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We investigate the three-point correlation functions of Yang-Mills theory in the Landau gauge, with a

particular emphasis on the infrared regime. The effect of the Gribov copies is accounted for by adding a

mass term for the gluons in the Faddeev-Popov action in the Landau gauge. We perform a one-loop

calculation for the ghost-antighost-gluon and three-gluon correlation functions. These analytic results are

compared with the available lattice data and give a very satisfying agreement.
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I. INTRODUCTION

The physical observables of gauge theories are associ-
ated with gauge-invariant quantities, which are therefore
of utmost interest. However, in most of the analytical or
semianalytical approaches, the determination of the expec-
tation values of these gauge-invariant quantities rely on
understanding also the gauge-dependent sector of the the-
ory. This is one of the reasons why so much effort has been
devoted to understanding the properties of correlation
functions in Yang-Mills theories in the past.

Several techniques are used to study these quantities.
From the analytic side, standard perturbation theory
(that makes use of the Faddeev-Popov construction) is the
most efficient tool to access the ultraviolet regime of the
theory, but fails at momenta of the order of 1 GeV. Indeed,
the effective coupling (which is the expansion parameter of
perturbation theory) is large in this regime. The standard
perturbation theory even predicts that the coupling constant
diverges at the so-called infrared (IR) Landau pole. For
the low-energy regime, the preferred analytical techniques
are nonperturbative renormalization-group (RG) and
Schwinger-Dyson equation methods [1–15]. These rely on
a set of exact equations that are truncated, by making some
Ansatz on a sector of the theory.

Another technique that has been used is lattice simula-
tions that have played a central role in our understanding of
the correlation functions, in particular in the Landau gauge,
which is rather easy to implement in simulations. The
extensive numerical work that has been performed in the
past decades [16–20], in conjunction with various semi-
analytical techniques, including various Schwinger-Dyson
studies, allowed one to settle the controversy between two
possible solutions of Schwinger-Dyson equations. The so-
called scaling solution corresponds to a gluon propagator
that tends to zero at low momentum and a ghost dressing
function (the propagator multiplied by the momentum
squared) that diverges in this limit [1–5,13]. The so-called
massive or decoupling solution gives a finite gluon
propagator and a regular ghost dressing function at low

momentum [5,8–12,14,15]. Lattice simulations clearly
favored the second option in dimensions higher than 2
and the first one in the two-dimensional case [17,21].
In the past years, two of us have developed a new

approach to access the infrared behavior of the correlation
functions. It relies on the fact that, as is well known since
the work of Gribov [22], the Faddeev-Popov construction,
which is at the heart of most of the analytical approaches, is
not fully justified [23]. This is due to the fact that this
procedure does not completely fix the gauge. This
so-called Gribov ambiguity is, however, known to be un-
important in the high momentum regime, and affects only
the infrared properties. The idea pushed forward in [27,28]
consists of modeling the influence of the Gribov copies by
adding a mass term for the gluons to the usual Faddeev-
Popov action (this leads to the Curci-Ferrari model in the
Landau gauge [29]). This idea was made more precise in
[30] where a new Landau gauge-fixing was proposed,
which takes into account the Gribov ambiguity from first
principles and which leads, as far as perturbation theory is
concerned, to the same results as those obtained with the
massive extension considered in [27,28]. A one-loop cal-
culation for the gluon propagator and the ghost dressing
function was performed that compared very well with
lattice simulations in d ¼ 4, with a maximum error of
�10%, both for SUð2Þ and SUð3Þ.
It may look surprising that the infrared (often called

nonperturbative) regime of the theory can be reproduced
to that level of precision with a modest one-loop calcula-
tion. Our interpretation of this fact is that the mass regu-
larizes the theory in the infrared. For example, we found
renormalization schemes where the Landau pole disap-
pears. Moreover, we made in [28] an estimate showing
that, in the infrared regime, the loop corrections to the
propagators are suppressed by powers of the external mo-
menta (in particular, the two-loop corrections are roughly
an order of magnitude smaller than the one-loop contribu-
tions), which indicates that the perturbation theory
in presence of a mass term may be under control.
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These encouraging results naturally lead us to consider
other correlation functions. In consequence, in this article,
we generalize our previous work to three-point correlation
functions. These functions are extremely interesting for
many reasons:

(i) They have been calculated in lattice simulations
[31–37] and this offers concrete data to compare
with.

(ii) Once the parameters of the model have been fixed
for the two-point functions, the calculation of
three-point functions becomes a pure prediction
without any parameter to adjust. This then becomes
a very challenging test of the scheme proposed in
[27,28].

(iii) These functions are much richer than two-point
functions. In particular, instead of depending on
a single momentum, they depend on three inde-
pendent momenta squared. Moreover, they
include various tensorial structures that could
make their study even richer (even if these
structures have not yet been studied by lattice
simulations).

In the past few years, several works aimed at describ-
ing these three-point correlation functions in the in-
frared regime, both with lattice simulations [31–37]
and with semianalytical methods [15,38–40]. However,
the complexity of the standard semianalytical methods
(such as Schwinger-Dyson equations or nonperturbative
renormalization-group equations) have delayed their study.
In particular, very few results on the ghost-antighost-
gluon vertex are available [15,38–40] and essentially
only models for the three-gluon vertex have been proposed
(see, for example, [15]). On the contrary, the scheme
developed in [27,28] (and the one we follow here) relies
on a standard and simple one-loop calculation. Our main
aim in this article is to show that we obtain three-point
vertex functions which reproduce very well the lattice data
for a relatively small computational effort. Note that
Gracey [41] studied the power corrections to the perturba-
tive ultraviolet behavior both in the model considered here
and in the refined Gribov-Zwanziger model. These correc-
tions are different so that lattice simulations with good
precision would allow one to discriminate between the
two methods.

The outline of the article is the following. In Sec. II, we
describe the model in more detail and present our one-loop
calculation. We then describe in Sec. III the renormaliza-
tion schemes that we implemented and finally describe our
results and compare them to the lattice data available for
the three-point correlation functions in Sec. IV. We give
our conclusions in Sec. V.

II. ONE-LOOP CALCULATION

Our starting point is the Curci-Ferrari action in the
Landau gauge, written in Euclidean space, that reads

S ¼
Z

ddx

�
1

4
Fa
��F

a
�� þ iha@�A

a
� þ @� �c

aðD�cÞa

þ 1

2
m2

0ðAa
�Þ2

�
; (1)

where the covariant derivative applied to a field X in
the adjoint representation reads ðD�XÞa ¼ @�X

a þ
g0f

abcAb
�X

c, g0 is the bare coupling constant, fabc are

the structure constants of the gauge group, and Fa
�� ¼

@�A
a
� � @�A

a
� þ g0f

abcAb
�A

c
� is the field strength. Apart

from the bare mass m0 of the gluons, the action is that of
the Yang-Mills theory with the Faddeev-Popov action in
the Landau gauge. All our analytical calculations will be
done for a generic SUðNÞ gauge group.
The Feynman rules are the standard ones, except for the

free propagator of the gluon, which reads

hAa
�A

b
�i0ðpÞ ¼ �abP?

��ðpÞ 1

p2 þm2
0

; (2)

where we introduced the transverse projector (and, for later
use, the longitudinal one)

P?
��ðpÞ ¼ ��� �

p�p�

p2
(3)

Pk
��ðpÞ ¼ p�p�

p2
: (4)

Instead of computing the correlation functions, we com-
pute as usual the vertex functions which are obtained by
considering only the one-particle irreducible (1PI) dia-
grams. We parametrize the two-point vertex functions in
terms of three scalar functions:

�ð2Þ
Aa
�A

b
�
ðpÞ ¼ �abð�?ðpÞP?

�� þ �kðpÞPk
��Þ (5)

�ð2Þ
ca �cb

ðpÞ ¼ �ab p2

JðpÞ : (6)

The full propagators for the gluon and ghost then read

hAa
�A

b
�iðpÞ ¼ �ab

P?
��ðpÞ
�?ðpÞ (7)

hca �cbiðpÞ ¼ �ab JðpÞ
p2

: (8)

The function J is the so-called dressing function. The one-
loop expressions for �? and J were computed in [27,28].
The longitudinal part of the gluon two-point function is not
directly accessible in lattice simulations and was therefore
not considered in the past. It proved interesting to compute
it, however, because it appears in someWard identities that
we used to check the consistency of our results. The one-
loop expressions for these three functions are given in the
Supplemental Material [42].
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A. Ghost-antighost-gluon vertex

The one-loop calculation for the ghost-antighost-gluon
vertex function requires computing the two Feynman dia-
grams shown in Fig. 1. The tensorial structure is rather
simple. At one loop, the vertex is proportional to fabc,
where a, b, and c are, respectively, the color indices of the
ghost, antighost, and gluon external legs. We will consider
here and below only this color structure. This is an exact
property for SUð2Þ, and for general SUðNÞ, it remains true
at two loops and also in the large N limit. However, this is
only an approximation for SUð3Þ (currently used in the
literature [43]). The Lorentz index � of the gluon external
leg can be carried by one of the external momenta. Because
of the momentum conservation, there are actually only two
scalar components. Following Ball and Chiu [43], it is,
however, convenient to express the vertex in terms of a
rank-two tensor ��� such that

�ð3Þ
ca �cbAc

�
ðp; k; rÞ ¼ �ig0f

abck����ðp; k; rÞ (9)

with

���ðp; k; rÞ ¼ ���aðr2; k2; p2Þ � r�p�bðr2; k2; p2Þ
þ k�r�cðr2; k2; p2Þ þ r�k�dðr2; k2; p2Þ
þ k�k�eðr2; k2; p2Þ: (10)

Note that lattice simulations access the vertex function
only through the correlation function, i.e., the vertex func-
tion with external legs contracted with the full propagators.
Since the gluon propagator is transverse, the function c is
not accessible to lattice simulations. In fact, the lattice
simulations on the ghost-antighost-gluon correlation func-
tion that have actually been performed [37] are presented
in terms of a scalar function which is obtained by contract-
ing the external gluon leg with the transverse propagator
and with the bare ghost-antighost-gluon vertex, normalized
by the same expression at tree level:

Gc �cAðp; k; rÞ ¼ k�P
?
��ðrÞk����ðp; k; rÞ
k�P

?
��ðrÞk�

: (11)

A simple calculation shows that this correlation function
depends on a unique linear combination of the scalar
functions defined in (10):

aþ k � rðbþ dÞ þ k2e; (12)

with the functions a, b, d, and e evaluated at ðr2; k2; p2Þ.
Although this is the only available numerical data, it is
interesting to compute the five scalar functions a, b, c, d,
and e because this gives an internal check of the validity
of the calculation; see below. Moreover, future lattice
studies may lead to a determination of the various tensorial
components independently.
In our calculations, we decomposed each diagram on the

tensorial structure of Eq. (10), following the ideas of [44].
We can then deduce the contribution of a diagram to each
of the scalar functions a to e in terms of integrals. To do
so, it is convenient to rewrite the product of a massive
propagator and of a massless propagator as

1

p2ðp2 þm2Þ ¼
1

m2

�
1

p2
� 1

p2 þm2

�
: (13)

We can thus express the scalar functions in terms of a few
simple integrals. By using Feynman parameters, we can
perform the momentum integral and obtain expressions
with at most one integral over a Feynman parameter that
cannot be performed analytically for generic momentum
configurations. The expressions are lengthy and not particu-
larly instructive.We give them in the Supplemental Material
[42]. The calculation simplifies in the case of one vanishing
external momentum. In particular, when the ghost or anti-
ghost momentum vanishes, the vertex functions have no
loop corrections [45]. For vanishing gluon momentum, the
vertex is nontrivial and we find, in d ¼ 4� �,

���ðp;�p;0Þ

¼���

�
1þ g20N

128�2
½9=2þ sþ5s�1

�ð7s�1þ5s�2Þ log ðsþ1Þ�ðs�1Þs log ðs�1þ1Þ�
�
;

(14)

where we introduced s ¼ p2=m2. Note that the previous
(bare) vertex is finite due to the nonrenormalization theorem
to be discussed below. The equivalent expression in d ¼ 3
reads

���ðp;�p; 0Þ

¼ ���

�
1þ g20N

384�ms
½2ð6s2 � 5s� 21Þ

� 3�
ffiffiffi
s

p ð2s2 � sþ 288Þ
þ 6s�1=2ð2s3 � s2 � 68sþ 7Þ arctan ð ffiffiffi

s
p Þ�

�
: (15)

B. Three-gluon vertex

The one-loop calculation for the three-gluon correlation
function requires computing the three Feynman diagrams

FIG. 1. One-loop Feynman diagrams for the ghost-antighost-
gluon vertex.
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shown in Fig. 2. Again, the color structure is rather simple
at one loop, being proportional to fabc. As for the
ghost-antighost-gluon vertex, we will ignore the possibil-
ity of more involved color structures [that are absent at
two-loop order, for SUð2Þ gauge group and also in the
large N limit of SUðNÞ gauge groups]. Accordingly, we
define

�ð3Þ
Aa
�A

b
�A

c
�
ðp; k; rÞ ¼ �ig0f

abc����ðp; k; rÞ:
The Lorentz structure is richer than in the previous case
since there are now three Lorentz indices. We have used
the decomposition of Ball and Chiu [43] to extract six
scalar functions:

����ðp; k; rÞ ¼ Aðp2; k2; r2Þ���ðp� kÞ� þ Bðp2; k2; r2Þ���ðpþ kÞ� � Cðp2; k2; r2Þð���p:k� p�k�Þðp� kÞ�
þ 1

3
Sðp2; k2; r2Þðp�k�r� þ p�k�r�Þ þ Fðp2; k2; r2Þð���p:k� p�k�Þðp�k:r� k�p:rÞ

þHðp2; k2; r2Þ
�
����ðp�k:r� k�p:rÞ þ 1

3
ðp�k�r� � p�k�r�Þ

�
þ cyclic permutations: (16)

The scalar functions have the following symmetry properties: A, C, and F are symmetric under permutation of the first two
arguments; B is antisymmetric under permutation of the first two arguments; H is completely symmetric and S is
completely antisymmetric. As for the ghost-antighost-gluon vertex, only a subset of these functions are measurable in
lattice simulations; when the external legs are contracted with the gluon propagators (which is transverse), the functions
B and S disappear. In lattice simulations [37], the quantity which has been considered is a scalar function obtained
by contracting the external legs of the vertex with transverse propagators and the tree-level momentum structure of the
three-gluon vertex, normalized to the same expression at the bare level:

GAAAðp; k; rÞ ¼ ½ðr� kÞ���	 þ cyclic permutations�P?
��ðpÞP?

	�ðkÞP?
��ðrÞ����ðp; k; rÞ

½ðr� kÞ���	 þ cyclic permutations�P?
��ðpÞP?

	�ðkÞP?
��ðrÞ½ðr� kÞ���� þ cyclic permutations� : (17)

The scalar functions A, B, C, S, F, andH are computed in the same way as described above. Our expressions for generic
momenta involve at most one integral over a Feynman parameter and cannot be expressed in terms of elementary
functions. They are given in the Supplemental Material [42]. When one momentum vanishes, the integral over the
Feynman parameter can be performed analytically, which simplifies the results considerably. For d ¼ 4� �,

����ðp;0;�pÞ¼
(
1� Ng20

768�2

"
�136

�
ð1��log �mÞþ1

3
ð36s�2�594s�1þ319þ6sÞþð3s2�2Þlogs

�4s�3ð1þsÞ3ðs2�9sþ3Þlogð1þsÞþð4þsÞ3=2
s3=2

ð24�30sþs2Þlog
 ffiffiffiffiffiffiffiffiffiffi

4þs
p þ ffiffiffi

s
pffiffiffiffiffiffiffiffiffiffi

4þs
p � ffiffiffi

s
p
!#)

ðp����þp����Þ

�
(
2þ Ng20

384�2

"
�136

�
ð1��log �mÞþ1

3
ð18s�2�321s�1�97þ24sÞþðs�1Þðs2�2s�2Þlogs

�2s�3ð1þsÞ2ðs�1Þðs3�7s2þ7s�3Þlogð1þsÞþ
ffiffiffiffiffiffiffiffiffiffi
4þs

p

s3=2
ð48þ16sþ22s2�11s3þs4Þ

� log

 ffiffiffiffiffiffiffiffiffiffi
4þs

p þ ffiffiffi
s

pffiffiffiffiffiffiffiffiffiffi
4þs

p � ffiffiffi
s

p
!#)

p����� Ng20
384�2m2

"
ð�36s�3þ278s�2�74s�1�10Þ�s2 logs

þs�3ð1þsÞ2ð36s�1�44�4s�12s2þ2s3Þlogð1þsÞþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð4þsÞp

s�3ð�144s�1þ80þ4s

þ10s2�s3Þlog
 ffiffiffiffiffiffiffiffiffiffi

4þs
p þ ffiffiffi

s
pffiffiffiffiffiffiffiffiffiffi

4þs
p � ffiffiffi

s
p
!#

p�p�p�; (18)

FIG. 2. One-loop Feynman diagrams for the three-gluon vertex.
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where �m2 ¼ m2e�=ð4�Þ with � the Euler constant. The divergent term / 1=� disappears once the renormalized vertex
functions are expressed in terms of the renormalized parameters; see Sec. III.

In d ¼ 3, the same quantity reads

����ðp;0;�pÞ ¼
�
1� Ng20

128�m
ffiffiffi
s

p
�
�

2
ð2� 3s2Þ þ 2

3s3=2
ð3s3 þ 23s2 þ 56s� 15Þ

� s�1ð4þ sÞð16� 18sþ s2Þarctan ð ffiffiffi
s

p
=2Þ þ 2s�2ðs� 5Þðsþ 1Þ2 arctan ð ffiffiffi

s
p Þ

��
ðp���� þp����Þ

�
�
2þ Ng20

128�m
ffiffiffi
s

p
�
�ð�s3 þ 3s2 � 1Þ þ 2

3s3=2
ð15s3 � 51s2 þ 53s� 15Þ

þ 2ð�s3 þ 6s2 þ 2s� 16� 32s�1Þarctan ð ffiffiffi
s

p
=2Þ þ 2ð2s3 � 9s2 � 5Þð1� s�2Þarctan ð ffiffiffi

s
p Þ

��
p����

� Ng20
128�m3

ffiffiffi
s

p
�
�ðs�1 þ s2Þ þ 2

3s5=2
ð�21s3 þ 5s2 � 139sþ 75Þ þ 2s�2ðs4 � 5s3 � 16s2 � 40sþ 96Þ

� arctan ð ffiffiffi
s

p
=2Þ � 2s�3ðsþ 1Þð2s4 � 7s3 � 9s2 � 15sþ 25Þarctan ð ffiffiffi

s
p Þ

�
p�p�p�: (19)

C. Checks

We present in this section the different checks that can
be performed on our one-loop expressions. First, as
explained in the Appendix, the vertex functions fulfill the
following Slavnov-Taylor identity:

½�?ðpÞP?
��ðpÞ þ �kðpÞPk

��ðpÞ����ðr; p; kÞ
� ½�?ðkÞP?

��ðkÞ þ �kðkÞPk
��ðkÞ����ðr; k; pÞ

¼ r�J
�1ðrÞ����ðp; k; rÞ: (20)

We have verified analytically that our one-loop expressions
satisfy this relation. This gives a nontrivial check for most
of the scalar functions, except however F and H which are
associated with transverse momentum structures and that
do not appear in Eq. (20).

Second, we have compared our expressions in the
limit of vanishing mass with those of [46]. Because we
used the relation (13), there appear in our expressions
terms in 1=m that would naively diverge in the limit of
small mass. We can check explicitly that the limit is
actually regular but the analytic comparison is cumber-
some. We have made instead a numerical comparison of
our expressions and those of [46] for 50 momentum
configurations, taking the mass of the gluon much
smaller than the momenta. We have mainly considered
the scalar functions appearing in the ghost-antighost-
gluon vertex (10) and the functions F and H that, as
discussed above, are not constrained by Eq. (20). In all
cases, our expressions in the massless limit agree with
[46] at the numerical precision level.

Finally we have considered the following equality,
which is derived in the Appendix:

~��ðp; k; rÞ þ ~��ðk; p; rÞ
� r�

r2

�
p�

p2
~��ðk; r; pÞ þ k�

k2
~��ðp; r; kÞ

�
¼ 0; (21)

where

~��ðp; k; rÞ ¼ k����ðp; k; rÞr2J�1ðrÞ: (22)

To our knowledge this relation has not been derived before.
We have checked numerically for 50 momentum configu-
rations that the previous identity is indeed satisfied, with no
constraint on the mass.

D. Infrared behavior

It is instructive to discuss the behavior of the different
vertex functions when all the external momenta are much
smaller than the mass scale. A straightforward analysis
shows that, in this limit, the leading contribution comes
from the diagram with as many ghost propagators as
possible. Multiplying all momenta by a common coeffi-
cient 
, we obtain the following behaviors, valid in arbi-
trary dimension:

���ðf
pigÞ ���� �
d�2; ����ðf
pigÞ �
d�4: (23)

As a consequence of these behaviors, GAAA diverges as
log
 in d ¼ 4 and diverges as 1=
 in d ¼ 3 when 
 ! 0.

III. RENORMALIZATION AND
RENORMALIZATION GROUP

In this section, we describe the renormalization schemes
that we implemented and explain how the renormalization-
group ideas are implemented. As we explain below, some
care must be taken when comparing the (bare) lattice data
with the renormalized analytical results.
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A. Renormalization and schemes

As usual, the divergences appearing in the one-loop
expressions can be absorbed into a redefinition of the
coupling constant, mass and fields. In d ¼ 3 no ultraviolet
divergences are present but a (finite) renormalization is
done anyway in order to be able to exploit renormalization-
group methods and improve perturbation theory. We define
the renormalized quantities as

A
a�
0 ¼ ffiffiffiffiffiffi

ZA

p
Aa�; ca0 ¼

ffiffiffiffiffiffi
Zc

p
ca; �ca0 ¼ ffiffiffiffiffiffi

Zc

p
�ca;

g0 ¼ Zgg m2
0 ¼ Zm2m2: (24)

From now on, except when explicitly stated, all quantities
are the renormalized ones. The relations between bare
(with subindices ‘‘0’’) and renormalized vertices are the
following:

�ð2Þ
Aa
�A

b
�
ðpÞ ¼ ZA�

ð2Þ
Aa
�A

b
�;0
ðpÞ

�ð2Þ
ca �cb

ðpÞ ¼ Zc�
ð2Þ
ca �cb;0

ðpÞ
�ð3Þ
ca �cbAc

�
ðp; rÞ ¼ Zc

ffiffiffiffiffiffi
ZA

p
�ð3Þ
ca �cbAc

�;0
ðp; rÞ

�ð3Þ
Aa
�A

b
�A

c
�
ðp; rÞ ¼ Z3=2

A �ð3Þ
Aa
�A

b
�A

c
�;0
ðp; rÞ:

(25)

We have used two renormalization schemes to fix
the renormalization factors, that were already presented
in [28]. The vanishing-momentum (VM) scheme is char-
acterized by

�?ðp ¼ �Þ ¼ m2 þ�2; Jðp ¼ �Þ ¼ 1

�?ðp ¼ 0Þ ¼ m2: (26)

The infrared-safe (IS) scheme relies on a nonrenormaliza-
tion theorem for the mass [47–49] (this nonrenormalization
theorem was conjectured in [50]), which is imposed here
for the finite part of the renormalization parameters. It is
defined by

�?ðp ¼ �Þ ¼ m2 þ�2; Jðp ¼ �Þ ¼ 1;

Zm2ZAZc ¼ 1:
(27)

In both cases, we use the Taylor scheme to fix the renor-
malization factor of the coupling constant. This leads to

Zg

ffiffiffiffiffiffi
ZA

p
Zc ¼ 1: (28)

The explicit expressions for the different renormalization
factors are given in [28].

It is important to relate the objects observed on lattice
simulations Gc �cA

0 and GAAA
0 given by Eqs. (11) and (17) to

the renormalized vertices. The quantities that are used
on the lattice are bare vertices without renormalization
factors. When expressed in terms of the renormalized
vertices as in Eq. (25), we obtain

Gc �cA
0 ðp; k; rÞ ¼ Gc �cAðp; k; rÞ

GAAA
0 ðp; k; rÞ ¼ Zc

ZA

GAAAðp; k; rÞ;
(29)

where the renormalized expressions correspond to those
written in Eqs. (11) and (17) but with the corresponding
renormalized vertices instead of the bare ones. In order to
arrive at this result, we exploited Taylor’s nonrenormaliza-
tion theorem (28). Of course, the lattice results are regu-
larized and accordingly the factor Zc=ZA is finite, but it is
necessary to include it when comparing our renormalized
results to those coming from lattice simulations.

B. Renormalization group

Once the correlation functions for the renormalized field
are expressed in terms of the renormalized coupling
constant and renormalized mass, we get finite expressions
both in d ¼ 3 and in d ¼ 4. The direct comparison of these
expressions with the lattice results was not completely
satisfactory at energies of a few GeV. This is to be
attributed to large loop corrections [in d ¼ 4 large loga-
rithms / log ðp=�Þ] and we therefore had to use a
renormalization-group improvement of our one-loop ex-
pressions. To do so, we introduce the 	 function and
anomalous dimensions of the fields as

	gðg;m2Þ ¼ �
dg

d�

��������g0;m
2
0

; (30)

TABLE I. Fitting parameters retained for computing correla-
tion functions in d ¼ 4 for different schemes.

Scheme � g0 m0 (GeV)

IS 0.0 5.2 0.44

IS 1.0 5.2 0.43

IS 2.0 5.8 0.48

IS 3.0 6.3 0.53

VM 1.0 7.5 0.77

VM 2.0 9.0 0.78

VM 3.0 9.1 0.75

TABLE II. Fitting parameters retained for computing correla-
tion functions in d ¼ 3 for different schemes.

Scheme � g0 (GeV1=2) m0 (GeV)

IS 0.0 2.4 0.55

IS 1.0 2.5 0.55

IS 2.0 2.5 0.55

IS 3.0 3.0 0.65

VM 1.0 4.0 1.00

VM 2.0 4.5 0.95

VM 3.0 6.1 1.11

PELÁEZ, TISSIER, AND WSCHEBOR PHYSICAL REVIEW D 88, 125003 (2013)

125003-6



	m2ðg;m2Þ ¼ �
dm2

d�

��������g0;m
2
0

; (31)

�Aðg;m2Þ ¼ �
d logZA

d�

��������g0;m
2
0

; (32)

�cðg;m2Þ ¼ �
d logZc

d�

��������g0;m
2
0

: (33)

We can then use the RG equation for the vertex function
with nA gluon legs and nc ghost legs,�
�@� � 1

2
ðnA�A þ nc�cÞ þ 	g@g þ 	m2@m2

�
�ðnA;ncÞ ¼ 0;

(34)

to relate these functions at different scales:

�ðnA;ncÞðfpig; �; gð�Þ; m2ð�ÞÞ
¼ zAð�ÞnA=2zcð�Þnc=2�ðnA;ncÞðfpig; �0; gð�0Þ; m2ð�0ÞÞ;

(35)

where gð�Þ and m2ð�Þ are obtained by integration of the
beta functions with initial conditions given at some scale
�0 and

log zAð�Þ ¼
Z �

�0

d�0

�0 �Aðgð�0Þ; m2ð�0ÞÞ;

log zcð�Þ ¼
Z �

�0

d�0

�0 �cðgð�0Þ; m2ð�0ÞÞ:
(36)

What remains is to choose the RG scale � at which
Eq. (35) is evaluated. For a correlation function with
typical momentum p, in the UV regime p � m, it is
important to take � ’ p. However, in the IR regime, the

FIG. 3 (color online). Contour levels for the quantities �AA and �c �c for the IS scheme (left) and VM scheme (right), both for d ¼ 4
(above) and d ¼ 3 (below). The large diagonal region corresponds to �c �c and the small elliptic one to �AA. From dark to light: 4%, 7%,
and 10%.
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theory is effectively massive and no large logarithms are
present. It is therefore not necessary to integrate the flow
down to RG scales smaller than m. We therefore used a
running scale [51]:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ �m2ð�0Þ

q
; (37)

where � is a parameter that, in principle, can vary between
zero and values of order 1. In practice we used various
values of � between 0 and 3. We discuss for the two
schemes and for d ¼ 4 and d ¼ 3 the dependence on �
in the following section.

IV. RESULTS

In this section, we present the results for the two- and
three-point functions both in d ¼ 4 and in d ¼ 3. As
explained in [27,28], the perturbative scheme considered
here does not work in d ¼ 2. In that case, the loop correc-
tions contain infrared divergences that an IR Landau pole
remains present, even if a mass for the gluons has been
introduced. For this reason, we only present results for
higher dimensions.

A. Fixing parameters

Following [27,28], we consider here the values of the
mass and coupling constants at some renormalization scale
�0 as fitting parameters. Since the lattice results are much
more precise for the propagators than for the three-point
correlation functions, we look for the set of parameters that
leads to the best fit of the two-point correlation functions.
(Note that the global normalization of the ghost and gluon
two-point correlation functions is not accessible, so we
have to introduce a multiplicative factor in front of our
analytic expression of the propagators, which must be fixed
by comparison with the lattice data.) The values of the
mass and coupling constant thus determined are then used
for computing the three-point correlation function. When
comparing the latter with lattice results, we are thus left
with only one free parameter associated with the global
normalization of GAAA. For each lattice parameter beta, we
fixed this multiplicative factor by considering a particular
momentum configuration (with one vanishing momentum)
and used the same value for the other momentum configu-
rations [52]. In previous work we compared both the SUð2Þ
and the SUð3Þ cases with lattice results [27,28]. In the
present article, given that the available lattice simulations
for the infrared behavior of three-point functions are for the
SUð2Þ group, we only present numerical results for that
case.

When comparing lattice data with analytical results, it is
important to have simultaneously a small relative and
absolute error since the propagators tend to zero in the
ultraviolet. Therefore, we use the following indicators to
quantify the precision of our results:

�2
AA ¼ 1

4N

X
i

ð�?
lt ð�0Þ2 þ �?

lt ðpiÞ2Þ
�

1

�?
lt ðpiÞ

� 1

�?
thðpiÞ

�
2

�2
c �c ¼

1

4N

X
i

ðJ�2
lt ð�0Þ þ J�2

lt ðpiÞÞðJltðpiÞ � JthðpiÞÞ2:

(38)

It corresponds to a sort of average between the (normal-
ized) absolute error and the relative error. In order to chose
the parameters we took a value that gives a compromise
between optimal values for both propagators. We analyzed
the errors for various values of � in both schemes both in
d ¼ 4 and in d ¼ 3. For moderate values of � (between 1
and 3) we do not observe an important dependence on�. In
the VM scheme, if the parameter � is too small, the system
shows an IR Landau pole and the results do not fit the
lattice data well. For that scheme we chose � ¼ 1, and all
results presented in that scheme correspond to that value.
In the IS scheme, there is no Landau pole. For the d ¼ 4
case, the curves are almost insensitive to �, even when it
tends to 0. In the d ¼ 3 case, the best fits are obtained for
� ¼ 0. In the following, all our results in the IS scheme are
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FIG. 4 (color online). Gluon propagator (top) and ghost dress-
ing function (bottom) as a function of momentum in d ¼ 4. The
points are lattice data of [16]. The solid line (blue) corresponds
to the infrared-safe scheme with � ¼ 0; the dashed line (red)
corresponds to the vanishing momentum scheme with � ¼ 1.
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given for� ¼ 0. The corresponding values are presented in
Tables I and II.

As our one-loop expressions are certainly not exact and
given a certain tolerance of the estimate of the propagators,
there are many possible values of the associated parame-
ters. In Fig. 3 we present the contour levels associated to
errors of 4%, 7%, and 10% for the quantities �AA and �c �c

both in d ¼ 4 and d ¼ 3 in schemes IS and VM. We can
see that there is a region of acceptable parameters (with

errors in both two-point functions lower than 10%) in
almost all cases. The only exception is the VM scheme
in d ¼ 3. In that dimension, the IS scheme is much more
precise than the other (and in fact gives an excellent fit for
both two-point functions simultaneously). The same ob-
servation is also true for the three-point functions discussed
below. We observe that there is a large degeneracy of
possible acceptable values for the parameters compatible
with lattice data for the ghost propagator. On the contrary,
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FIG. 5 (color online). Ghost-antighost-gluon correlation func-
tion Gc �cA for one vanishing momentum (top), all momenta equal
(middle), two momenta orthogonal, of equal norm (bottom) as a
function of momentum, in d ¼ 4. The lattice data of [37] are
compared with our calculations. See caption of Fig. 4 for the
legend.
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FIG. 6 (color online). Three gluon correlation function GAAA

for one vanishing momentum (top figure), all momenta equal
(middle figure), two momenta orthogonal, of equal norm
(bottom) as a function of momentum, in d ¼ 4. The lattice
data of [37] are compared with our calculations. See caption
of Fig. 4 for the legend.
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fitting the gluon propagator is much more demanding and
the region of acceptable parameters is much smaller.

B. d ¼ 4

We first present the results for the gluon propagator and
the ghost dressing function. The 	 functions were inte-
grated with initial condition at �0 ¼ 1 GeV and we used
the values of the mass and coupling constants given in
Table I.

For all these schemes, we find a good agreement with the
lattice data, with an error between 5% and 10% for �AA and
� �cc. However, the ghost-antighost-gluon vertex functions
are best reproduced with the VM scheme. We also present
curves with the IS scheme. The difference between the two
sets of curves gives an indication of the error of our
calculation.

The gluon propagator and ghost dressing functions are
depicted in Fig. 4. We show in Fig. 5 our results for
Gc �cA and in Fig. 6 for GAAA for different momentum
configurations.

In all cases, the results are compared with the corre-
sponding results obtained in lattice simulations [37]. The

agreement is excellent. It is a striking result that the set of
parameters adapted for describing the two-point correla-
tion function simultaneously gives a good agreement for
the three-point functions. When comparing the results with
lattice data, it is important to note that the data for the
three-point functions (particularly for the GAAA functions)
have large statistical errors and a full analysis of systematic
errors has not been done yet. In consequence we cannot
completely neglect the errors coming from the lattice data
with respect to those coming from the present calculation.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.2

0.4

0.6

0.8

1.0

1.2

p GeV

1
p

G
eV

2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

2

3

4

5

p GeV

J
p

FIG. 7 (color online). Gluon propagator (top) and ghost dress-
ing function (bottom) as a function of momentum in d ¼ 3. The
points are lattice data of [16]. The solid line (blue) corresponds
to the infrared-safe scheme with � ¼ 0; the dashed line (red)
corresponds to the vanishing momentum scheme with � ¼ 1.
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FIG. 8 (color online). Ghost-antighost-gluon correlation func-
tion Gc �cA for one vanishing momentum (top), all momenta equal
(middle), two momenta orthogonal, of equal norm (bottom) as a
function of momentum, in d ¼ 3. The lattice data of [37] are
compared with our calculations. See caption of Fig. 7 for the
legend.
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C. d ¼ 3

A similar analysis can be performed in d ¼ 3. We
summarize in Table II the parameters retained for the
different renormalization schemes. As explained before,
the VM scheme does not give results with good simulta-
neous agreement with lattice data for both propagators.
However, there is an excellent agreement in the IS scheme
(with errors between 5% and 10% for �AA and � �cc). In
particular, the IS scheme correctly reproduces the increase
of the gluon propagator at low momentum. The best choice

for � is zero. We do not have a solid argument explaining
why the preferred renormalization scheme is different in
d ¼ 4 and in d ¼ 3. The gluon propagator and ghost
dressing functions are depicted in Fig. 7. The agreement
remains very good and, moreover, all qualitative aspects of
the curves are correctly reproduced. In particular, we find
that the GAAA becomes negative at small momenta and
diverges for vanishing momenta, in agreement with lattice
results [53].
We show in Fig. 8 our results for Gc �cA and in Fig. 9 for

GAAA for different momentum configurations. As for the
four-dimensional case, we used the parameters that lead to
the best fits for the two-point functions as inputs in our
calculation of the three-point functions. Consequently
those functions are calculated without any free parameter
(with the exception of the renormalization factor for the
GAAA function mentioned previously). We obtain a very
good agreement as in d ¼ 4.

V. CONCLUSIONS

In the present article, we have presented a perturbative
calculation of three-point correlation functions in Landau
gauge and Yang-Mills theories in d ¼ 4 and d ¼ 3 in all
momentum regimes, including the infrared. Very few ana-
lytical results were known up to now for infrared behavior
of the ghost-antighost-gluon vertex [15,38–40]. For the
three-gluon functions, only educated Ansätze have been
proposed previously (see [15] and references therein).
Following [27,28], we introduced a bare gluon mass so
as to obtain controlled perturbative expressions both in the
ultraviolet and in the infrared regime. The bare mass also
gives an infrared safe perturbative expansion for nonexcep-
tional momentum configurations for all d > 2. Note that, in
the gauge-fixing procedure of [30], the mass term naturally
appears in the process of lifting the Gribov ambiguity.
We fixed the parameters of the model by fitting the two-

point function to lattice simulations and by using two
families of renormalization-group schemes. The resulting
parameters are then used to calculate the three-point func-
tions. The comparison of the resulting functions with lat-
tice simulations is therefore performed without any extra
free parameter (with the only exception of a renormaliza-
tion factor in the GAAA function) and is very good. First, all
qualitative properties observed in lattice correlators are
correctly explained in a simple way. For example, it is
observed in lattice simulations that the three-gluon corre-
lator becomes negative in d ¼ 3 at low momenta and even
seems to diverge when all momenta go to zero. This is a
consequence of the IR divergence of the diagrams with
ghost loops when all momenta go to zero. Second, not only
is the qualitative agreement very good, but also the com-
parison with lattice simulations gives an excellent quanti-
tative agreement. Note that the available lattice data still
have large statistical errors and more precise results
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FIG. 9 (color online). Three-gluon correlation function GAAA

for one vanishing momentum (top), all momenta equal (middle),
two momenta orthogonal, of equal norm (bottom) as a function
of momentum, in d ¼ 3. The lattice data of [37] are compared
with our calculations. See caption of Fig. 7 for the legend.
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(possibly with other tensor structures) would be welcome
to give a sharper test of our findings.

All these results strongly support the idea that at least an
important part of the infrared effects present in quantum
chromodynamics can take its origin in the Gribov copies,
as has been suggested in recent years [22,24–26]. Contrary
to a previous analysis of these effects, the present approach
does not require the introduction of extra fields and the
Feynman rules remain almost identical to those of the
standard perturbative analysis. Only the gluon mass
parameter is new, and the calculation of many correlators
becomes treatable in practice, as shown in the present
article. Consequently, these studies can be extended in
many aspects. We are currently also considering the
introduction of quarks, which can be done very easily.
We also started studying the influence of higher loop
contributions on the two-point correlation functions.

Of course, there are many open questions to be analyzed
in the future. First of all, the inclusion of a mass term
violates the nilpotency of standard Becchi-Rouet-Stora-
Tyutin (BRST) transformations. Even if this difficulty is
present in all approaches that take into account in various
ways Gribov copy effects, it has major consequences. In
particular, the standard definition of the physical space of
non-Abelian gauge theories, based in the cohomology of
the BRST charge, is no longer applicable. A new definition
of the physical space is then required in order to be able to
control the unitarity of the S matrix on it. This is a major
problem that clearly goes beyond the present article and
that we would like to consider in the future.
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APPENDIX: BRST SYMMETRY

In this appendix, we derive several constraints on the
vertex functions that can be deduced from the symmetries
of the theory.We recall that the action is invariant under the
BRST transformation:

�Aa
� ¼ �ð@�ca þ g0f

abcAb
�c

cÞ; �ca ¼ �

�
�1

2
g0c

bcc
�
;

� �ca ¼ �iha; �iha ¼ �m0c
a; (A1)

where � is a Grassmann parameter. As usual, we introduce
sources for the BRST variations of the fields A and c with
the following action:

Ssources ¼
Z
x

�
�Ka
�ð@�ca þ g0f

abcAb
�c

cÞ � g0
2
fabc �Lacbcc

�
:

(A2)

The Slavnov-Taylor (ST) identity associated with this
symmetry reads

Z
ddx

�
��

�Aa
�

��

� �Ka
�

þ ��

�ca
��

� �La
� iha

��

� �ca
þ im2

0

��

�ha
ca
�
¼ 0:

(A3)

We will also make use of the symmetry:

�Aa
� ¼ �ca ¼ 0; � �ca ¼ �ca; �iha ¼��

g0
2
fabccbcc;

(A4)

where � is an infinitesimal real number. The associated ST
identity reads

Z
ddx

�
ca

��

� �ca
þ i

��

�ha
��

� �La

�
¼ 0: (A5)

Finally, we can write a Ward identity associated with the
invariance of the theory under an infinitesimal shift in the
antighost �cðxÞ ! �cðxÞ þ �ðxÞ, which reads

@�
��

� �Ka
�ðxÞ ¼

��

� �caðxÞ : (A6)

Deriving this equation once with respect to c and taking the
Fourier transform, we find

� ip��
ð2Þ
cb �Ka

�
ðpÞ ¼ �ð2Þ

cb �ca
ðpÞ: (A7)

Deriving once more with respect to A and taking the
Fourier transform, we obtain

� ip��
ð3Þ
ca �Kb

�A
c
�
ðp; k; rÞ ¼ �ð3Þ

ca �cbAc
�
ðp; k; rÞ: (A8)

This last expression justifies the tensorial decomposition
(9) and shows that

�ð3Þ
ca �Kb

�A
c
�
ðp; k; rÞ ¼ �igfabc���ðp; k; rÞ; (A9)

if we suppose a color structure proportional to fabc, as was
done all along in this article.
We can now prove Eq. (20) by deriving Eq. (A3) with

respect to �c and twice with respect to A and expressing the
vertex involving �K by using Eqs. (A7) and (A8).
Equation (21) is obtained much in the sameway. We first

derive Eq. (A3) with respect to two ghost fields and one
antighost field and Fourier transform. We thus get
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� �ð3Þ
cc �cbAd

�
ðk; r; pÞ�ð2Þ

ca �Kd
�
ðpÞ þ �ð3Þ

ca �cbAd
�
ðp; r; kÞ�ð2Þ

cc �Kd
�
ðkÞ

þ �ð2Þ
cd �cb

ðrÞ�ð3Þ
cacc �Ldðp; k; rÞ ¼ 0: (A10)

The vertex that involves �L can be reexpressed by deriving
Eq. (A5) with respect to A and to c twice and Fourier
transforming:

�ð3Þ
cd �ccAb

�
ðp; k; rÞ � �ð3Þ

cc �cdAb
�
ðk; p; rÞ þ ir��

ð3Þ
cdcc �Lbðp; k; rÞ ¼ 0:

(A11)

The last two equations can be used to prove (21) again
using a color structure proportional to fabc.
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