertheless yields a
solution to first order in �, as we now show.
To first order in � the equation for 	1 is

1

e2
8N2ðz0Þ2f sinN�¼ 1

e2
N��2ðz�1Þ2ð1� z2ÞN=2 sinN�;

(44)

solved by

fðr2Þ ¼ �

N
½2e��r2ð1� e��r2Þ�N=2: (45)

The second minimization equation reads
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1

e2
8N½2z00fþ z0f0� ¼ 1

e2
4��½2ðz� 1Þð1� z2ÞN=2

� Nzðz� 1Þ2ð1� z2ÞN=2�1�: (46)

It is straightforward to check that this equation is indeed
satisfied by the perturbative solution, Eq. (45), and zðrÞ
given by Eq. (38).

Calculating the longitudinal electric field corresponding
to this solution we find

F03 ¼ �4�e��r2½1þ�ð2e��r2ð1� e��r2ÞÞN=2 cosN��:
(47)

The electric field is concentrated within the radius �1=2 in
the transverse plane, with the ZN invariant perturbation
providing a slight angular modulation, as expected.

B. The general solution

Let us now consider the minimization equations beyond
perturbation theory and beyond the simple ansatz of the
previous subsection. Minimization of the energy functional
equation (42) gives the following equations:

1

e2
�ij@j	@iF ¼ @U

@z
;

1

e2
�ij@jz@iF ¼ �@U

@	
; (48)

where

F � 1

2
F03 ¼ �ij@iz@j	; (49)

and U is the potential energy in Eq. (42).
Multiplying the first equation by @kz, the second by @k	,

and subtracting, we find

1

2e2
@kðF2Þ ¼ @kU: (50)

For any finite energy configuration, the electric field van-
ishes at infinity. Since the potentialU appearing in Eq. (42)
also vanishes at infinity, the integration constant needed to
integrate Eq. (50) is trivial and we find

F2 ¼ 2e2U; F ¼
ffiffiffiffiffiffiffiffiffiffiffi
2e2U

p
: (51)

To solve the equation it is convenient to use the coordinates
( ¼ r2, �):

@z@�	� @�z@	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

2
e2U

s
: (52)

This equation obviously has many solutions. The infinite
degeneracy follows from a symmetry of the energy func-
tional Eq. (42). Consider a transformation

ðzðxÞ; 	ðxÞÞ ! ðzðx0Þ; 	ðx0ÞÞ; @ðx01; x02Þ
@ðx1; x2Þ ¼ 1: (53)

Such transformations form the group of area preserving
diffeomorphisms on a plain SDiffðR2Þ. Note that it is a

diffeomorphism transformation on the coordinate space
rather than on the field space, and thus is very different
from Sdiff(2), which we discussed in the previous section.
This transformation is clearly a symmetry of the energy
functional equation (42). Thus, starting from any string
solution one can generate an infinite number of degenerate
solutions with the help of SDiffðR2Þ transformations. Note
that since the longitudinal electric field is itself invariant
under Eq. (53), all these solutions have the same electric
field profile.
Wewill discuss here two such solutions. Let us look for a

solution with a prescribed and simple dependence of 	 on
the angle : 	 ¼ �. Equation (52) then becomes an equation
for z:

@z ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

2
e2U

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðz� 1Þ2½1� 2�ð1� z2ÞN=2 cosN��

q
: (54)

The dependence on � here is parametric, and so for every
value of � it is solved by

 ¼
Z zðÞ

�1
dz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðz� 1Þ2½1� 2�ð1� z2ÞN=2 cosN��

q :

(55)

The solution has the correct asymptotics, since as  ! 1
the function z has to approach unity for the RHS to diverge.
In fact it is easy to find the large distance asymptotics of the
solution. When z is close to unity, we can neglect the term
proportional to � in the denominator, and for the IR
asymptotics we have

 ¼
Z zðÞ

�1
dz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðz� 1Þ2p ; (56)

which is solved by

zð ! 1Þ ¼ 1� 2e��: (57)

This is the same as Eq. (38), showing that the IR asymp-
totics of the string solution is unaffected by the ZN

perturbation.
Let us now consider a solution where z only has radial

dependence. In this case, we have

@z@�	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðz� 1Þ2½1� 2�ð1� z2ÞN=2 cosN	�:

q
(58)

This can be formally solved for � at fixed r:
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� ¼
Z 	ðr;�Þ

0

z0d	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðz� 1Þ2½1� 2�ð1� z2ÞN=2 cosN	�

q :

(59)

The right-hand side can be expressed in terms of elliptic
integrals:

� ¼ 2

N

z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðz� 1Þ2ð1� 2�ð1� z2ÞN=2Þ

q
� F

�
N	

2
;

4�ð1� z2ÞN=2

2�ð1� z2ÞN=2 � 1

�
; (60)

where Fð�;mÞ is the incomplete elliptic integral of the first
kind:

Fð�;mÞ ¼
Z �

0
ð1�m sin �2Þ�1=2d�: (61)

The solution has to satisfy the boundary condition

	ð�þ 2�Þ ¼ 	ð�Þ þ 2�: (62)

Imposing this condition gives the equation for the radial
dependence of z. Using the relation Fðk�2 ; mÞ ¼ kKðmÞ,
where KðmÞ is the complete elliptic integral of the first
kind, we have

2� ¼ 4z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðz� 1Þ2ð1� 2�ð1� z2ÞN=2Þ

q
� K

�
4�ð1� z2ÞN=2

2�ð1� z2ÞN=2 � 1

�
: (63)

One can easily check, that in the infrared for z ! 1 the
equation reduces to

z0 ¼ �ð1� zÞ; (64)

and thus has the same asymptotics as in Eq. (38).

V. DISCUSSION

In this paper we tried to follow the template of 2þ 1
dimensions and, based on a couple of simple requirements,
‘‘guess’’ a scalar theory which could be a candidate of the
effective theory of 3þ 1 dimensional gauge theories. The
theory we ended up with is not entirely satisfactory, but it
does have several interesting and intriguing features.

In the Abelian limit it has a large global symmetry
group, which is spontaneously broken by lowest energy
classical solutions. This symmetry is not reflected in the
observables which we tentatively identified with the ob-
servables of QED. This is similar to 2þ 1 dimensions,
where the electromagnetic field was invariant under the
magnetic Uð1Þ symmetry which acted nontrivially on the
vortex field. In our 3þ 1 dimensional model the electro-
magnetic field is also invariant under the action of the

(large) global symmetry group Sdiff(2) which is nontri-
vially represented on the effective scalar fields.
Just like in 2þ 1 dimensions, this global symmetry is

broken by the lowest energy configurations. However, the
situation here is more complicated. Whereas in 2þ 1
dimensions the symmetry breaking pattern is the standard
one, in our 3þ 1 dimensional model the space of vacuum
configurations is very large. It includes field configurations
that have nontrivial spatial dependence, and thus breaks
translational invariance in addition to the global Sdiff(2)
symmetry. In fact, it could well be that classical analysis
fails in this model quite badly. Many of the classical vacua
differ from each other only in the finite region of space.
Generically in such a case one expects that upon quantiza-
tion these configurations become connected by tunneling
transitions of finite probability. Thus it is natural to expect
that the quantum portrait of moduli space is significantly
different from the classical one. This is a very interesting
question, but it is far beyond the scope of the present work.
Upon introduction of the symmetry breaking perturba-

tion, the model provides a simple classical description of
confinement similarly to the 2þ 1 dimensional case.
However, here also there is some peculiarity. In particular,
string solutions are infinitely degenerate, as static energy
for configurations which depend only on two coordinates
has an additional diffeomorphism invariance. This is a
different invariance than in the Abelian limit, as it involves
diffeomorphism transformations in coordinate space rather
than in field space. Nevertheless it results in degeneracy of
the solutions, although all such solutions yield the same
electric field. In the sense of electric field distributions, the
solution seems to be unique. This again begs the question
about the behavior of such a string in a quantum theory,
since it carries a large entropy associated with large
degeneracy.
We note that the string degeneracy is lifted if one adds

the standard kinetic term for the Oð3Þ sigma model fields,
@��a@��

a. Addition of such a term also makes our model

identical with the one proposed by Faddeev and Niemi in
[4] as an effective theory of QCD. Interestingly, the picture
we suggest is quite distinct from and complementary to
that of [4]. Whereas the authors of [4] concentrated on
closed string solutions supposedly representing glueballs,
our picture is that of open strings, with the endpoints
corresponding to ‘‘constituent gluons’’ like in 2þ 1 di-
mensions [2,8]. The stability of closed strings in the
Faddeev-Niemi model is achieved due to nontrivial twist-
ing of the phase of the scalar field along the string. Open
strings on the other hand, do not require any twist and in
principle can break into shorter strings similarly to QCD.
The approximate stability of relatively long strings must be
due to dynamical properties of the theory which should
make the endpoints sufficiently heavy [9].
Finally, we note that with the standard kinetic term our

model becomes very similar to the CP1 model, which has
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been recently discussed in the literature in relation to
effective models of confinement [10].
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APPENDIX

In this appendix we show that the model considered in
this paper does not admit two photon solutions with arbi-
trary polarizations. We are looking for two photon solu-
tions for which the electromagnetic tensor is of the form:

~F�� ¼ @½�z@��	

¼ Aðk��1� � k��
1
�Þ cos kx

þ Bðp��
2
� � p��

2
�Þ cospx: (A1)

For simplicity we choose the case when the first photon has
momentum k in the x direction and polarization a in the y
direction, while the second photon has momentum p in the
y direction and polarization b in the z direction. Note that
this case is not covered by our construction of two photon
states in the body of the paper.

Now, for components of ~F��, we have

@½0z@1�	 ¼ 0 ¼ @½1z@3�	 ¼ 0; (A2)

@½0z@2�	 ¼ ka cos kx ¼ �@½1z@2�	; (A3)

@½0z@3�	 ¼ pb cospx ¼ �@½2z@3�	: (A4)

Introducing new coordinates ðx; y; z; tÞ ! ð �x ¼ t� x;
�y ¼ t� y; �t ¼ t; �z ¼ zÞ, and using unbarred symbols for
notational simplicity, we have

@½tz@y�	 ¼ @½tz@z�	 ¼ @½xz@z�	 ¼ 0; (A5)

@½tz@x�	 ¼ @½xz@y�	 ¼ �ka cos kx; (A6)

@½yz@z�	 ¼ pb cospy: (A7)

These equations have no solutions. Assuming @tz � 0,
the first two equations in Eq. (A5) imply @yz@z	�
@zz@y	 ¼ 0, which contradicts Eq. (A7)the last equation.

Alternatively, assuming @tz ¼ 0 implies vanishing of ei-
ther @t	, or two other partial derivatives of z. It is then easy
to see that both these options are in conflict with the rest of
the equations. The result is that a two photon state with this
polarization pattern cannot be constructed in this model.
The model also contains solutions which do not satisfy

the homogeneous Maxwell equation. As an example of
such a solution consider the configuration

	 ¼ sinp � x; z ¼ sin k � x: (A8)

It is easy to see that this configuration satisfies equations of
motion, provided

ðp � kÞ2 � p2k2 ¼ 0: (A9)

A simple example is a lightlike momentum k� and a
spacelike momentum p� satisfying p � k ¼ 0. This yields
the dual field strength

~F�� / ðk�p� � k�p�Þ½cos ðpþ kÞ � xþ cos ðp� kÞ � x�;
(A10)

which is not conserved

@� ~F�� / p2k�½sin ðpþ kÞ � xþ sin ðp� kÞ � x�: (A11)

In fact, both momenta kþ p and k� p are spacelike, and
thus ~F�� looks tachyonic. However, as mentioned in the

Discussion, since the model classically has many degener-
ate vacua with broken translational invariance, interpreta-
tion of classical solutions as excitations is not so clear.

[1] G. ’t Hooft, Nucl. Phys. B138, 1 (1978).
[2] A. Kovner, in At the Frontier of Particle Physics, edited by

M. Shifman (World Scientific, Singapore, 2001), Vol. 3,
pp. 1777–1825; I. I. Kogan and A. Kovner, in At the
Frontier of Particle Physics, edited by M. Shifman
(World Scientific, Singapore, 2002), Vol. 4, pp. 2335–
2407.

[3] C. K. Altes and A. Kovner, Phys. Rev. D 62, 096008
(2000).

[4] L. D. Faddeev and A. J. Niemi, Nature (London) 387, 58
(1997); Phys. Rev. Lett. 82, 1624 (1999); Phys. Lett. B
449, 214 (1999); 464, 90 (1999); Nucl. Phys. B776, 38
(2007).

[5] A. Kovner and B. Rosenstein, Phys. Rev. D 49, 5571
(1994).

[6] K. Takasaki, in Proceedings: Topological, and
Geometrical Methods in Field Theory, Turku 1991, edited
by J. Mickelsson and O. Pekonen (World Scientific, River
Edge, NJ, 1992), pp. 383–397.

[7] We thank Michael Lublinsky for pointing this out to us.
[8] A. Kovner and B. Rosenstein, J. High Energy Phys. 09

(1998) 003.
[9] For simple discussion of string breaking see, for example,

J. Greensite, Lect. Notes Phys. 821, 1 (2011).
[10] A. Gorsky, M. Shifman, and A. Yung, Phys. Rev. D 88,

045026 (2013).

CURIOUS CASE OF AN EFFECTIVE THEORY PHYSICAL REVIEW D 88, 125004 (2013)

125004-9

http://dx.doi.org/10.1016/0550-3213(78)90153-0
http://dx.doi.org/10.1103/PhysRevD.62.096008
http://dx.doi.org/10.1103/PhysRevD.62.096008
http://dx.doi.org/10.1038/387058a0
http://dx.doi.org/10.1038/387058a0
http://dx.doi.org/10.1103/PhysRevLett.82.1624
http://dx.doi.org/10.1016/S0370-2693(99)00100-8
http://dx.doi.org/10.1016/S0370-2693(99)00100-8
http://dx.doi.org/10.1016/S0370-2693(99)01035-7
http://dx.doi.org/10.1016/j.nuclphysb.2006.12.011
http://dx.doi.org/10.1016/j.nuclphysb.2006.12.011
http://dx.doi.org/10.1103/PhysRevD.49.5571
http://dx.doi.org/10.1103/PhysRevD.49.5571
http://dx.doi.org/10.1088/1126-6708/1998/09/003
http://dx.doi.org/10.1088/1126-6708/1998/09/003
http://dx.doi.org/10.1007/978-3-642-14382-3
http://dx.doi.org/10.1103/PhysRevD.88.045026
http://dx.doi.org/10.1103/PhysRevD.88.045026

